• Sonuç bulunamadı

A new subclass of meromorphic functions defined by Rapid operator

N/A
N/A
Protected

Academic year: 2022

Share "A new subclass of meromorphic functions defined by Rapid operator"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

C om mun.Fac.Sci.U niv.A nk.Ser. A 1 M ath. Stat.

Volum e 70, N umb er 2, Pages 858–870 (2021) D O I: 10.31801/cfsuasm as.835272

ISSN 1303–5991 E-ISSN 2618–6470

Received by the editors: D ecem ber 3, 2020; Accepted: M arch 7, 2021

A NEW SUBCLASS OF MEROMORPHIC FUNCTIONS DEFINED BY RAPID OPERATOR

Venkateswarlu BOLINENI1, Thirupathi Reddy PINNINTI2, SUJATHA1, and Sridevi SETTIPALLI1

1Department of Mathematics, GSS, GITAM University, Doddaballapur- 562 163, Bengaluru Rural, Karnataka, INDIA

2Department of Mathematics, Kakatiya University,Warangal- 506 009, Telangana, INDIA

Abstract. We present and investigate a new subclass of meromorphic uni- valent functions described by the Rapid operator in this study. Coe¢ cient inequalities is discussed, as well as distortion properties, closure theorems, Hadamard product. After this, integral transforms for the class (#; %; }; ; ) are obtained.

1. Introduction Let stands for the function class of the form

@(~) = 1

~+ X1

`=1

a`~`; ` 2 N = f1; 2; 3; g (1) analytic in the punctured unit disc = f~ 2 C : 0 < j~j < 1g = n f0g:

A function @ 2 given by (1) is said to be meromorphically starlike of order % if it satis…es the following:

< ~@0(~)

@(~) > %; (~ 2 )

for some %(0 % < 1): We say that @ is in the class (%) of such functions.

Similarly a function @ 2 given by (1) is said to be meromorphically convex of order % if it satis…es the following:

< 1 + ~@00(~)

@0(~) > %; (~ 2 )

2020 Mathematics Subject Classi…cation. 30C45.

Keywords and phrases. Meromorphic, starlike, coe¢ cient estimates, integral operator.

bvlmaths@gmail.com-Corresponding author; reddypt2@gmail.com, sujathavaish- navy@gmail.com; siri_settipalli@yahoo.co.in

0000-0003-3669-350X; 0000-0002-0034-444X; 0000-0002-2109-3328; 0000-0003-1918-6127.

c 2 0 2 1 A n ka ra U n ive rsity C o m m u n ic a t io n s Fa c u lty o f S c ie n c e s U n ive rs ity o f A n ka ra -S e rie s A 1 M a t h e m a tic s a n d S t a t is t ic s

858

(2)

for some %(0 % < 1): We say that @ is in the class `(%) of such functions.

Akgul [1,2], Miller [8], Pommerenke [9], Royster [10], Aydogan and Sakar [4,5,11]

and Venkateswarlu et al. [14, 15, 16] have all studied the class (%) and numerous other subclasses of extensively.

For functions @ 2 given by (1) and g 2 given by g(~) = 1

~ + X1

`=1

b`~`; we de…ne the Hadamard product of @ and g by

(@ g)(~) = 1

~+ X1

`=1

a`b`~`:

Jung et al. de…ned the integral operator on normalised analytic functions in [6]

and Lashin [7] updated their operator for meromorphic functions in the following manner:

Lemma 1. For @ 2 given by (1), if the operator S : ! is de…ned by

S @(~) = 1

(1 ) ( + 1) Z1

0

t +1e1 t @(t~)dt; (2)

(0 < 1; 0 1 and ~ 2 ) then S @(~) = 1

~ + X1

`=1

`( ; )a`~` (3)

where `( ; ) = (1 )`+1 (`+ +2)( +1) and is the familiar Gamma function.

Using the equation (3), it is easily seen that

~(S @(~))0= S 1@(~) ( + 1)S @(~); (0 1; 0 1): (4) We de…ne a new subclass (#; %; }; ; ) of based on Sivaprasad Kumar et al. [13] and Venkateswarlu et al. [14] (#; %; }; ; ) of :

De…nition 2. For 0 # < 1; % 0; 0 } < 12; we let (#; %; }; ; ) be the subclass of consisting of functions of the form (1) and satisfying the analytic condition

< ~(S @(~))02(S @(~))00

(1 })S @(~) + }~(S @(~))0 + #

!

> % ~(S @(~))02(S @(~))00

(1 })S @(~) + }~(S @(~))0 + 1 : (5) The following lemmas are needed to prove our …ndings [3].

Lemma 3. If is a real number and ! is a complex number then

<(!) , j! + (1 )j j! (1 + )j 0:

(3)

Lemma 4. If ! is a complex number and ; ` are real numbers then

<(!) `j! + 1j + , < !(1 + `ei ) + `ei ; ( ):

The key purpose of this paper is to look at some traditional geometric function theory properties for the class of geometric functions, such as coe¢ cient bounds, dis- tortion properties, closure theorems, Hadamard product, and integral transforms.

2. Coefficient estimates

We obtain required and adequate conditions for a function @ to be in the class in this section.

Theorem 5. Let @ 2 be given by (1). Then @ 2 (#; %; }; ; ) i¤

X1

`=1

[(1 + (` 1)})][`(% + 1) + (% + #)] `( ; )a` (1 #)(1 2}): (6) Proof. Let @ 2 (#; %; }; ; ): Then by De…nition 2 and using Lemma 4, It su¢ ces to demonstrate that

<

( ~(S @(~))02(S @(~))00

(1 })S @(~) + }~(S @(~))0(1 + %ei ) + %ei )

#; ( ): (7)

For convenience

C(~) = ~(S @(~))02(S @(~))00 (1 + %ei )

%ei (1 })S @(~) + }~(S @(~))0 D(~) =(1 })S @(~) + }~(S @(~))0:

That is, the equation (7) is equivalent to

< C(~)

D(~) #:

We only need to prove that in light of Lemma 3

jC(~) + (1 #)D(~)j jC(~) (1 + #)D(~)j 0:

Therefore

jC(~) + (1 #)D(~)j (2 #)(1 2}) 1

j~j X1

`=1

[` (1 #)][1 + }(` 1)] `( ; )a`j~j`

% X1

`=1

(` + 1)[1 + }(` 1)] `( ; )a`j~j` and jC(~) (1 + #)D(~)j

(4)

#(1 2}) 1 j~j +

X1

`=1

[` + (1 + #)][1 + }(` 1)] `( ; )a`j~j`

+ % X1

`=1

(` + 1)[1 + }(` 1)] `( ; )a`j~j`:

It is to show that

jC(~) + (1 #)D(~)j jC(~) (1 + #)D(~)j 2(1 #)(1 2}) 1

j~j 2 X1

`=1

[(` + #)(1 + (` 1)})] `( ; )a`j~j`

2%

X1

`=1

(` + 1)(1 + (` 1)}) `( ; )a`j~j` 0; by the given condition (6).

Conversely suppose @ 2 (#; %; }; ; ): Then by Lemma 3, we have (7).

The inequality (7) is reduced to when the values of ~ are chosen on the positive real axis

<

8>

><

>>

:

[(1 2})(1 #)(1 + %ei )]1

~2 +P1

`=1f` + %ei (` + 1) + #g[1 + }(` 1)] `( ; )~` 1 (1 2})~12 +P1

`=1

[1 + }(` 1)] `( ; )a`~` 1

9>

>=

>>

; 0:

Since <( ei ) jei j = 1; the above inequality is reduced to

<

8>

><

>>

:

[(1 2})(1 #)(1 + %ei )]r12 +P1

`=1f` + %(` + 1) + #g[1 + }(` 1)] `( ; )a`r` 1 (1 2})r12 +P1

`=1

[1 + }(` 1)] `( ; )r` 1

9>

>=

>>

; 0:

We obtained the inequality (6) by letting r ! 1 and using the mean value theorem.

Corollary 6. If @ 2 (#; %; }; ; ) then

a` (1 #)(1 2})

[1 + }(` 1)][`(1 + %) + (# + %)] `( ; ): (8) The estimate is sharp for the function

@(~) = 1

~+ (1 #)(1 2})

[1 + }(` 1)][`(1 + %) + (# + %)] `( ; )~`: (9) We get the following corollary by taking } = 0 in Theorem 5.

(5)

Corollary 7. If @ 2 (#; %; ; ) then a`

1 #

[`(1 + %) + (# + %)] `( ; ): (10) 3. Distortion theorem

Theorem 8. If @ 2 (#; %; }; ; ) then for 0 < j~j = r < 1;

1 r

(1 #)(1 2})

(2% + # + 1) 1( ; ) r j@(~)j 1

r + (1 #)(1 2})

(2% + # + 1) 1( ; )r: (11) This estimate is sharp for the function

@(~) = 1

~+ (1 #)(1 2})

(2% + # + 1) 1( ; ) ~: (12)

Proof. Since @(~) = ~1+P1

`=1

a`~`; we have

j@(~)j = 1 r +

X1

`=1

a`r` 1 r+ r

X1

`=1

a`: (13)

Since ` 1; (2% + # + 1) 1( ; ) [1 + }(` 1)][`(1 + %) + (% + #)] `( ; ); using Theorem 5, we have

(2% + # + 1) 1( ; ) X1

`=1

a`

X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; ) (1 #)(1 2})

) X1

`=1

a`

(1 #)(1 2}) (2% + # + 1) 1( ; ): Using the above inequality in (13), we have

j@(~)j 1

r + (1 #)(1 2}) (2% + # + 1) 1( ; )r and j@(~)j 1

r

(1 #)(1 2}) (2% + # + 1) 1( ; )r:

The estimate is sharp for the function @(~) = 1~+ (1 #)(1 2}) (2%+#+1) 1( ; )~:

We omit the proof of the following corollary since it is similar to that of Theorem 8.

Corollary 9. If @ 2 (#; %; }; ; ) then 1

r2

(1 #)(1 2})

(2% + # + 1) 1( ; ) j@0(~)j 1

r2 + ((1 #)(1 2}) (2% + # + 1) 1( ; ): The estimate is sharp for the function given by (12).

(6)

4. Closure theorems Let the function @j be de…ned, for j = 1; 2; ; m; by

@j(~) = 1

~+ X1

`=1

a`;j~`; a`;j 0: (14)

Theorem 10. Let the functions @j; j = 1; 2; ; m de…ned by (14) be in the class (#; %; }; ; ): Then the function h de…ned by

h(~) = 1

~+ X1

`=1

0

@1 m

Xm j=1

a`;j

1

A ~` (15)

also belongs to the class (#; %; }; ; ):

Proof. Since @j; j = 1; 2; ; m are in the class (#; %; }; ; ); it follows from Theorem 5, that

X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; )a`;j (1 #)(1 2});

for every j = 1; 2; ; m: Hence X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; ) 0

@1 m

Xm j=1

a`;j 1 A

= 1 m

Xm j=1

X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; )a`;j

!

(1 #)(1 2}):

From Theorem (6), it follows that h 2 (#; %; }; ; ):

Hence the proof.

Theorem 11. The class (#; %; }; ; ) is closed under convex linear combina- tions.

Proof. Let the functions @j; j = 1; 2; ; m de…ned by (14) be in the class (#; %; }; ; ):

Then one need only show that function

h(~) = &@1(~) + (1 &)@2(~); 0 & 1 (16) is in the class (#; %; }; ; ): Since for 0 & 1;

h(~) = 1

~ + X1

`=1

[&a`;1+ (1 &)a`;1]~`; (17)

(7)

with the assistance of the Theorem5, we have X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; )[&a`;1+ (1 &)a`;1]

&(1 #)(1 2}) + (1 &)(1 #)(1 2})

=(1 #)(1 2});

which implies that h 2 (#; %; }; ; ):

Theorem 12. Let 0: Then (#; %; }; ; ) N (%; ); where

= 1 2(1 #)(1 2})(1 + %)

(2% + # + 1) + (1 #)(1 2}): (18)

Proof. If @ 2 (#; %; }; ; ) then X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; )

(1 #)(1 2}) a` 1:

We need to …nd the value of such that X1

`=1

[`(1 + %) + (% + )] `( ; )

1 a` 1:

Thus it is su¢ cient to show that [`(1 + %) + (% + )] `( ; )

1

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; )

(1 #)(1 2}) :

Then

1 (` + 1)(1 #)(1 2})(1 + %)

[1 + }(` 1)][`(1 + %) + (% + #)] + (1 #)(1 2}): Since

G(`) = 1 (` + 1)(1 #)(1 2})(1 + %)

[1 + }(` 1)][`(1 + %) + (% + #)] + (1 #)(1 2}) is an increasing function of `; ` 1; we obtain

G(1) = 1 2(1 #)(1 2})(1 + %) (2% + # + 1) + (1 #)(1 2}):

Theorem 13. Let @0(~) = ~1 and

@`(~) = 1

~+ X1

`=1

(1 #)(1 2})

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; )~`; ` 1: (19) Then @ is in the class (#; %; }; ; ) i¤ can be expressed in the form

@(~) = X1

`=0

!`@`(~); (20)

(8)

where !` 0 and P1

`=0

!`= 1.

Proof. Assume that

@(~) = X1

`=0

!`@`(~)

= 1

~+ X1

`=1

(1 #)(1 2})

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; )~`: Then it follows that

X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; ) (1 #)(1 2})

(1 #)(1 2})

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; )~`

= X1

`=1

!`= 1 !0 1

which implies that @ 2 (#; %; }; ; ):

On the other side, assume that the function @ de…ned by (1) be in the class

@ 2 (#; %; }; ; ): Then a`

(1 #)(1 2})

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; ): Setting

!`=[1 + }(` 1)][`(1 + %) + (% + #)] `( ; )

(1 #)(1 2}) a`;

where

!0= 1 X1

`=0

!`;

@ can be expressed in the form (20), as can be shown.

Corollary 14. The extreme points of the class (#; %; }; ; ) are the functions

@0(~) = ~1 and

@`(~) = 1

~+ (1 #)(1 2})

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; )~`: (21) 5. Modified Hadamard products

Let the functions @j(j = 1; 2) de…ned by (14). The modi…ed Hadamard product of @1 and @2 is de…ned by

(@1 @2)(~) = 1

~+ X1

`=1

a`;1a`;2~`= (@2 @1)(~): (22)

(9)

Theorem 15. Let the function @j(j = 1; 2) de…ned by (14) be in the class (#; %; }; ; ):

Then @1 @22 (#; %; }; ; ); where

' = 1 2(1 #)2(1 2})(1 + %)

(2% + # + 1)2 1( ; ) + (1 #)2(1 2}): (23) The estimate is sharp for the functions @j(j = 1; 2) given by

@j(~) = 1

~ + (1 #)(1 2})

(2% + # + 1) 1( ; )~; (j = 1; 2): (24) Proof. Using the same method that Schild and Silverman [12] used earlier, we need to …nd the largest real parameter ' such that

X1

`=1

[1 + }(` 1)][`(1 + %) + (% + ')] `( ; )

(1 ')(1 2}) a`;1a`;2 1: (25)

Since @j 2 (#; %; }; ; ); j = 1; 2; we readily see that X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #] `( ; )

(1 #)(1 2}) a`;1 1

and X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #] `( ; )

(1 #)(1 2}) a`;2 1:

By Cauchy- Schwarz inequality, we have X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #] `( ; ) (1 #)(1 2})

pa`;1a`;2 1: (26)

Then merely demonstrating that is necessary X1

`=1

[1 + }(` 1)][`(1 + %) + (% + ')] `( ; ) (1 ')(1 2}) a`;1a`;2 X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #] `( ; ) (1 #)(1 2})

pa`;1a`;2

or equivalently that

pa`;1a`;2

[`(1 + %) + (% + #](1 ') [`(1 + %) + (% + '](1 #):

Hence, it light of the inequality (26), then merely demonstrating that is necessary (1 #)(1 2})

[1 + }(` 1)][`(1 + %) + (% + #] `( ; )

[`(1 + %) + (% + #](1 ')

[`(1 + %) + (% + '](1 #): (27) It follows from (27) that

' 1 (1 #)2(1 2})(1 + %)(` + 1)

[1 + }(` 1)][`(1 + %) + (% + #]2 `( ; ) + (1 #)2(1 2}):

(10)

Now de…ning the function E(`);

E(`) = 1 (1 #)2(1 2})(1 + %)(` + 1)

[1 + }(` 1)][`(1 + %) + (% + #]2 `( ; ) + (1 #)2(1 2}): We see that E(`) is an increasing of `; ` 1: Therefore, we conclude that

' E(`) = 1 2(1 #)2(1 2})(1 + %)

(2% + # + 1)2 1( ; ) + (1 #)2(1 2}); Hence the proof.

The following theorem is obtained using arguments close to those used in the proof of 15,

Theorem 16. Let the function @1 de…ned by (14) be in the class (#; %; }; ; ):

Suppose also that the function @2 de…ned by (14) be in the class ( ; #; %; }; ; ):

Then @1 @22 ( ; #; %; }; ; ); where

= 1 2(1 #)(1 )(1 2})(1 + %)

(2% + # + 1)(2% + + 1) 1( ; ) + (1 #)(1 )(1 2}): (28) The estimate is sharp for the functions @j(j = 1; 2) given by

@1(~) = 1

~+ (1 #)(1 2}) (2% + # + 1) 1( ; )~ and

@2(~) = 1

~+ (1 )(1 2}) (2% + + 1) 1( ; )~:

Theorem 17. Let the function @j(j = 1; 2) de…ned by (14) be in the class (#; %; }; ; ):

Then the function

h(~) = 1

~+ X1

`=1

(a2`;1+ a2`;2)~` (29) belongs to the class ("; #; %; }; ; ); where

" = 1 4(1 #)2(1 2})(1 + %)

(2% + # + 1)2 1( ; ) + 2(1 #)2(1 2}): (30) The estimate is sharp for the functions @j(j = 1; 2) given by (24).

Proof. By using Theorem 5, we obtain X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; ) (1 #)(1 2})

2

a2`;1 X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; )

(1 #)(1 2}) a`;1

2

1 (31)

(11)

and

X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; ) (1 #)(1 2})

2

a2`;2 X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; )

(1 #)(1 2}) a`;2

2

1: (32)

It follows from (31) and (32) that X1

`=1

1 2

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; ) (1 #)(1 2})

2

(a2`;1+ a2`;2) 1:

Therefore, we need to …nd the largest " such that [1 + }(` 1)][`(1 + %) + (% + ")] `( ; )

(1 ")(1 2}) 1

2

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; ) (1 #)(1 2})

2

; that is

" 1 2(1 #)2(1 2})(1 + %)(` + 1)

1 + }(` 1)][`(1 + %) + (% + #)]2 `( ; ) + 2(1 #)2(1 2}): Since

G(`) = 1 2(1 #)2(1 2})(1 + %)(` + 1)

[1 + }(` 1)][`(1 + %) + (% + #)]2 `( ; ) + 2(1 #)2(1 2}) is an increasing function of `; ` 1; we obtain

" G(1) = 4(1 #)2(1 2})(1 + %)

(2% + # + 1)2 1( ; ) + 2(1 #)2(1 2}) and hence the proof.

6. Integral operators

Theorem 18. Let the functions @ given by (1) be in the class (#; %; }; ; ):

Then the integral operator

F (~) = c Z1

0

uc@(u~)du; 0 < u 1; c > 0 (33)

is in the class (#; %; }; ; ); where

= 1 2c(1 #)(1 + %)

(c + 2)(2% + # + 1) + c(1 #): (34) The estimate is sharp for the function @ given by (12).

(12)

Proof. Let @ 2 (#; %; }; ; ): Then

F (~) =c Z1

0

uc@(u~)du

=1

~ + X1

`=1

c

` + c + 1a`~`: Thus it is enough to show that

X1

`=1

c[1 + }(` 1)][`(1 + %) + (% + )] `( ; )

(` + c + 1)(1 )(1 2}) a` 1: (35)

Since @ 2 (#; %; }; ; ); then X1

`=1

[1 + }(` 1)][`(1 + %) + (% + #)] `( ; )

(1 #)(1 2}) a` 1: (36)

From (35) and (36), we have

[`(1 + %) + (% + )]

(` + c + 1)(1 )

[`(1 + %) + (% + #)]

(1 #) :

Then

1 c(1 #)(` + 1)(1 + %)

(` + c + 1)[`(1 + %) + (% + #)] + c(1 #): Since

Y (`) = 1 c(1 #)(` + 1)(1 + %)

(` + c + 1)[`(1 + %) + (% + #)] + c(1 #) is an increasing function of `; ` 1; we obtain

Y (1) = 1 2c(1 #)(1 + %) (c + 2)(2% + # + 1) + c(1 #) and hence the proof.

7. Conclusion

This research has introduced a new subclass of meromorphic functions de…ned by Rapid operator and studied some basic properties of geometric function theory.

Accordingly, some results to coe¢ cient estimates, distortion properties, closure theorems, hadamard product and integral transforms have been considered, inviting further research for this …eld of study.

Author Contribution StatementsAll authors contributed equally to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

(13)

Declaration of Competing InterestsThe authors declare that there is no con-

‡ict of interest regarding the publication of this.

AcknowledgmentsThe authors are thankful to the editor and referee(s) for their valuable comments and suggestions which helped very much in improving the paper.

References

[1] Akgul, A., A certain subclass of meromorphic functions with positive coe¢ cients associated with an integral operator, Honam Math. J., 39(3) (2017), 331-347.

https://doi.org/10.1016/j.mcm.2010.12.051

[2] Akgul, A., A new subclass of meromorphic functions with positive and …xed second coe¢ cients de…ned by the Rapid-Operator, Commun. Fac. Sci. Univ. Ank. Series-A1, 66(2) (2017), 1- 13. DOI: 10.1501/Commua1 0000000796

[3] Aqlan, E., Jhangiri, J. M., Kulkarni, S. R., Class of k-uniformly convex and starlike functions, Tamkang, J. Math., 35 (2004), 261-266. https://doi.org/10.5556/j.tkjm.35.2004.207 [4] Aydogan, S. M., Sakar, F. M., Radius of starlikeness of p-valent lambda frac-

tional operator, Applied Mathematics and Computation, 357 (2019), 374-378.

https://doi.org/10.1016/j.amc.2018.11.067

[5] Aydogan, S. M., Sakar, F. M., On convex functions with complex order through bounded boundary rotation, Mathematics in Computer Science, 13 (2019), 433-439.

https://doi.org/10.1007/s11786-019-00405-8

[6] Jung, I. S., Kim, Y. C., Srivastava, H. M., The Hardy spaces of analytic functions associated with certain one parameter families of integral operators, J. Math. Anal. Appl., 176(1) (1993), 138-147. https://doi.org/10.1006/jmaa.1993.1204

[7] Lashin, A. Y., On certain subclasses of meromorphic functions associated with certain integral operators, Comput. Math. Appl., 59(1) (2010), 524-531.

https://doi.org/10.1016/j.camwa.2009.06.015

[8] Miller, J. E., Convex meromorphic mapping and related functions, Proc. Amer. Math. Soc., 25 (1970), 220–228. https://doi.org/10.1090/S0002-9939-1970-0259098-7

[9] Pommerenke, C., On meromorphic starlike functions, Paci…c J. Math., 13 (1963), 221-235.

DOI: 10.2140/p jm.1963.13.221

[10] Royster, W. C., Meromorphic starlike univalent functions, Trans. Amer. Math. Soc., 107 (1963), 300-308. https://doi.org/10.1090/S0002-9947-1963-0148895-5

[11] Sakar, F. M., Estimating coe¢ cients for certain subclasses of meromorphic and bi-univalent functions, J. of Ineq. and Appl., 283 (2018), 8 pages. https://doi.org/10.1186/s13660-018- 1879-4

[12] Schild, A., Silverman, H., Convolutions of univalent functions with negative coe¢ cients, Ann.

Univ. Mariae Curie-Sklodowska Sect. A, 29 (1975), 99-107.

[13] Sivaprasad Kumar, S., Ravichandran, V., Murugusundaramoorthy, G., Classes of meromor- phic p-valent parabolic starlike functions with positive coe¢ cients, Aust. J. Math. Anal.

Appl., 2(2) (2005), art. 3, 1-9.

[14] Venkateswarlu, B., Thirupathi Reddy, P., Rani, N., Certain subclass of meromorphically uniformly convex functions with positive coe¢ cients, Mathematica (Cluj), 61(84) (1) (2019), 85-97. DOI: 10.24193/mathcluj.2019.1.08

[15] Venkateswarlu, B., Thirupathi Reddy, P., Rani, N., On new subclass of meromorphically convex functions with positive coe¢ cients, Surveys in Math. and its Appl., 14 (2019), 49-60.

[16] Venkateswarlu, B., Thirupathi Reddy, P., Meng, C., Madhuri Shilpa, R., A new subclass of meromorphic functions with positive coe¢ cients de…ned by Bessel function, Note di Math., 40(1) (2020), 13-25. DOI: 10.1285/i15900932v40n1p13

Referanslar

Benzer Belgeler

İkinci Abdülhamit Hanın ma­ ruf sadrâzamlarından Sait paşa, ınazııl bulunduğu bir sırada ve 22 kasını 311 tarihine rastlıyan çar­ şamba günü

Çalışmada, Atatürk Üniversitesi, Atatürk Üniversitesi Edebiyat Fakültesi ve Atatürk Üniversitesi Merkez Kütüphanesi hakkında kısaca bilgi verildikten sonra, Atatürk

Bu çalışmada genel olarak bilgi politikası kavramı, tanımı, unsurları ve tarihsel gelişimine kısa bir giriş yapıldıktan sonra Amerika Birleşik Devletleri (ABD), bilgi

Yukarıda verdiğimiz üç örnekte açıkça görüldüğü gibi Nesefî, Keşşaf’a işaret ederek ibarenin aynısını olduğu gibi aktarmaktadır.. b) Kaynak belirtmeden

The aim of this study was to investigate the effect of the Tinuvin derivatives widely used as UV stabilizers in the plastics industry on EPDM rubber.. The EPDM rubber plates

Yarma deneylerinde kullanılmak üzere boyut değişim aralığı 1/4 olan silindir ve küp numuneler ile birlikte basınç dayanımı, eğilmede çekme dayanımı

level with ( X :3,85) degree, “This game makes people addicted to play continuously.” item is on high “I agree” level with ( X :3,84) degree, “One’s enjoying a lot

Suluboyanın başka malzemelerde bulunmayan duygusal ve şiirsel özellikleri olan birinci sınıf bir malzeme olduğunu savunmaktadır... AHMET FAZIL AKSOY SULUBOYA RESİM