• Sonuç bulunamadı

Başlık: Gaussian padovan and gaussian pell- padovan sequencesYazar(lar):TAŞCI, DursunCilt: 67 Sayı: 2 Sayfa: 082-088 DOI: 10.1501/Commua1_0000000863 Yayın Tarihi: 2018 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: Gaussian padovan and gaussian pell- padovan sequencesYazar(lar):TAŞCI, DursunCilt: 67 Sayı: 2 Sayfa: 082-088 DOI: 10.1501/Commua1_0000000863 Yayın Tarihi: 2018 PDF"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

C om mun. Fac. Sci. U niv. A nk. Ser. A 1 M ath. Stat. Volum e 67, N umb er 2, Pages 82–88 (2018)

D O I: 10.1501/C om mua1_ 0000000863 ISSN 1303–5991

http://com munications.science.ankara.edu.tr/index.php?series= A 1

GAUSSIAN PADOVAN AND GAUSSIAN PELL- PADOVAN SEQUENCES

DURSUN TA¸SCI

Abstract. In this paper, we extend Padovan and Pell- Padovan numbers to Gaussian Padovan and Gaussian Pell-Padovan numbers, respectively. More-over we obtain Binet-like formulas,generating functions and some identities related with Gaussian Padovan numbers and Gaussian Pell-Padovan numbers.

1. Introduction

Horadam [3] in 1963 and Berzsenyi [2] in 1977 de…ned complex Fibonacci num-bers. Horadam introduced the concept the complex Fibonacci numbers as the Gaussian Fibonacci numbers.

Padovan sequence is named after Richard Padovan [7] and Atasonav K., Dimitrov D., Shannon A. and Kritsana S. [1, 4, 5, 6] studied Padovan sequence and Pell-Padovan sequence.

The Padovan sequence is the sequence of integers Pnde…ned by the initial values

P0= P1= P2= 1 and the recurrence relation

Pn= Pn 2+ Pn 3 for all n 3:

The …rst few values of Pn are 1; 1; 1; 2; 2; 3; 4; 5; 7; 9; 12; 16; 21; 28; 37:

Pell-Padovan sequence is de…ned by the initial values R0 = R1 = R2 = 1 and

the recurrence relation

Rn = 2Rn 2+ Rn 3 for all n 3:

The …rst few values of Pell-Padovan numbers are 1; 1; 1; 3; 3; 7; 9; 17; 25; 43; 67; 111; 177; 289:

Received by the editors: January 16, 2017; Accepted: June 12, 2017. 2010 Mathematics Subject Classi…cation. Primary 11B39; Secondary 15B36.

Key words and phrases. Padovan numbers, Pell-Padovan numbers, Gaussian Padovan num-bers, Gaussian Pell-Padovan numbers.

c 2 0 1 8 A n ka ra U n ive rsity C o m m u n ic a tio n s Fa c u lty o f S c ie n c e s U n ive rs ity o f A n ka ra -S e rie s A 1 M a t h e m a tic s a n d S t a tis tic s . C o m m u n ic a tio n s d e la Fa c u lté d e s S c ie n c e s d e l’U n ive rs ité d ’A n ka ra -S é rie s A 1 M a t h e m a tic s a n d S t a tis t ic s .

(2)

2. Gaussian Padovan Sequences Firstly we give the de…nition of Gaussian Padovan sequence.

De…nition 2.1. The Gaussian Padovan sequence is the sequence of complex num-bers GPn de…ned by the initial values GP0= 1; GP1= 1 + i; GP2= 1 + i and the

recurrence relation

GPn= GPn 2+ GPn 3 for all n 3:

The …rst few values of GPn are 1; 1 + i; 1 + i; 2 + i; 2 + 2i; 3 + 2i; 4 + 3i; 5 +

4i; 7 + 5i; 9 + 7i:

The following theorem is related with the generating function of the Gaussian Padovan sequence.

Theorem 2.2. The generating function of the Gaussian Padovan sequence is g(x) = 1 + (1 + i) x + i x 2 1 x2 x3 : Proof. Let g(x) = 1 X n=0 GPnxn = GP0+ GP1x + GP2x2+ + GPnxn+

be the generating function of the Gaussian Padovan sequence. On the other hand, since x2g(x) = GP0x2+ GP1x3+ GP2x4+ + GPn 2xn+ and x3g(x) = GP0x3+ GP1x4+ GP2x5+ + GPn 3xn+ we write (1 x2 x3)g(x) = GP0+ GP1x + (GP2 GP0)x2+ (GP3 GP1 GP0)x3 + + (GPn GPn 2 GPn 3)xn+

Now consider GP0 = 1; GP1 = 1 + i; GP2 = 1 + i and GPn = GPn 2+ GPn 3.

Thus, we obtain (1 x2 x3)g(x) = 1 + (1 + i)x + i x2 or g(x) =1 + (1 + i) x + i x 2 1 x2 x3 :

So, the proof is complete.

Now we give Binet-like formula for the Gaussian Padovan sequence. Theorem 2.3. Binet-like formula for the Gaussian Padovan sequence is

GPn= a + i a r1 r1n+ b + ib r2 r2n+ c + ic r3 r3n

(3)

where a = (r2 1)(r3 1) (r1 r2)(r1 r3) ; b = (r1 1)(r3 1) (r2 r1)(r2 r3) ; c = (r1 1)(r2 1) (r1 r3)(r2 r3)

and r1; r2; r3 are the roots of the equation x3 x 1 = 0.

Proof. It is easily seen that

GPn = Pn+ iPn 1:

On the other hand, we know that the Binet-like formula for the Padovan sequence is Pn= (r2 1)(r3 1) (r1 r2)(r1 r3) rn1 + (r1 1)(r3 1) (r2 r1)(r2 r3) r2n+ (r1 1)(r2 1) (r1 r3)(r2 r3) r3n: So, the proof is easily seen.

Theorem 2.4.

n

X

j=0

GPj= GPn+ GPn+1+ GPn+2 2(1 + i):

Proof. By the de…nition of Gaussian Padovan sequence recurrence relation GPn= GPn 2+ GPn 3 and GP0 = GP2 GP 1 GP1 = GP3 GP0 GP2 = GP4 GP1 .. . GPn 2 = GPn GPn 3 GPn 1 = GPn+1 GPn 2 GPn = GPn+2 GPn 1 Then we have n X j=0 GPj= GPn+ GPn+1+ GPn+2 GP 1 GP0 GP1:

Now considering GP 1= i; GP0= 1 and GP1= 1 + i, we write n

X

j=0

GPj= GPn+ GPn+1+ GPn+2 2 2i:

(4)

Now we investigate the new property of Gaussian Padovan numbers in relation with Padovan matrix formula. We consider the following matrices:

Q3= 2 4 01 10 10 0 1 0 3 5 ; K3= 2 4 1 + i1 + i 1 + i1 1i 1 i 1 3 5 and M3n = 2 4 GPGPn+2n+1 GPGPn+1n GPGPn 1n GPn GPn 1 GPn 2 3 5 : Theorem 2.5. For all n2 Z+,we have

Qn3K3= M3n:

Proof. The proof is easily seen that using the induction on n. Theorem 2.6. If P = 2 4 00 10 01 1 1 0 3 5 then we have 2 4 00 10 01 1 1 0 3 5 n2 4 1 + i1 1 + i 3 5 = 2 4 GPGPn+1n GPn+2 3 5 : Proof. The proof can be seen by mathematical induction on n.

3. Gaussian Pell-Padovan Sequence

As well known Pell-Padovan sequence is de…ned by the recurrence relation Rn= 2Rn 2+ Rn 3; n 3

and initial values are R0= R1= R2= 1.

Now we de…ne Gaussian Pell-Padovan sequence.

De…nition 3.1. The Gaussian Pell-Padovan sequence is de…ned by the recurrence relation

GRn= 2GRn 2+ GRn 3; n 3

and initial values are GR0= 1 i; GR1= 1 + i; GR2= 1 + i:

The …rst few values of GRnare 1 i; 1+i; 1+i; 3+i; 3+3i; 7+3i; 9+7i; 17+9i:

Theorem 3.2. The generating function of Gaussian Pell-Padovan sequence is f (x) = 1 i + (1 + i)x + ( 1 + 3i)x

2

(5)

Proof. Let f (x) = 1 X n=0 GRnxn

be the generating function of the Gaussian Pell-Padovan sequence. In this case, we have 2x2f (x) = 2GR0x2+ 2GR1x3+ 2GR2x4+ + 2GRn 2xn+ and x3f (x) = GR0x3+ GR1x4+ GR2x5+ + GRn 3xn+ so we obtain (1 2x2 x3)f (x) = GR0+ GR1x + (GR2 2GR0)x2+ (GR3 2GR1 GR0)x3 + + (GRn 2GRn 2 GRn 3)xn+ :

On the other hand, since GR0 = 1 i; GR1 = 1 + i; GR2 = 1 + i and GRn =

2GRn 2+ GRn 3, then we have

f (x) = 1 i + (1 + i)x + ( 1 + 3i)x

2

1 2x2 x3

which is desired.

Theorem 3.3. The Binet-like formula of Gaussian Pell-Padovan sequence is GRn= 2 p 5 1 + i 1 1 n 2 p 5 1 + i 1 1 n + (i 1) n where =1 + p 5 2 ; = 1 p5 2 ; = 1

are roots of the equation x3 2x 1 = 0:

Proof. The Binet-like formula of Pell-Padovan sequence is given by Rn= 2 n+1 n+1 2 n n + n+1: Now consider GRn= Rn+ iRn 1

so the proof is easily seen.

Theorem 3.4. Pnj=0GRj= 12[( 1 3i) GRn+1+ GRn+2+ GRn+3] : Proof. We …nd that n X j=0 Rj = 1 2( 1 Rn+1+ Rn+2+ Rn+3)

(6)

and n X j=0 Rj 1= 1 2( 3 2Rn Rn+1+ Rn+2+ Rn+3): Since GRn= Rn+ iRn 1 we have n X j=0 GRj = n X j=0 Rj+ i n X j=0 Rj 1

So the theorem is proved.

Theorem 3.5. Pnj=1GR2j= R2n+1+ iR2n (n + 1) + i(n 1):

Proof. If we consider the following equalities, then the proof is seen:

n X j=1 R2j = R2n+1 (n + 1) n X j=1 R2j 1 = R2n+ (n 1) and n X j=1 GR2j = n X j=1 R2j+ i n X j=1 R2j 1 Theorem 3.6. Pnj=1 nj GRj= GR2n+ (1 i):

Proof. Considering the following equalities:

n X j=1 n j Rj = R2n+ 1 n X j=1 n j Rj 1 = R2n 1 1 and n X j=1 n j GRj= n X j=1 n j Rj+ i n X j=1 n j Rj 1 then the proof is easily seen.

Now we shall give the new properties of Gaussian Pell-Padovan numbers relation with Pell-Padovan matrix:

(7)

Theorem 3.7. If we take the following matrices Q3= 2 4 01 20 10 0 1 0 3 5 ; K3= 2 4 1 + i1 + i 1 + i1 i 11 + 3ii 1 i 1 + 3i 3 5i 3 5 and S3n= 2 4 GRGRn+2n+1 GRGRn+1n GRGRn 1n GRn GRn 1 GRn 2 3 5 : then Qn3:K3= S3n for all n 2 Z+: Theorem 3.8. 2 4 00 10 01 1 2 0 3 5 n2 4 11 + ii 1 + i 3 5 = 2 4 GRGRn+1n GRn+2 3 5 for all n 2 Z+:

We note that for the proofs Theorem 3.7 and Theorem 3.8 are used induction on n.

References

[1] Atassanov, K., Dimitriv, D. and Shannon, A., A remark on functions and Pell-Padovan’s Sequence, Notes on Number Theory and Discrete Mathematics 15(2) (2009), 1–11.

[2] Berzsenyi, Gaussian Fibonacci numbers, The Fibonacci Quarterly,15 (1977) 223-236. [3] Horadam, A.F., Complex Fibonacci Numbers and Fibonacci Quaternions, American

Mathe-matics Monthly 70 (1963) 289-291.

[4] Kritsana, S., Matrices formula for Padovan and Perrin Sequences, Applied Mathematics Sci-ences, 7(142) (2013) 7093-7096.

[5] Shannon, A.G., Anderson, P.G. and Horadam, A.F., Van der Loan numbers, International Journal of Mathematics Education in Science & Technology 37(7) (2006) 825-831.

[6] Shannon, A.G., Anderson, A. F. and Anderson, P.R., The Auxiliary Equation Associated with the Plastic Numbers, Notes on Number Theory and Discrete Mathematics 12(1) (2006) 1-12. [7] Voet, C., The Poetics of order: Dom Hans Van der Loan’s numbers, Architectonic Space,

ARQ.16 (2012) 137-154.

Current address : Gazi University Faculty of Science Department of Mathematics 06500 Teknikokullar-Ankara TURKEY

E-mail address : dtasci@gazi.edu.tr

Referanslar

Benzer Belgeler

—Buraya kadar gayet doğru; fakat bunu açıklamak için, Aristoteles'e de dayanarak, bu doğru yahut yanlışın, şeyin doğru yahut yanlış olmasından ileri geleceğini

Bu bakımdan, Abdurrahman el Khazin i'rıin rasat aletleri hakkında yazdığı eserin kendi çağından az önce kurulmuş olan Me'ıikşah Rasathanesi ile ve belki de Khazini'nin

Bu çalışmada Vatikan Kütüphanesi’nde bulunan Arapça İslâm el yazma- ları içerisinde Tefsîr ilmine dair eserleri tarama/değerlendirme yöntemiyle tespit ve tasnif

Görülüyor ki, özellikle başta Bruno olmak üzere bildiğimiz veya henüz bilmediğimiz bazı düşünürler kavramları Spinoza'dan önce, Spino- za'nın kullandığı

Sanmm Bilge Karasu 'nun, yaplhm tek, yeni, ilzgiin yapan; tutarh kurgusu ve gii~1U Oslubunun otesinde, <;:agda~ ve ,agcd sanat kurarnlarmm bilincinde olarak tam

Bunun için, bir klinikte hasta bakımının “24 saat içinde kaç hemşire tarafından verildiğinin” belirlenmesi için, günlük olarak klinikte gündüz ve gece çalışan

8 Luminosity stability To produce the integrated luminosity values used in ATLAS physics analyses, a single algorithm is chosen to provide the central value for a certain range of

The results obtained for the shifts in masses especially for those in the decay constants can also be used in theoretical calculations of the electromagnetic properties of