• Sonuç bulunamadı

Başlık: Some Cesàro-type summability spaces defined by a modulus function of order (α;β)Yazar(lar):ŞENGÜL, HacerCilt: 66 Sayı: 2 Sayfa: 080-090 DOI: 10.1501/Commua1_0000000803 Yayın Tarihi: 2017 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: Some Cesàro-type summability spaces defined by a modulus function of order (α;β)Yazar(lar):ŞENGÜL, HacerCilt: 66 Sayı: 2 Sayfa: 080-090 DOI: 10.1501/Commua1_0000000803 Yayın Tarihi: 2017 PDF"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

C om mun.Fac.Sci.U niv.A nk.Series A 1 Volum e 66, N umb er 2, Pages 80–90 (2017) D O I: 10.1501/C om mua1_ 0000000803 ISSN 1303–5991

http://com munications.science.ankara.edu.tr/index.php?series= A 1

SOME CESÀRO-TYPE SUMMABILITY SPACES DEFINED BY A

MODULUS FUNCTION OF ORDER ( ; )

HACER ¸SENGÜL

Abstract. In this article, we introduce strong w [ ; f; p] summability of or-der ( ; ) for sequences of complex (or real) numbers and give some inclusion relations between the sets of lacunary statistical convergence of order ( ; ), strong w [ ; f; p] summability and strong w (p) summability.

1. Introduction

In 1951, Steinhaus [15] and Fast [9] introduced the concept of statistical con-vergence and later in 1959, Schoenberg [13] reintroduced independently. Caserta et al. [2], Çakall¬[3], Connor [8], Çolak [7], Et [4], Fridy [10], Gadjiev and Orhan [5], Kolk [6], Salat [14] and many others investigated some arguments related to this notion.

Çolak [7] studied statistical convergence order by giving the de…nition as fol-lows:

We say that the sequence x = (xk) is statistically convergent of order to ` if

there is a complex number ` such that lim

n!1

1

n jfk n : jxk `j "gj = 0:

Let 0 < 1. We de…ne the ( ; ) density of the subset E of N by (E) = lim

n

1

n jfk n : k 2 Egj

provided the limit exists (…nite or in…nite), where jfk n : k 2 Egj denotes the th power of number of elements of E not exceeding n:

If a sequence x = (xk) satis…es property P (k) for all k except a set of ( ; ) density

zero, then we say that xk satis…es P (k) for "almost all k according to " and we

abbreviate this by "a:a:k ( ; )".

Received by the editors: August 04, 2016; Accepted: November 01, 2016.

2010 Mathematics Subject Classi…cation. Primary 40A05, 40C05; Secondary 46A45. Key words and phrases. Lacunary sequence, modulus function, statistical convergence.

c 2 0 1 7 A n ka ra U n ive rsity C o m m u n ic a tio n s d e la Fa c u lté d e s S c ie n c e s d e l’U n ive rs ité d ’A n ka ra . S é rie s A 1 . M a th e m a t ic s a n d S t a tis t ic s .

(2)

Throughout this paper w indicate the space of sequences of real number. Let 0 < 1; 0 < 1; and x = (xk) 2 w: The sequence x = (xk)

is said to be statistically convergent of order ( ; ) if there is a complex number L such that

lim

n!1

1

n jfk n : jxk Lj "gj = 0

i.e. for a:a:k( ; ) jxk Lj < " for every " > 0, in that case a sequence x is said to

be statistically convergent of order ( ; ) ; to L: This convergence is indicated by S lim xk = L ([16]).

By a lacunary sequence we mean an increasing integer sequence = (kr) such

that hr = (kr kr 1) ! 1 as r ! 1 and 2 (0; 1] : Throughout this paper the

intervals determined by will be denoted by Ir= (kr 1; kr] and the ratio kkrr1 will

be abbreviated by qr: Lacunary sequence spaces were studied in ([11], [12], [17],

[18]).

First of all, the notion of a modulus was given by Nakano [20]. Maddox [25] and Ruckle [28] used a modulus function to construct some sequence spaces. Afterwards di¤erent sequence spaces de…ned by modulus have been studied by Alt¬n [1], Et ([26], [27]) , Gaur and Mursaleen [21], I¸s¬k [23], Nuray and Sava¸s [22], Pehlivan and Fisher [29] and everybody else.

We recall that a modulus f is a function from [0; 1) to [0; 1) such that i) f (x) = 0 if and only if x = 0;

ii) f (x + y) f (x) + f (y) for x; y 0; iii) f is increasing,

iv) f is continuous from the right at 0.

It follows that f must be continuous everywhere on [0; 1).

The following inequality will be used frequently throughout the paper:

jak+ bkjpk D (jakjpk+ jbkjpk) (1)

where ak; bk 2 C; 0 < pk sup pk= H; D = max 1; 2H 1 ([24]).

2. Main Results

In this part we will describe the sets of strongly w (p) summable sequences and strongly w [ ; f; p] summable sequences with respect to the modulus function f: We will examine these spaces and we give some inclusion relations between the S ( ) statistical convergent, strong w [ ; f; p] summability and strong

w (p) summability.

De…nition 1. Let = (kr) be a lacunary sequence and 0 < 1 be given.

We say that the sequence x = (xk) is S ( ) statistically convergent (or lacunary

(3)

that

lim

r!1

1

hr jfk 2 Ir: jxk Lj "gj = 0;

where Ir = (kr 1; kr] and hr denotes the th power (hr) of hr; that is h =

(hr) = (h1; h2; :::; hr; :::) and jfk n : k 2 Egj denotes the th power of number of elements of E not exceeding n: In the present case this convergence is indicated by S ( ) lim xk= L. S ( ) will indicate the set of all S ( ) statistically convergent

sequences. If = (2r) ; then we will write S in the place of S ( ). If = = 1

and = (2r) ; then we will write S in the place of S ( ) :

De…nition 2. Let = (kr) be a lacunary sequence, 0 < 1 and p be a

posi-tive real number. We say that the sequence x = (xk) is strongly N ( ; p) summable

(or strongly N ( ; p) summable of order ( ; )) if there is a real number L such that lim r!1 1 hr X k2Ir jxk Ljp ! = 0.

In the present case we denote N ( ; p) lim xk = L. N ( ; p) will denote the set

of all strongly N ( ; p) summable of order ( ; ). If = = 1; then we will write N ( ; p) in the place of N ( ; p). If = (2r) ; then we will write w (p) in the place

of N ( ; p) : If L = 0; then we will write w ;0(p) in the place of w (p). N ;0( ; p) will denote the set of all strongly N (p) summable of order ( ; ) to 0.

De…nition 3. Let f be a modulus function, p = (pk) be a sequence of strictly

positive real numbers and 0 < 1 be real numbers. We say that the sequence x = (xk) is strongly w [ ; f; p] summable to L (a real number) such that

w [ ; f; p] = 8 < :x = (xk) : limr!1 1 hr X k2Ir [f (jxk Lj)]pk ! = 0; for some L 9 = ;: In the present case, we denote w [ ; f; p] lim xk= L: In the special case pk= 1;

for all k 2 N and f (x) = x we will denote N ( ; p) in the place of w [ ; f; p] : w ;0[ ; f; p] will denote the set of all strongly w [ ; f; p] summable of order ( ; ) to 0:

In the following theorems we shall assume that the sequence p = (pk) is bounded

and 0 < h = infkpk pk supkpk= H < 1.

Theorem 1. The class of sequences w ;0[ ; f; p] is linear space. Proof. Omitted.

(4)

g (x) = sup r 8 < : 1 hr X k2Ir [f (jxkj)]pk ! 9= ; 1 M

where 0 < 1 and M = max (1; H) :

Proof. Clearly g (0) = 0 and g (x) = g ( x) : Take any x; y 2 w ;0[ ; f; p] : Since pk

M 1 and M 1; using the Minkowski’s inequality and de…nition of f; we can

write 8 < : 1 hr X k2Ir [f (jxk+ ykj)]pk ! 9= ; 1 M 8< : 1 hr X k2Ir [f (jxkj) + f (jykj)]pk ! 9= ; 1 M = 1 hM r X k2Ir [f (jxkj) + f (jykj)]pk ! 1 M 1 hM r 8 < : X k2Ir [f (jxkj)]pk ! 9= ; 1 M + 1 hM r 8 < : X k2Ir [f (jykj)]pk ! 9= ; 1 M :

Therefore g (x + y) g (x)+g (y) for x; y 2 w ;0[ ; f; p] : Let be complex number. By de…nition of f we have g ( x) = sup r 8 < : 1 hr X k2Ir [f (j xkj)]pk ! 9= ; 1 M K H M g (x)

where [ ] denotes the integer part of ; and K = 1 + [j j] : Now, let ! 0 for any …xed x with g (x) 6= 0: By de…nition of f, for j j < 1 and 0 < 1; we have

1 hr X k2Ir [f (j xkj)]pk ! < " for n > N (") : (2) Also, for 1 n N; taking small enough, since f is continuous we have

1 hr X k2Ir [f (j xkj)]pk ! < " (3)

(5)

Proposition 1. ([19]) Let f be a modulus and 0 < < 1: Then for each kuk ; we have f (kuk) 2f (1) 1kuk :

Theorem 3. If 0 < = 1, p > 1 and lim infu!1f (u)u > 0; then w [ ; f; p] =

w (p) :

Proof. Let pk = p be a positive real number: If lim infu!1f (u)u > 0 then there

exists a number c > 0 such that f (u) > cu for u > 0. We have x 2 w [ ; f; p] : Clearly 1 hr X k2Ir [f (jxk Lj)]p ! 1 hr X k2Ir [c jxk Lj]p ! =c p hr X k2Ir jxk Ljp ! ; therefore w [ ; f; p] w (p) :

Let x 2 w (p) : Then we have 1 hr X k2Ir jxk Ljp ! ! 0 as r ! 1:

Let " > 0; = and choose with 0 < < 1 such that cu < f (u) < " for every u with 0 u : We can write

1 hr X k2Ir [f (jxk Lj)]p ! = 1 hr 0 B B @ X k2Ir jxk Lj [f (jxk Lj)]p 1 C C A + 1 hr 0 B B @ X k2Ir jxk Lj> [f (jxk Lj)]p 1 C C A 1 hr "p hr + 1 hr 0 B B @ X k2Ir jxk Lj> 2f (1) 1jxk Lj p 1 C C A 1 hr" p h r + 2p f (1)p hr p X k2Ir jxk Ljp ! by Proposition 1. Therefore x 2 w [ ; f; p] :

Example 1. We now give an example to show that w [ ; f; p] 6= w (p) in this case when lim infu!1f (u)u = 0: Consider the sequence f (x) =

p

(6)

De…ne x = (xk) by

xk =

hr; if k = kr

0; if otherwise: We have, for L = 0; p = 32 and =

1 hr X k2Ir [f (jxkj)]p ! = 1 hr p hr 3 2 ! 0 as r ! 1 and so x 2 w [ ; f; p] : But 1 hr X k2Ir jxkjp ! =(hr) 3 2 hr ! 1 as r ! 1 and so x =2 w (p) :

Theorem 4. Let 0 < 1 and lim inf pk > 0: Then xk ! L implies

w [ ; f; p] lim xk = L:

Proof. Let xk! L: By de…nition of f we have f (jxk Lj) ! 0: Since lim inf pk > 0;

we have [f (jxk Lj)]pk! 0: Therefore w [ ; f; p] lim xk= L:

Theorem 5. Let 1; 2; 1; 2 2 (0; 1] be real numbers such that 0 < 1 2 1 2 1; f be a modulus function and let = (kr) be a lacunary sequence;

then w 2

1[ ; f; p] S 1 2( ) :

Proof. Let x 2 w 2

1[ ; f; p] and let " > 0 be given and

P

1and

P

2denote the sums

over k 2 Ir; jxk Lj " and k 2 Ir; jxk Lj < " respectively. Since hr1 hr2 for

each r we may write 1 h 1 r X k2Ir [f (jxk Lj)]pk ! 2 = 1 h 1 r hX 1[f (jxk Lj)] pk +X 2[f (jxk Lj)] pki 2 1 h 2 r hX 1[f (jxk Lj)] pk +X 2[f (jxk Lj)] pki 2 1 h 2 r hX 1[f (")] pki 2 1 h 2 r hX 1min([f (")] h ; [f (")]H)i 2 1 h 2 r jfk 2 Ir: jxk Lj "gj 1 h min([f (")]h; [f (")]H)i 1: Hence x 2 S 1 2( ) :

(7)

Theorem 6. If the modulus f is bounded and limr!1h 2 r h 1 r = 1 then S 2 1( ) w 1 2[ ; f; p] : Proof. Let x 2 S 2

1( ). Assume that f is bounded. Therefore f (x) K; for a

positive integer K and all x 0: Then for each r 2 N and " > 0 we can write 1 h 2 r X k2Ir [f (jxk Lj)]pk ! 1 1 h 1 r X k2Ir [f (jxk Lj)]pk ! 1 = 1 h 1 r X 1[f (jxk Lj)] pk+X 2[f (jxk Lj)] pk 1 1 h 1 r X 1max K h; KH +X 2[f (")] pk 1 max Kh; KH 2 1 h 1 r jfk 2 Ir: f (jxk Lj) "gj 2 +h 2 r h 1 r max f (")h; f (")H 2: Hence x 2 w 1 2[ ; f; p] :

Theorem 7. Let f be a modulus function. If lim pk > 0, then w [ ; f; p] lim xk=

L uniquely.

Proof. Let lim pk = s > 0: Assume that w [ ; f; p] lim xk= L1 and w [ ; f; p]

lim xk= L2: Then lim r 1 hr X k2Ir [f (jxk L1j)]pk ! = 0; and lim r 1 hr X k2Ir [f (jxk L2j)]pk ! = 0: By de…nition of f and using (1), we have

1 hr X k2Ir [f (jL1 L2j)]pk ! D hr X k2Ir [f (jxk L1j)]pk+ X k2Ir [f (jxk L2j)]pk ! D hr X k2Ir [f (jxk L1j)]pk ! + D hr X k2Ir [f (jxk L2j)]pk !

(8)

where supkpk = H; 0 < 1 and D = max 1; 2H 1 : Hence lim r 1 hr X k2Ir [f (jL1 L2j)]pk ! = 0:

Since limk!1pk= s we have L1 L2= 0: Thus the limit is unique.

Theorem 8. Let = (kr) and 0= (sr) be two lacunary sequences such that Ir Jr

for all r 2 N and let 1; 2; 1 and 2 be such that 0 < 1 2 1 2 1;

(i) If lim inf r!1 h 1 r ` 2 r > 0 (4) then w 2 2 h 0 ; f; pi w 1 1[ ; f; p] ;

(ii) If the modulus f is bounded and lim r!1 `r h 2 r = 1 (5) then w 2 1[ ; f; p] w 1 2 h 0 ; f; p i : Proof. (i) Let x 2 w 2

2 h 0 ; f; pi: We can write 1 ` 2 r X k2Jr [f (jxk Lj)]pk ! 2 = 1 ` 2 r X k2Jr Ir [f (jxk Lj)]pk ! 2 + 1 ` 2 r X k2Ir [f (jxk Lj)]pk ! 2 1 ` 2 r X k2Ir [f (jxk Lj)]pk ! 2 h 1 r ` 2 r 1 h 1 r X k2Ir [f (jxk Lj)]pk ! 1 : Thus if x 2 w 2 2 h 0 ; f; p i ; then x 2 w 1 1[ ; f; p] :

(ii) Let x = (xk) 2 w 21[ ; f; p] and (2) holds. Assume that f is bounded.

(9)

and hr `r for all r 2 N; we can write 1 ` 2 r X k2Jr [f (jxk Lj)]pk ! 1 = 1 ` 2 r X k2Jr Ir [f (jxk Lj)]pk ! 1 + 1 ` 2 r X k2Ir [f (jxk Lj)]pk ! 1 `r hr ` 2 r 1 Kpk 1+ 1 ` 2 r X k2Ir [f (jxk Lj)]pk ! 1 `r hr2 h 2 r KH 1+ 1 h 2 r X k2Ir [f (jxk Lj)]pk ! 2 `r h 2 r 1 KH 1+ 1 h 1 r X k2Ir [f (jxk Lj)]pk ! 2

for every r 2 N: Therefore w 2

1[ ; f; p] w 1 2

h 0

; f; pi:

Now as a result of Theorem 8 we have the following Corollary 1.

Corollary 1. Let = (kr) and 0 = (sr) be two lacunary sequences such that

Ir Jr for all r 2 N:

If (4) holds then, for 0 < 1 2 1 2 1

(i) If 0 < 1 2 1 1 and 2= 1; then w 2

h 0 ; f; p

i w 1

1[ ; f; p] ;

(ii) If 0 < 1 2 1 and 1= 2= 1; then w 2

h 0 ; f; p

i

w 1[ ; f; p] ;

(iii) If 0 < 1 1 and 2= 1= 2= 1; then w

h 0

; f; pi w 1[ ; f; p] ;

(iv) If 0 < 1 2 1 and 1= 2= ; then w 2

h 0 ; f; p i w 1[ ; f; p] ; (v) If 1= 2= and 0 < 1 2 1; then w 2 h 0 ; f; pi w 1[ ; f; p] ;

(vi) If 1= 2= 1 and 1= 2= 1; then w

h 0 ; f; p

i

w [ ; f; p] : If (5) holds then, for 0 < 1 2 1 2 1

(i) If 0 < 1 2 1 1 and 2= 1; then w 1[ ; f; p] w 1 2

h 0 ; f; pi; (ii) If 0 < 1 2 1 and 1= 2= 1; then w 1[ ; f; p] w 2

h 0

; f; pi; (iii) If 0 < 1 1 and 2= 1= 2= 1; then w 1[ ; f; p] w

h 0

; f; pi; (iv) If 0 < 1 2 1 and 1= 2= ; then w 1[ ; f; p] w 2

h 0 ; f; p i ; (v) If 1= 2= and 0 < 1 2 1; then w 2[ ; f; p] w 1 h 0 ; f; pi;

(10)

(vi) If 1= 2= 1 and 1= 2= 1; then w [ ; f; p] w h 0 ; f; p i : References

[1] Alt¬n, Y., Properties of some sets of sequences de…ned by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29(2) (2009), 427–434.

[2] Caserta, A., Giuseppe, Di M. and Koµcinac, L. D. R., Statistical convergence in function spaces, Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.

[3] Çakall¬, H., A study on statistical convergence, Funct. Anal. Approx. Comput. 1(2) (2009), 19–24.

[4] Et, M., Generalized Cesàro di¤erence sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput. 219(17) (2013), 9372–9376.

[5] Gadjiev, A. D., and Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(1) (2002), 129-138.

[6] Kolk, E., The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu, 928 (1991), 41-52.

[7] Çolak, R., Statistical convergence of order ;Modern Methods in Analysis and Its Applica-tions, New Delhi, India: Anamaya Pub, 2010: 121–129.

[8] Connor, J. S., The Statistical and Strong p-Cesaro Convergence of Sequences, Analysis,8, pp. (1988), 47-63.

[9] Fast, H., Sur La Convergence Statistique, Colloq. Math., 2, pp. (1951), 241–244. [10] Fridy, J., On Statistical Convergence, Analysis, 5, pp. (1985), 301-313.

[11] Fridy, J., and Orhan, C., Lacunary Statistical Convergence, Paci…c J. Math., 160, pp. (1993), 43–51.

[12] Fridy, J., and Orhan, C., Lacunary Statistical Summability, J. Math. Anal. Appl., 173, pp. (1993), no. 2, 497–504.

[13] Schoenberg, I. J., The Integrability of Certain Functions and Related Summability Methods, Amer. Math. Monthly, 66, pp. (1959), 361–375.

[14] Salat, T., On Statistically Convergent Sequences of Real Numbers, Math. Slovaca., 30, pp. (1980), 139-150.

[15] Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-74.

[16] ¸Sengül, H., On Statistical Convergence of Order ( ; ) : (In rewiev)

[17] Et, M., and ¸Sengül, H., Some Cesaro-type summability spaces of order and lacunary statistical convergence of order , Filomat 28 (2014), no. 8, 1593–1602.

[18] ¸Sengül, H., and Et, M., On lacunary statistical convergence of order , Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 2, 473–482.

[19] Pehlivan, S., and Fisher, B., Some sequence spaces de…ned by a modulus, Mathematica Slovaca vol. 45, no. 3, pp. 275–280,1995.

[20] Nakano, H., Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508–512.

[21] Gaur, A. K., and Mursaleen, M., Di¤erence sequence spaces de…ned by a sequence of moduli, Demonstratio Math. 31(2) (1998), 275–278.

[22] Nuray, F., and Sava¸s, E., Some new sequence spaces de…ned by a modulus function, Indian J. Pure Appl. Math. 24(11) (1993), 657–663.

[23] I¸s¬k, M., Strongly almost (w; ; q) summable sequences, Math. Slovaca 61(5) (2011), 779– 788.

[24] Maddox, I. J., Elements of Functional Analysis, Cambridge University Press, 1970.

[25] Maddox, I. J., Sequence spaces de…ned by a modulus, Math. Proc. Camb. Philos. Soc, 1986, 100:161-166.

[26] Et, M., Strongly almost summable di¤erence sequences of order m de…ned by a modulus, Studia Sci. Math. Hungar. 40(4) (2003), 463–476.

(11)

[27] Et, M., Spaces of Cesàro di¤erence sequences of order r de…ned by a modulus function in a locally convex space, Taiwanese J. Math. 10(4) (2006), 865-879.

[28] Ruckle, W. H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973–978.

[29] Pehlivan, S. and Fisher, B., Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolin. 36 (1995), no. 1, 69-76.

Current address : Hacer ¸Sengül: Department of Mathematics ; Siirt University 56100; Siirt; TURKEY.

Referanslar

Benzer Belgeler

Jirotropik metamateryal yüklü, kapalı, üniform, kayıpsız dalga kılavuzları için de geriye doğru dalgaların varlığı için gerek ve yeter koşullar iletim hattı

Akreditif lehdarı, akreditif koşullarına uygun olarak poliçe düzenler ve ibraz eder, akreditif şartlarına uymuşsa görevli banka kendisine verilen görev

Serbest Ağırlık Çalışma Grubu ile Smith Machine Çalışma Grubu bench press hareketi kuvvet ölçümü ön test ve son test değerleri arasındaki fark sonuçlarına bakacak olursak,

Beklenti düzeyini incelediğimizde empati özelliklerinde yaş, cinsiyet, eğitim durumu, gelir, geliş sıklığı ve geliş vasıtasının yetenek boyutlarında beklenti düzeyi

Kalp ekstraselüler matriksindeki farklılaşma neticesinde elde edilen immünfloresan analizlerin verilerini doğrulamak ve matriks içinde standart besiyeri ve kardiyomiyojenik

Sonuç olarak lise öğrencilerinin genel olarak liselerinin rekreasyonel alanlarını yeterli, yaşadıkları ilçenin rekreasyonel alanlarını yetersiz buldukları ancak yeteri

Gerek geçici eğitim merkezlerinde görev alan gerekse bu yıl GKAS öğrencilerin yoğun olarak öğrenim gördüğü okullarda görevlendirilen Türkçe öğreticilerinin

Bu çalışmada küme dizileri için kuvvetli asimptotik ℐ-invaryant denklik,