• Sonuç bulunamadı

Lab exercise for Introduction to Graphical Models and Monte Carlo

N/A
N/A
Protected

Academic year: 2021

Share "Lab exercise for Introduction to Graphical Models and Monte Carlo"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Lab exercise for Introduction to Graphical Models and Monte Carlo

Taylan Cemgil, Cambridge June 20, 2007

1 Stochastic Inference

In this exercise you will implement the toy model (OSSS) described in the lecture.

s1 ∼ p(s1) = N (s1; µ1, P1) s2 ∼ p(s2) = N (s2; µ2, P2)

x|s1, s2 ∼ p(x|s1, s2) = N (x; s1+ s2, R)

s1 N (s1; µ1, P1)

s2 N (s2; µ2, P2)

x

N (x; s1+ s2, R)

Figure 1: OSSS model

We will use the following parameters: µ1= 3, µ2= 5, P1, P2= 0.5 and R = 0.3.

1.1 Forward sampling

Write a program to sample from the model. Find p(x) analytically and verify your result by plotting an histogram.

1.1.1 Solution

p(x) = N (x; µ1+ µ2, P1+ P2+ R)

1.2 Exact result

Suppose we observe x = 9. Find p(s1, s2|x = 9) analytically. Plot the posterior. You can use the function ellipse line to draw the isocontours of a Gaussian in 2-D.

(2)

1.3 Solution

Since log φ(s1, s2) =+p(s1, s2|x = 9) and this is a second order polynomial, the exact posterior is also Gaussian. Let

p(s1, s2|x = ˆx) = N ( µ s1

s2

; ˜m, Σ)

log φ(s1, s2) = log p(x = ˆx|s1, s2) + log p(s1) + log p(s2)

=+ ¡

µT1P1−1+ ˆxTR−1¢ s1

µT2P2−1+ ˆxTR−1¢ s2

1 2Tr¡

P1−1+ R−1¢

s1sT1 − sT1R−1s2

| {z }

(∗)

1 2Tr¡

P2−1+ R−1¢ s2sT2

By rewriting the expression for log φ, we obtain log φ(s1, s2) =+ 1

2

¡ s1 s2

¢µ

P1−1+ R−1 R−1 R−1 P2−1+ R−1

¶ µ s1

s2

+ h>

µ s1

s2

where

h>¡

µT1P1−1+ ˆxTR−1 µT2P2−1+ ˆxTR−1 ¢

we identify the coefficients of the quadratic terms as the inverse covariance matrix of the exact posterior

Σ−1 =

µ P1−1+ R−1 R−1 R−1 P2−1+ R−1

The mean is found by

˜

m = Σh Numerical result is

˜ m =

µ 3.4975 5.4975

Σ =

µ 0.2512 −0.2488

−0.2488 0.2512

1.4 Gibbs sampling

Find the full conditionals analytically and implement

s(t)1 ∼ p(s1|s(t)2 , x = ˆx) s(t+1)2 ∼ p(s2|s(t)1 , x = ˆx)

Compute the mean and the variance of the generated samples. Is the sample average close to the exact posterior mean?

(3)

1.4.1 Solution

We denote the conditional as

p(s1|s(t)2 , x = ˆx) = N (s1; ˜m1|2, Σ1|2) We substitute to the exact posterior

log φ(s1, s2= s(t)2 ) =+ 1 2

³

s1 s(t)2 ´ µ P1−1+ R−1 R−1 R−1 P1−1+ R−1

¶ µ s1

s(t)2

¶ +¡

µT1P1−1+ ˆxTR−1¢>

s1

Reorganizing the terms,

log φ(s1, s2= s(t)2 ) =+ 1

2s>1(P1−1+ R−1)s1

P1−1µ1+ R−1x − Rˆ −1s(t)2 ´>

s1

Σ−11|2 = P1−1+ R−1

˜

m1|2 = Σ1|2

³

P1−1µ1+ R−1x − s(t)2 )

´

R = 0.3;

P = 0.5;

mu1=3;

mu2=5;

x = 9;

T = 1000;

s = zeros(2,T);

s(:,1) = [5 ;5];

Sig = 1/(1/P + 1/R);

for t=2:T,

m1 = Sig*(mu1/P + (x-s(2,t-1))/R );

s(1,t) = sqrt(Sig)*randn + m1;

m2 = Sig*(mu2/P + (x-s(1,t))/R );

s(2,t) = sqrt(Sig)*randn + m2;

end

plot(s(1,:), s(2,:), ’.’)

Sig_exact = inv([1/P+1/R 1/R;1/R 1/P+1/R]);

1.5 Relaxation

Repeat the previous experiment with R = 0.005. How many iterations does it take until conver- gence if θ(0)= (µ1, µ2)?

Change during the simulation the R parameter slowly from 2 to 0.005. Can you find a schedule to speed up convergence. Try to get a plot like Figure 2:

(4)

s1

s2 exact posterior

factorized MF R1 R2

Rτ

Figure 2: Relaxation

2 AR(1) Model

A R

x0 x1 . . . xk

1 xk . . . xK

A ∼ N (A; 0, 1.2) R ∼ IG(R; 0.4, 250) xk|xk−1, A, R ∼ N (xk; Axk−1, R)

x0 = 1 x1= −6

N (x; m, r) = exp{−1

2(x2+ m2− 2xm)/r −1

2log(2πr)}

IG(r; a, b) = exp µ

−(a + 1) log r − 1

br − log Γ(a) − a log b

1. Draw the factor graph

2. Write the expression for the full joint distribution and assign terms to the individual factors on the factor graph

3. Derive the full conditional distributions p(A|R, x0, x1) and p(R|A, x0, x1) 4. Implement the Gibbs sampler

5. Implement the simulated annealing and iterative improvement

The mode of an inverse gamma distribution is at r = 1/((a + 1)b). To generate an inverse

(5)

2.1 Solution

p(A, R|x0, x1) ∝ p(x1|x0, A, R)p(A)p(R)

= N (x1; Ax0, R)N (A; 0, P )IG(R; ν, β/ν)

∝ exp µ

1 2

x21

R + x0x1A R−1

2 x20A2

R 1

2log 2πR

exp µ

1 2

A2 P

¶ exp

µ

−(ν + 1) log R −ν β

1 R

log p(A|R, x0, x1) =+ +x0x1A R 1

2 x20A2

R 1 2

A2 P

= 1 2

µx20 R + 1

P

A2+x0x1

R A p(A|R, x0, x1) = N (A; µA, ΣA)

ΣA = µx20

R + 1 P

−1

µA = ΣAx0x1

R log p(R|A, x0, x1) =+ 1

2 x21

R + x0x1A R 1

2 x20A2

R 1

2log 2πR − (ν + 1) log R − ν β

1 R

=+ −(ν +1

2 + 1) log R − µ1

2x21− x0x1A +1

2x20A2+ν β

¶ 1 R p(R|A, x0, x1) = IG

Ã

R; ν +1 2,

µ1

2(x1− Ax0)2+ν β

−1!

beta_nu = 250;

nu = 0.4;

P = 1.2;

x_0 = 1;

x_1 = -6;

T = 10000;

R = zeros(1, T);

A = zeros(1, T);

A(1) = -6;

R(1) = 0.00001;

for t=2:T,

Sig = 1/(x_0^2/R(t-1) + 1/P);

mu = Sig*x_0*x_1/R(t-1);

A(t) = sqrt(Sig)*randn + mu;

b = 0.5*(x_1 - A(t)*x_0).^2 + 1/beta_nu;

R(t) = 1/(gamrnd(nu+0.5, 1/b));

end;

plot(A, log(R), ’.’);

(6)

3 Importance Sampling

Consider a fully connected graph with 3 nodes A, B and C. The edges are distributed with xAB ∼ E(x; u1)

xAC ∼ E(x; u2) xBC ∼ E(x; u3) where u1= 1, u2= 2, u3= 3

1. Find an expression for the length of the shortest path from A to C, denoted by L . 2. Simulate from the distribution of L

3. Compute the probability Pr(L ≥ 10) by importance sampling. What is the variance of the weights?

4. Use as a proposal where u1 = 2, u2 = 3, u3 = 4 and repeat. What is the variance of the weights?

5. Could one adapt the proposal?

Referanslar

Benzer Belgeler

Recognition of periodic regularities in physical and chemical behavior and the need to organize the large volume of available information about the structure and properties of

Zafer Üskül için böyle de, değerli sanatçı vc Beyoğlu adayı Halil Ergün için farklı mı.. Gene kocaman

There is no mesomeric effect since there is no π bond or empty p orbital.. A nucleophile is a chemical species that donates an electron pair to an electrophile to form

Water is too deep in the limnetic zone to support rooted aquatic plants; small drifting animals called zooplankton graze on the phytoplankton.. Streams

Hakim böyle bir ilişkinin olduğunu saptarsa belgeleri derhal avukata iade edecektir(CMK 130/2). Son yıllarda ortaya çıkan internet suçları nedeniyle bilgisayarlarda,

The aberrant expression and distribution of the OCT-4 transcription factor in seminomas may provide some important clues concerning the cell transformation between germ line stem

Yetmiş iki yaşında koroner by pass hikayesi olan hastanın aortoiliak tıkayıcı damar hastalığı nedeni ile aorto-bifemoral bypass ameliyatı sonrası 4 ay arayla

Adli Tıp İhtisas Kurulu tarafından düzenlenmiş kararlarda; Sosyal Güvenlik Kurumu-Sosyal Sigorta Yüksek Sağlık Kurulu tarafından malulen emeklilik talepleri