• Sonuç bulunamadı

Some Inequalities on The Permanents

N/A
N/A
Protected

Academic year: 2021

Share "Some Inequalities on The Permanents"

Copied!
4
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

S. Ü. Fen-Edebiyat Fakültesi Fen Dergisi Sayı 17[2000]51-54,KONYA

Some Inequalities on The Permanents

Dursun TAŞCI 1

Abstract: In this paper we obtained some inequalities about permanents of Hadamard product of matrices

and permanents of sum of matrices.

Key Words: Permanent, Hadamard product, Positive Semidefinite Hermitian matrices

Permanentler Üzerine Bazı Eşitsizlikler

Özet: Bu çalışmada matrislerin Hadamard çarpımının Permanentleri ve matrislerin toplamının Permanentleri

ile ilgili bazı eşitsizlikler elde edildi.

Anahtar Kelimeler: Permanent, Hadamard Çarpımı, Pozitif Yarı tanımlı Hermityen Matrisler.

Introduction and the Main Results

Definition 1.[1] The Permanent of real n×n matrix A=(aij)∈Mn is defined by

∑ ∏

∈ σ = σ = n S n i ) i ( i a ) A ( per 1 , where Sn is the symmetric group of order n.

The permanent can thus be thought of as a function whose domain is the set of n×n real matrices and whose range is the set of real numbers.

Definition 2.[2] If A=(aij) and B=(bij) are n×n matrices then their Hadamard product is the n×n matrix C=AοBwhose (i,j) entry is aijbij.

Lemma 1.[2] If A and B positive semidefinite Hermitian matrices then so is AοB. Theorem 1.[1] If A=(aij) is an n×n matrix then for any i, 1≤i≤n,

= = n j ij ijper(A ) a ) A ( per 1 ,

where Aij denotes the submatrix obtained from A by deleting rows i and colums j.

1Selcuk University, Department of Mathematics, [42031]Campus/Konya/TURKEY

(2)

D. TAŞCI

Theorem 2. Let A∈Mn be positive semidefinite Hermitian matrix and define

⎪ ⎩ ⎪ ⎨ ⎧ = μ otherwise , Hermitian te semidefini positive is A if , ) A ( per ) A ( per ) A ( 11 0 11

where is the (n-1)×(n-1) principal submatrix of A that results from deleting the first row and column of A and denotes n×n matrices. Then

11 A n M ) B ( ) A ( a ) B ( b ) A ( ) B A ( ο ≥μ +μ −μ μ μ 11 11 (1)

Proof. It suffices to prove that

0 11 11 11 11 11 11 11 11 ≥ + − − ο ο ) B ( per ) B ( per ) A ( per ) A ( per a ) B ( per ) B ( per b ) A ( per ) A ( per ) B A ( per ) B A ( per . (2) We have ) ( . b ) B ( per ) B ( per a ) A ( per ) A ( per b a ) B A ( per ) B A ( per ) B ( per ) B ( per ) A ( per ) A ( per a ) B ( per ) B ( per b ) A ( per ) A ( per ) B A ( per ) B A ( per 3 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − + ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − ο ο = + − − ο ο

Now we must show that

0 11 11 11 11 ≥ − ο ο b a ) B A ( per ) B A ( per , (4) 0 11 11 ≥ − a ) A ( per ) A ( per , (5) and 0 11 11 ≥ − b ) B ( per ) B ( per , (6) respectively. Considering Theorem 1 we have

) B A ( per b a ) B A ( per b a ) B A ( per b a ) B A ( per ο = 11 11 11ο 11 + 12 12 12ο 12 +L+ 1n 1n 1nο 1n , (7) where A1j and B1j ,

1

j

n

, denote the submatrices obtained from A and B by deleting row 1 and columns j respectively. Now from (7 ) we write

) B A ( per b a ) B A ( per ο ≥ 11 11 11ο 11 or 0 11 11 11 11 ≥ − ο ο b a ) B A ( per ) B A ( per .

Similarly the inequalities (5) and (6) are satisfied . From (4), (5), and (6), the inequality (1) holds and thus the proof is complete.

Theorem 3. If A1,A2,K,An are n×n matrices with nonnegative entries then

(3)

SOME INEQUALITIES ON THE PERMANENTS

= = ≥ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ n i i n i i ) A ( per A per 1 1 . (8)

Proof. We use induction on n for the proof of Theorem. It is true for n = 2 . Indeed the (i,j) entry of is just , where and are n×n matrices with nonnegative entries. Thus a typical term in the sum defining

2 1 A A + a(ij1)+a(ij2) A1=(a(ij1))

A

2

=

(

a

(ij2)

)

(

A1 A2

)

per + is

(

)

= σ σ + n i ) ( ) i ( i ) ( ) i ( i a a 1 2 1 . (9) Now if we multiply out the product (9) and throw a way all terms expect

= σ n i ) ( ) i ( i a 1 1 and

= σ n i ) ( ) i ( i a 1 2 we obtain (remember A1 and A2 have nonnegative entries)

(

)

= σ = σ = σ σ + ≥ + n i ) ( ) i ( i n i ) ( ) i ( i n i ) ( ) i ( i ) ( ) i ( i a a a a 1 2 1 1 1 2 1 . (10) If we sum all the inequalities (10) for σ∈Sn we get

(

)

∑ ∏

∑ ∏

∑ ∏

∈ σ = σ ∈ σ = σ ∈ σ = σ σ + ≥ + n n n S n i ) ( ) i ( i S n i ) ( ) i ( i S n i ) ( ) i ( i ) ( ) i ( i a a a a 1 2 1 1 1 2 1 , that is,

(

A1 A2

)

per

( )

A1 per

( )

A2 per + ≥ + .

We assume now that the inequality (8) is true for n-1 and show that assumption implies that (8) holds for n. Now, if

( )

− = − = ≥ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 1 1 1 1 n i i n i i per A A per then

( )

( )

( )

( )

= − = − = − = = = + ≥ + ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ≥ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ n i i n n i i n n i i n i n i n i i A per A per A per A per A per A A per A per 1 1 1 1 1 1 1 1

thus we have proved by induction that the inequality (8) holds for all n. Corollary 1. If A is n×n matrix with nonnegative entries and

2 T A A ) A ( H = + then

(

H(A)

)

per(A) per ≥ 1−n 2 ,

where AT denotes the transpose of A.

(4)

D. TAŞCI

Proof. By the Theorem 3 we have

(

)

(

)

( )

(

)

(

)

) A ( per ) A ( per A per ) A ( per A A per A A per ) A ( H per n n T n T n T 1 2 1 2 2 1 2 1 2 1 2 − = = + ≥ + = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + =

thus the proof is complete.

Corollary 2. If A and B are n×n matrices with nonnegative entries then

[

per(A+B)

]

2≥4per(A)per(B).

Proof. Using arithmetic-geometric mean inequality and considering Theorem 3 we have

) B ( per ) A ( per ) B ( per ) A ( per ) B A ( per ≥ ⎥⎦ ⎤ ⎢⎣ ⎡ + ≥ ⎥⎦ ⎤ ⎢⎣ ⎡ + 2 2 2 2

and therefore we write

[

per(A+B)

]

2≥4per(A)per(B). We conclude the paper with a theorem.

Theorem 4. If A and B are n×n matrices with nonnegative entries and A≥B then ) B A ( per ) B ( per ) A ( per − ≥ − (11) and ) A B ( per ) B A ( per − = − . (12) Proof. By Theorem 3 we write

) B ( per ) B A ( per ) B B A ( per ) A ( per = − + ≥ − +

and it follows that the inequality (11) holds. On the other hand we have

(

(B A)

)

( ) per(B A) per(B A) per ) B A ( per − = − − = −1n − = −

Thus the proof is complete. References

1- Minc, H., Permanents, In Encyclopaedia of Mathematics and Its Applications, Vol. 6, Addison-Wesley, Reading MA (1978)

2- Horn, R.A., Johnson, C:R., Topics in Matrix Analysis, Cambridge University Press. (1991)

Referanslar

Benzer Belgeler

The paper suggests that long-term preservation of tangible and intangible cultural heritage artefacts requires close cooperation between different organizations and nation- states

Kalça ekleminin harabiyeti ile sonuçlanan ve hastalarda günlük hayatlarını olumsuz etkileyen şiddetli ağrıya neden olan hastalıkların konservatif tedavilerden yarar

Because large retail developments offer a variety of uses of and meanings for consumption spaces, it is imperative to understand the resil- ience strategies developed by

Deney sonuçları kullanılarak SPSS programı ile istatistiksel analizler yapılmış ve hidrometre deney parametreleri (geçen süre, ilk hidrometre okuması, sıcaklık, pH, iletkenlik,

The option contracts realized in financial markets, in the widest sense, is an instrument, which gives the individual or institutional investor holding the contract, the

Di, Synchronal Algorithm and Cyclic Algorithm for Fixed Point Problems and Variational Inequality Problems in Hilbert spaces, Fixed Point Theory and Appl., (2011). Xu,

Marketing channel; describes the groups of individuals and companies which are involved in directing the flow and sale of products and services from the provider to the

 Accessory fruit can be simple, aggregate, or multiple, i.e., they can include one or more pistils and other parts from the same flower, or the pistils and other parts of