• Sonuç bulunamadı

Measurement of the t(t)over-barb(b)over-bar Production Cross Section İn The All-Jet Final State in pp Collisions at Root s=13 TeV

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of the t(t)over-barb(b)over-bar Production Cross Section İn The All-Jet Final State in pp Collisions at Root s=13 TeV"

Copied!
26
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

ttbb production

cross

section

in

the

all-jet

final

state

in

pp collisions

at

s

=

13 TeV

.

The

CMS

Collaboration



CERN,Switzerland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received11September2019

Receivedinrevisedform24December2019 Accepted6February2020

Availableonline12February2020 Editor:M.Doser Keywords: CMS Physics Top Measurement

Ameasurementoftheproductioncrosssectionoftopquarkpairsinassociationwithtwob jets(ttbb) ispresentedusingdatacollectedinproton-protoncollisionsat√s=13 TeV bytheCMSdetectoratthe LHCcorresponding toanintegratedluminosity of35.9 fb−1.Thecrosssectionismeasuredinthe all-jetdecaychannelofthe topquark pairbyselectingeventscontainingatleast eightjets,ofwhichat leasttwoareidentifiedasoriginatingfromthehadronizationofb quarks.Acombinationofmultivariate analysis techniquesisused toreducethe large backgroundfrom multijetevents not containingatop quarkpair,andtohelpdiscriminatebetweenjetsoriginatingfromtopquarkdecaysandotheradditional jets. The cross sectionis determined forthe total phasespace tobe 5.5±0.3(stat)+11..63(syst) pb and alsomeasuredfortwofiducialttbb definitions.Themeasuredcrosssectionsarefoundtobelargerthan theoreticalpredictionsbyafactorof1.5–2.4,correspondingto1–2standarddeviations.

©2020TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

At the CERN LHC, top quark pairs are produced with copi-ousamountsofadditionaljets,includingthoseresultingfromthe hadronization of b quarks (b jets). Top quark pair production in associationwithapairofb jets,ttbb,ischallengingtomodel be-causeoftheverydifferentenergyscalesfortheb jetsproducedin associationwiththe tt systemandthat oftt system [1], and be-causeofthesmallbutnonnegligiblemassoftheb quark. Improv-ingthe accuracyandtheprecision ofperturbative calculationsin quantumchromodynamics (QCD)forthisprocess is crucial,since itrepresents an important background fornumerous searchesor othermeasurementsattheLHC.Inparticular,tt productionin as-sociationwithaHiggsboson(ttH),wheretheHiggsbosondecays tobb,suffersfroman irreduciblettbb background [2–7].Searches forfourtopquarkproduction(tttt)arealsoaffectedbythis back-ground [8–10]. The two latter processes providedirect access to thetop quark Yukawa coupling,a crucial parameter ofthe stan-dardmodel [11,12]. Animproved understanding ofthe ttbb pro-cesswouldhelpreducetheuncertaintyinsuchmeasurements.

Calculationsoftheproductioncrosssectionoftt inassociation withjetshavebeen performedatnext-to-leading order(NLO) in QCD andmatched withpartonshowers forup to two additional

 E-mailaddress:cms-publication-committee-chair@cern.ch.

massless partons in the matrix element [13–15]. The ttbb cross section atNLO,matched withpartonshowers, hasalsobeen cal-culated formassless b quarks(five-flavourscheme,5FS) [16],and has recentlybecome available formassive b quarks (four-flavour scheme,4FS) [17–19].A comparisonof themeasurements of the ttbb cross section withsuch calculationsprovides valuable guid-ance to improvethedifferentframeworks. Thettbb cross section hasbeenmeasuredpreviouslyat

s

=

8 and13 TeV bytheATLAS andCMSCollaborations,ineventscontaining oneortwo charged leptons [20–24].

This Letter focuses on the all-jetfinal state of the tt system, whereeachtopquarkdecaysintothreejets,leadingtoasignature offourb jetsandfourlight-quarkjetsforthettbb system.This fi-nalstate isfavouredby alarge branchingfractionandprovidesa completereconstruction oftop quarks,asopposedtoother decay channels of the top quark pairs. Moreover, the main uncertain-tiesaffectingthesensitivityinthismeasurementaredifferentthan thoseaffecting finalstatescontaining leptons, thereforeproviding complementaryinformation.However,theall-jetchannelalso suf-fers froma largebackgroundfrommultijetproduction,aswell as from the difficulty of identifying jets that originate from decay-ingtopquarks.Multivariateanalysistechniquesaredevelopedand implemented to mitigate these problems. The ttbb cross section ismeasuredusingdatacollectedby theCMSdetectorinpp colli-sionsat

s

=

13 TeV,correspondingtoanintegratedluminosityof 35

.

9 fb−1[25].

https://doi.org/10.1016/j.physletb.2020.135285

0370-2693/©2020TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

2. TheCMSdetectorandeventsimulation

The central feature of the CMS apparatus is a superconduct-ing solenoidof6 m internaldiameter, providinga magneticfield of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crys-talelectromagneticcalorimeter(ECAL),andabrassandscintillator hadron calorimeter (HCAL), each composed of a barrel and two endcapsectionsresidewithinthesolenoidfield.Forward calorime-tersextendthepseudorapiditycoverageprovidedbythebarreland enddetectors.Muonsaredetectedingas-ionizationchambers em-beddedinthesteelflux-returnyokeoutsidethesolenoid. Amore detaileddescription of the CMS detector, together with a defini-tionofitscoordinatesystemandkinematicvariables,canbefound in Ref. [26]. Samples of tt events are simulated at NLO in QCD using powheg (v2) [27–30]. These samples include ttbb events, where theadditional b jets are generatedby theparton shower. Single top quark production in the t channel or in association witha W boson, andttH production are simulated atNLO with powheg[3133].ProductionofW orZ bosonsinassociationwith jets(V+jets),aswellasQCDmultijetevents,aresimulatedat lead-ing order (LO) with MadGraph5_amc@nlo (v2.2.2) [14], andthe MLM merging scheme [34]. The MadGraph5_amc@nlo generator isused atNLO forsimulatingassociated productionoftop quark pairswithW orZ bosons(ttV).Dibosonprocesses(WW, WZ and ZZ)aresimulatedatLOusing pythia (v8.219) [35].

All simulatedevents are processed with pythia for modelling ofthepartonshowering,hadronization,andunderlyingevent(UE). TheNNPDF 3.0 [36] partondistribution functions(PDFs)areused throughout, atthe sameperturbative order asusedby the event generators.The CUETP8M1UE tune [37] isused forallprocesses except for the tt, ttH and single top quark processes. For these, an updated version of the tune isused (CUETP8M2T4), inwhich an adjusted value of the strongcoupling constant is used inthe description of initial-state radiation [38]. Simulation of the CMS detector response is based on Geant4 (v9.4) [39]. Additional pp interactionsinthesameorneighbouringbunchcrossings(pileup) aresimulatedwith pythia andoverlaidwithhard-scatteringevents accordingtothepileupdistributionmeasuredindata.

Thevarioussimulatedprocessesarenormalizedto state-of-the-art predictions for the production cross sections. The tt, V+jets, single topquark, andW+W− samplesare normalizedto next-to-NLO(NNLO)precision inQCD [40–43],whileremainingprocesses such asttV, ttH,andother dibosonproductionarenormalizedto NLOinQCD [14,44].

3. Definitionsoffiducialphasespace

Thettbb productioncrosssectionismeasuredforthree differ-entphasespacedefinitions.Twodefinitionsforttbb eventsinthe fiducial phase space, matching the detector acceptance,are con-sidered:onethatisbasedexclusivelyonstablegeneratedparticles after hadronization (parton-independent), andone that also uses parton-level information after radiation emission (parton-based). The former facilitates comparisons with predictions from event generators, while the latter is closer to the approach taken by searches for ttH production to define the contribution from the ttbb process.Thecrosssectionisreportedforthetotalphasespace bycorrectingtheparton-basedfiducialcrosssectionbythe exper-imentalacceptance.

Particle-level jets are defined by clustering stable generated final-state particles, excluding neutrinos, using the anti-kT

algo-rithm [45,46] with a distance parameter of 0.4. These jets are definedunambiguously asb or c jets by rescaling the momenta ofgeneratedb andc hadronstoanegligiblevalue,while preserv-ing their direction, and including them in the clustering proce-dure [47]. A jet is labelled b jet if it is matched to atleast one

b hadron,andlabelledc jetifmatchedwithatleastonec hadron andnob hadron.

Eventsinthegeneratedtt samplearedividedintoexclusive cat-egories accordingto the flavour ofthe jets that donot originate from the decay oftop quarks, which we refer to as “additional” jets.Theb orc jetsareconsideredtooriginatefromatopquarkif oneoftheclusteredb orc hadronsfeaturesatopquarkinits sim-ulation history. Additional jets are required to have a transverse momentum pT

>

20 GeV, and absolute pseudorapidity

|

η

|

<

2

.

4.

No explicit requirement on the b hadron kinematic variables is used. Events are categorizedas ttbb if they contain at least two additional b jets, which definesthe total phase space for which thettbb crosssectionismeasured.Eventswithasingleadditional b jetarecategorizedasttb (tt2b)ifthatb jetismatchedwith ex-actly one(atleasttwo)b hadron(s). Thettb eventscorrespondto ttbb eventswhereoneoftheadditionalb jetsfailstheabove kine-matic requirements, while tt2b eventsarise from collinear gluon splittings.Ifnob jetsare presentbutatleastoneadditionalc jet ispresenttheeventisreferredtoasttcc;allremainingeventsare denotedttjj.

Fortheparton-baseddefinitionofthettbb fiducialphasespace, atleasteightjetswithpT

>

20 GeV and

|

η

|

<

2

.

4 mustbepresent,

of which at least six have pT

>

30 GeV. At least four of these

jets must be b jets, and at least two of those must not origi-nate from top quarks. This last requirement is removed for the parton-independentfiducialdefinition,inordertobeindependent oftheoriginoftheb jets,andthusofthesimulatedparton con-tent.Somettbb events inthetotalphasespacefailingthefiducial requirements may still be reconstructed and selected because of resolution effects, andare referred to as out-of-acceptance.They correspondto16%ofallreconstructedttbb events.

4. Eventreconstructionandselection

The particle-flowalgorithm [48] aimstoreconstructand iden-tify each particlein an event, with an optimized combinationof information from the various elements of the CMS detector. The primarypp interactionvertexistakentobethereconstructed ver-tex with the largest sum of the p2

T of the objects associated to

that vertex, where the considered objects are those returned by a jet clusteringalgorithm [45,46] applied to the tracks assigned to the vertex, and the associatedmissing transverse momentum, takenasthe negative vector sumofthe pT of thoseobjects. The

energy of photons isobtained from the ECAL measurement. The energyofelectronsisdeterminedfromacombinationofthe elec-tron momentum atthe primary interactionvertex asdetermined by thetracker,the energyofthecorresponding ECALcluster,and the energysum ofall bremsstrahlungphotons spatially compati-ble withoriginatingfromthe electron track.The pT of muonsis

obtainedfromthecurvature ofthecorresponding tracks.The en-ergyofchargedhadronsisdeterminedfromacombinationoftheir momentum measured in thetracker andthematching ECALand HCAL energy deposits,corrected for zero-suppressioneffects and fortheresponsefunctionofthecalorimeterstohadronicshowers. Theenergyofneutralhadronsisobtainedfromthecorresponding correctedECALandHCALenergies.

For each event, hadronic jets are clustered from the recon-structed particlesusing theanti-kT algorithmwitha distance

pa-rameterof0.4. Thejet momentumis determinedasthevectorial sum of all particle momenta in the jet, andis found from sim-ulation to be within 5 to 10% of the true momentum over the whole pT spectrum and detector acceptance. Pileup interactions

can contribute additional tracks and calorimetric energy deposi-tionstothejetmomentum.Tomitigatethiseffect,tracksidentified to beoriginatingfrompileupverticesarediscarded andan offset correction is applied to correct for remaining contributions [47].

(3)

Jetenergycorrectionsarederivedfromsimulationtobringthe av-eragemeasured responseofajetto thatofaparticle-leveljet.In situmeasurementsofthemomentumbalanceindijet,photon+jet, Z+jet,andmultijeteventsareusedtoaccountforanyresidual dif-ferencesinjetenergyscaleindataandsimulation [49].Thedata used forthese measurements are independent ofthose used for thepresentLetter.

A combined secondary vertex b tagging algorithm (CSVv2) is used to identify jets originating from the hadronization of b quarks [50],withanefficiencyforidentifyingb jetsinsimulatedtt eventsofabout65%.Themisidentificationprobability isabout10 and1% for c and light-flavourjets, respectively, where thelatter refersto jetsoriginatingfromthe hadronizationofu, d,s quarks or gluons. The distribution of the discriminator score for b and light-flavourjetsinthesimulation iscalibratedtomatchthe dis-tribution measured in control samples of tt events with exactly twoleptons(electronsormuons)andtwojets,andZ bosons pro-ducedinassociation withjetswherethe Z bosonsdecaytopairs ofelectronsormuons. Thecalibrationisachievedby reweighting eventsusingscalefactorsthatareparameterizedbythejetflavour,

pT,

|

η

|

,andb taggingdiscriminatorscore [50].

Data are collected using two triggers [51], both requiring at leastsixjetswith

|

η

|

<

2

.

4.Thefirst(second)triggerconsidersjets with pT

>

40 (30) GeV,andrequires thatthe jet scalar pT sum,

HT, exceeds 450 (400) GeV and that at least one (two) of the

jetsis(are) b tagged.Theefficiencyofthesetriggers ismeasured insimulation,aswellasina datacontrolsample collected using independentsingle-muontriggers. The triggerefficiency in simu-lationiscorrectedtomatchtheefficiencyobservedinthedataby reweightingeventsusingscalefactorsdefinedastheratiobetween theefficienciesinthedataandsimulation.Foreventssatisfyingthe preselectioncriteriadetailedbelow,thetriggerefficiencyisabove 95%.

Anofflinepreselectionisappliedtodataandsimulatedevents, byrequiringthepresenceofatleastsixjetswithpT

>

40 GeV and

|

η

|

<

2

.

4, ofwhichatleasttwoare b tagged, andHT

>

500 GeV.

Additionaljetsintheeventsare considerediftheysatisfy the re-quirements pT

>

30 GeV and

|

η

|

<

2

.

4. Events are vetoed ifthey

containelectrons or muonswith pT

>

15 GeV and

|

η

|

<

2

.

4 that

satisfy highly efficient identification criteria [52,53] and are iso-latedfromhadronicactivity.About 20%of thettbb events inthe fiducialphasespacepasstheofflineselection.

5. Multivariateanalysis

Thefinal state considered inthisanalysissuffers froma large background from multijet production, as well as from the diffi-culty to identify which jets do not stem fromtop quark decays. Toaddressthesechallengesandimprovethesensitivitytothettbb signal,severalmultivariateanalysistoolshavebeenemployed.

Themultijetbackgroundcanbe discriminatedfromtt produc-tionby observingthat thelatterisexpectedtocontainfour light-quarkjetsfromW bosondecaysperevent,whereas theformeris enriched ingluon jets. Gluon andquark jets are separatedusing aquark-gluonlikelihood(QGL)variable,basedonjetsubstructure observables [54,55].UsingtheindividualjetQGLvalues,the likeli-hoodofaneventtocontain Nq light-quarkjetsandNg gluonjets

isdefinedas L

(

Nq

,

Ng

)

=



perm

iNq



k=i1 fq

k

)

iNq+Ng



m=iNq+1 fg

m

)

⎠ ,

(1)

where the sums run over all possible assignments of Nq jets to

quarks(indicesk)andNgjetstogluons(indicesm),

ζ

i istheQGL

discriminantoftheith jet,and fq and fgaretheprobability

den-sitiesfor

ζ

i underthehypothesis of(u,d,s, orc) quark orgluon

origin, respectively.When computingL(Nq

,

Ng

)

,b-taggedjetsare

not considered. Based on theevent likelihoods with Nq

=

4 and

Ng

=

0, as well as Nq

=

0 and Ng

=

4, the QGL ratio (QGLR) is

definedasQGLR

=

L(4

,

0

)/(L(

4

,

0

)

+

L(0

,

4

))

.Other valuesfor Nq

andNghavebeentriedbutledtoreduceddiscriminationbetween

multijetandtt production.WecorrectthemodellingoftheQGLin the simulationby reweighting each event basedon the quark or gluonoriginandtheQGLvalueofalljetsintheevent,wherethe weights are measured usingdatasamples enriched inZ+jets and dijetevents [55].After applyingthiscorrection,agoodagreement isfoundbetweendataandsimulation.

Toaddressthelargecombinatorialambiguityinidentifyingthe additional jetsinthe events,we have traineda boosteddecision tree (BDT) using the TMVA package [56], henceforth referred to asthe“permutationBDT”. Ineventswitheightreconstructedjets, there are 28ways to select six of those asoriginating from the all-jetdecayofatopquark pair,andthereare 90waystomatch thosesixjetsto thesixpartonsfromthetopquark decaychains. Some permutations are indistinguishableandare not considered, i.e. permutationsoftwojetsassignedtoaW bosondecayarenot considered,andneitherarethepermutationsofthreejetsassigned toat ort decay.Toreducethelargenumberofpermutations,the leastfavouredonesarerejectedusinga

χ

2variablequantifyingthe

compatibilityofthe invariant massesofthe differentjet pairings withthoseoftheparticlestheyshouldcomefrom,definedas

χ

2

= (

mj1,j3,j4

mt

)

2

/

σ

2 t

+ (

mj3,j4

mW

)

2

/

σ

2 W

+

(

mj2,j5,j6

mt

)

2

/

σ

2 t

+ (

mj5,j6

mW

)

2

/

σ

2 W

,

where m(... ) denotes the invariant mass of the given jets, and

σ

W

=

10

.

9 GeV and

σ

t

=

17

.

8 GeV are the experimental

reso-lutions in the two- and three-jet invariant masses, respectively. The massesentering theequation aremt

=

172

.

3 GeV andmW

=

80

.

2 GeV,measuredfromthegeneratedtt systemafter reconstruc-tion. The BDT istrained usingsimulated tt eventsafter applying the above preselection criteria, requiring thepresence ofat least sevenjets,andreducingthenumberofpermutationsbyrequiring that

χ

2

<

33

.

38,corresponding toa p-value P

(

χ

2

)

of10−6 fora

χ

2 distributionwithfourdegreesoffreedom.Eventsforwhichno

permutationsatisfiesthisrequirementarerejected.Thecorrect jet-partonassignmentisconsidered asasignal inthetraining, while all other distinguishablecombinations are treatedasbackground. Input variables used for the BDT include jet b tagging discrim-inator scores and kinematic quantities, such as invariant masses of pairs andtriplets of jets, angular openings betweenjets, and thetransversemomentaofjets. Foreachpermutation,only quan-titiespertainingtothesixjetsassumedtooriginate fromthetop quarksareusedinthetraining.Thepermutationyieldingthe high-estBDTscoreisusedfortherestoftheanalysis.Fortt eventswith eightjetswhereallsixjetsfromthetopquark decayshavebeen selected, the permutation BDT identifies the correctpermutation withabout60%efficiency.

Asafurtherhandletoreducethemultijetbackground,wehave trainedasecond BDTtodiscriminatethisbackgroundfrom inclu-sive tt+jets production.While supervised training ofmultivariate classifiers relies on samples of simulated events,the poor mod-ellingofmultijetproductionandtheinsufficientsizeofthe avail-ablesimulatedsampleslimittheachievablediscriminationpower. A proposed method to alleviate these shortcomings is a classifi-cationwithoutlabels(CWoLa) [57]. Inthisweaklysupervised ap-proach,theclassifieristrainedusingdata,wherebyone regionin thedataistreatedasbackgroundandanotherindependentregion

(4)

is treatedas signal. In thelimit oflarge training sample the re-sultingclassifier convergesto theoptimalclassifier todistinguish betweensignal andbackground,providedthe twofollowing con-ditionsarefulfilled [57].First,therelativeratesoftheactualsignal andbackgroundprocessesshouldbedifferentinthe tworegions. Second,thedistributionsofthevariablesenteringtheCWoLa clas-sifier should be independent of the quantity used to define the two regions, for both the signal and background processes. The CWoLaBDT is trainedusing asample of datawithexactly seven jets,wheretwoindependentregionsaredefinedbyrequiringthat the QGLR is below or above 0

.

95. The first and second regions are expected to contain about 10 and 20% of tt events, respec-tively. Variables used for constructing the CWoLa BDT are kine-maticquantitiessimilartothoseusedinthepermutationBDT,the outputvalue ofthepermutationBDT, andtheb tagging discrimi-natorscores ofthetwo jetsidentified bythepermutationBDT as theb jetsoriginatingfromthetopquarkdecays.Onlythesixjets identifiedby thepermutation BDT ascomingfromthetop quark decaysareusedtodefinetheCWoLaBDTinputvariables.The per-formanceoftheresultingclassifier,measuredintheregionwithat leasteightjets,isfoundtobe comparabletothat ofa supervised classifiertrainedusingsimulatedsamples.

6. Crosssections

To measure the ttbb cross section we require, in addition to the preselection criteria, the presence of at least eight jets, and

P

(

χ

2

)

>

10−6. The distributions in the QGLR and of the CWoLa

BDT discriminants for selected events are shown in Fig. 1. The crosssectionisextractedfromabinnedmaximumlikelihoodfitto atwo-dimensionaldistribution(referredtoas2DCSV)constructed usingthelargestandsecond-largestb taggingdiscriminatorscores amongthejetsdetermined tobe additionaljetsby the permuta-tionBDT.Inordertoincreasethesignalpurityandtheprecisionin themeasurement,wedefineasignalregion(SR)byrequiringthat the CWoLa BDT score be above 0.5, andthe QGLR be above 0.8. Thesethresholdsareoptimizedtoobtainthebestexpected preci-sioninthecrosssection.About20%ofthettbb signal thatpasses theofflinepreselectionisselectedintotheSR.

Themultijetbackgroundisalsoestimatedfromdata.Three in-dependentcontrolregions(CRs),orthogonaltotheSR,aredefined by invertingthe requirementson theCWoLa BDT andthe QGLR: theCR1(BDT

>

0

.

5,QGLR

<

0

.

8),theCR2(BDT

<

0

.

5,QGLR

<

0

.

8), andtheCR3(BDT

<

0

.

5,QGLR

>

0

.

8).Formultijetproduction,the CWoLa BDT score andthe QGLR are nearly independent, so that in each bin i of the 2DCSV distribution the number of multijet eventsintheSR, NSRi ,canbe estimatedfromthenumberof mul-tijeteventsintheCRsas

NSRi

=

NCR3i N

CR1

i

NiCR2

.

(2)

Thisrelationshipisaconsequenceofthechoiceofvariables enter-ingtheCWoLaBDT,whichwererequiredtobeindependentofthe QGLRinordertosatisfy thehypothesesoftheCWoLamethod.In order to properly take into account the small butnon-negligible signal contribution in the CRs, the fit to extract the cross sec-tionisperformedinallfourregions,withthemultijetratesNCR1i ,

NiCR2,and NCR3i free to varyinthe fit.The assumptionof Eq. (2) onwhichthisestimationreliesisconfirmedusingthesimulation. Inaddition,we verifythat Eq. (2) isalsosatisfiedinthe datafor kinematicdistributions, such as theinvariant massof the recon-structed W bosons andtop quarks, where foreach bin of these distributionsthemultijetyieldsareestimatedbytakingthe differ-encebetweentheobservedyieldsindataandthepredictedyields

Fig. 1. DistributionsintheQGLR(upper)andtheCWoLaBDTdiscriminants(lower). Bothareafterpreselection,requiringP(χ2) >10−6andatleasteightselectedjets.

Allthecontributionsarebasedonsimulation.Themultijetcontributionisscaled tomatchthetotalyieldsindata,aftertheotherprocessesincludingthettbb sig-nalhavebeen normalizedtotheircorresponding theoreticalcross sections.This choicetakesintoaccountonlytheeffectoftheshapevariationfromthemultijet background.ThesmallbackgroundsincludettV,ttH,singletopquark,V+jets,and dibosonproduction.Thelowerpanelsshowtheratiobetweentheobserveddata andthepredictions.Thedashedlinesindicatetheboundariesbetweenthesignal andcontrolregionsdefinedinSection6.Hatchedbandsindicatethestatistical un-certaintyinthepredictionswithoutconsideringthesystematicsources,dominated bytheuncertaintiesinthesimulatedmultijetbackground.Underflowandoverflow eventswereaddedtothefirstandlastbins,respectively.

ofall simulatedprocesses.Finally,we validateEq. (2) using alter-native definitionsof thefourregions in theplane formed by the QGLRandtheCWoLaBDT,excludingtheSRasdefinedabove.The outcomeofgoodness-of-fittestsofthe2DCSVdistributionwasalso positiveforeachofthealternativeregiondefinitions.

The dataare fittedusingaprofiled maximumlikelihood tech-nique, where the likelihoodis built asa product of independent Poissonlikelihoods, definedforeach bini of the2DCSV distribu-tions inthefoureventregions usingthefollowingexpressionfor thenumberofeventsinbini:

N

i

=

μ

T

isig

( 

θ )

+



k in sim bkg

T

k

i

( 

θ )

+

Ni

,

(3)

where

μ

isasignalstrengthparameter,definedbytheratioof ob-served to expectedsignal,

T

ik isthe expectedyield forprocessk

(5)

inbini,“sig”includes thecontributions fromttbb,tt2b,andttb, and

is a vector of nuisance parameters affecting the predicted yields of the various processes introduced to modelthe system-aticuncertaintiesdescribedinthenextsection.TheparametersNi

areused toestimate themultijet backgroundfromthecombined fitofthefourregions;theyarefreeparametersintheCRsandare givenbyEq. (2) inthe SR. Thelikelihood alsofeaturesconstraint termsfor each of the nuisance parameters considered in the fit. Differenttemplatesareconstructedfromttbb eventsmatchingthe fiducialrequirementsandfromeventsfailingtheserequirements. Forthefiducial ttbb templates,theeffectofnuisance parameters correspondingtotheoreticaluncertainties isnormalizedsuch that thettbb crosssection inthefiducialphasespaceispreserved, i.e. only shape variations within that phase space and their impact on the reconstruction efficiency are taken into account. No such requirementis made forthe other templates. The uncertaintyin themeasured cross section is obtainedby profilingthe nuisance parameters. As described in the next section, some uncertainties arenotprofiledandareaddedinquadraturewiththeuncertainty obtainedfromthefit.Thefitisrepeatedforeachofthetwo fidu-cialphase-spacedefinitionsforttbb eventsdescribedinSection3, leadingtodifferentin- and out-of-acceptancettbb templates.The totalttbb crosssectionisobtainedbydividingthecrosssectionfor theparton-basedfiducialphasespacebytheacceptance,estimated using powheg+pythia tobe

(

29

.

4

±

1

.

8

)

%. Uncertaintiesaffecting thisacceptancecorrectionaredetailedinthenextsection. 7.Systematicuncertainties

Severalsourcesofsystematicuncertaintiesaffectingthe predic-tionsforthesignalandbackgroundprocessesenteringtheanalysis areconsidered.Theseuncertaintiesmayaffectthenormalizationof thetemplates entering thefit,ormay alterboth their shapeand theirnormalization.Themigration ofeventsbetweenthefour re-gions is taken into account when relevant. Experimental sources ofuncertaintiesare takentobe fullycorrelatedforall signal and background distributions estimated using the simulation, while onlyasubsetoftheoreticaluncertaintiesarecorrelatedamongthe tt+jetscomponents.

The modellingof the shape of the b tagging discriminator in thesimulationrepresentsanimportantsourceofsystematic uncer-tainty.Severaluncertaintiesinthecalibrationoftheb tagging dis-criminatordistributionarepropagatedindependentlytotheshape andnormalizationofthe2DCSVtemplates.Thesearerelatedtothe uncertaintyinthecontamination bylight- (heavy-)flavour jetsin thecontrol samples used forthe measurementof heavy- (light-) jet correction factors, as well asto the statistical uncertainty in thesemeasurements [50].Sincenodedicatedmeasurementis per-formed for c jets, the uncertainty in the shape of the b tagging discriminator distribution forc jets isconservatively taken to be twice the relative uncertainty considered for b jets. In total, six differentnuisanceparameters are introduced toestimate the un-certaintyarisingfromb tagging.

We evaluate the effect of the uncertainty in the jet energy scale(JES)andjet energyresolution(JER)by shiftingthejet four-momentausing correction factors that depend on jet pT and

|

η

|

fortheJES,andjet

|

η

|

fortheJER [49].ThecalibrationoftheJES isaffectedbyseveralsourcesofuncertainty,whicharepropagated independentlyto themeasurement. The uncertaintyinthe JESis alsopropagatedtotheb taggingcalibration,andtheresulting ef-fectonthedistributionoftheb taggingdiscriminatorsistakento becorrelatedwiththeeffectonthejetmomenta.

Uncertainties pertaining to the QGL are estimated conserva-tivelybyremovingordoublingthescalefactorsappliedtocorrect the distribution of the QGL in the simulation [55]. The uncer-tainty in the integrated luminosity is evaluated to be 2.5% [25].

Uncertaintiesinthetriggerefficiencyareestimatedbyvaryingthe trigger scalefactors bytheir uncertainty, asdetermined fromthe efficiency measurements in dataand simulation. The uncertainty inthe modellingofpileupisestimatedby reweighting simulated events toyield different distributions ofthe expectednumber of pileupinteractions,obtainedbyvaryingthetotalinelasticpp cross sectionby 4.6% [58].Wetake intoaccountthelimitedsizeofthe simulatedsamples by varying independentlythe predictedyields ineverybinbytheirstatisticaluncertainties.

Theoretical uncertainties in the modelling of the tt+jets pro-cessenterthisanalysisboththrough theefficiencytoreconstruct andselect ttbb events, and through thecontamination fromttcc andttjj backgrounds.Theuncertaintiesintherenormalizationand factorization scales (

μ

R and

μ

F, respectively) are estimated by

varying bothscales independentlybya factoroftwoup ordown inthe eventgeneration,omittingthetwo caseswhere thescales are varied in opposite directions,and takingthe envelopeof the sixresulting variations. Likewise, the uncertainties related to the choice of thescale in theparton shower isevaluated by varying the scale inthe initial-state shower by factors of0.5 and2, and the scale in the final-state shower by factors of

2 and 1

/

2. PropagationoftheuncertaintiesassociatedwiththePDFs,aswell as with the value of the strong coupling in the PDFs, has been achievedby reweighting generated eventsusingvariations of the NNPDF 3.0 set [36]. The impact of the choice of the matching scale hdamp

=

1

.

58mt betweenthe matrix-element generator and

thepartonshowerin powheg isevaluatedusingsimulatedsamples generated with differentchoices of hdamp

=

mt and2

.

24mt [38].

WeevaluatetheuncertaintyrelatedtotheUEtunebyvaryingthe tune parameters accordingtotheir uncertainties. The uncertainty fromthemodellingofcolourreconnectioninthefinalstateis eval-uatedbyconsideringfouralternativestothe pythia default,which is based on multiple-parton interactions (MPI) with early reso-nance decays (ERD)switched off. These alternatives are an MPI-basedschemewithERDswitchedon,aQCD-inspiredscheme [59], andagluon-move schemewithERDeitherofforon [60].All the alternative modelswere tuned toLHCdata [61].It hasbeen ver-ified that the selection efficiency obtained from the nominal tt simulation,inwhichadditionalb jetsaregeneratedbytheparton shower, isinagreementwithin estimatedmodellinguncertainties with that obtained using a sample of ttbb events generated at NLO in QCD with massive b quarks (4FS) [19]. Since the spec-trumofthe topquark pT isknownto be softerinthedata than

inthe simulation,we evaluatethe effectofthismismodellingby reweighting thegeneratedeventsto matchthetopquark pT

dis-tribution measured in data [62]. The lattertwo uncertainties are notevaluatedusingprofilednuisanceparameters,butbyrepeating themeasurementusingvaried signalandbackgroundpredictions. The differencesin the measured cross sections are taken as the correspondinguncertaintiesandareaddedinquadraturewiththe uncertaintyobtainedfromtheprofilelikelihood.Uncertainties re-latedto the

μ

R and

μ

F scales, theparton shower scale,and the

hdamp choice are taken tobe uncorrelated forthe ttbb,ttb, tt2b,

ttcc andttjj templates,whiletheothermodellinguncertaintiesare taken tobe correlatedfor all tt events.In addition to the afore-mentioned modelling uncertainties, we assign an uncertainty of 50%tothenormalizationofthettcc backgroundtocoverthelack of precise measurements of this process. The results are stable whendoublingthatuncertainty.

Comparedto tt+jets andmultijetproduction, the contribution of other background processes such as ttV, ttH, V+jets, diboson, andsingletop quark productionis small.We assignuncertainties totheirpredictedratesbasedonthePDFand

μ

R/

μ

Fscale

uncer-taintiesintheirtheoreticalcrosssections.

Table 1 summarizes the contributions of the various sources of systematic uncertainties to the total uncertainty in the cross

(6)

Table 1

Theconsideredsourcesofsystematicuncertaintiesandtheirrespectivecontributionstothetotal systematicuncertaintyinthemeasuredttbb crosssectionforthetwodefinedttbb fiducialphase spaces.Theupper(lower)portionofthetablelistsuncertaintiesrelatedtotheexperimental con-ditions(theoreticalmodelling).Thenumbersareobtainedbytakingthedifferenceinquadratureof theprofilelikelihoodwidthwhenfixingnuisanceparameterscorrespondingtoagivensourceof uncertaintyandleavingtheothersfreetovary.

Source Fiducial,

parton-independent (%)

Fiducial, parton-based (%) Simulated sample size +1511 +

15 −11 Quark-gluon likelihood +138 + 13 −8 b tagging of b quark ±10 ±10 JES and JER +5.1

−5.2 + 5.0 −5.4 Integrated luminosity +2.8 −2.2 + 2.4 −2.2 Trigger efficiency +2.6 −2.1 + 2.5 −2.2 Pileup +2.3 −2.0 + 2.2 −1.9 μRandμFscales +139 + 13 −9

Parton shower scale +118 + 11 −8 UE tune +9.0 −5.3 + 9.0 −5.2 Colour reconnection ±7.2 ±7.1 Shower matching (hdamp) +42..38 +

3.8 −2.7 ttcc normalization +3.2 −4.4 + 2.9 −4.5

Modelling of pTof top quark ±2.5 ±2.4

PDFs +22..20 + 2.2 −2.0 Total +28 −23 + 28 −23

sectionsmeasured inthefiducialphasespace.Thetheoretical un-certainty intheacceptance fromthevarious sourceslisted above is estimated to be 6%, andis added in quadrature with the un-certainty in the parton-based fiducial cross section to yield the systematicuncertaintyinthetotalttbb crosssection.

8. Results

TheresultofthemaximumlikelihoodfitdescribedinSection6

isshowninFig.2forthe2DCSVdistributionsinthefouranalysis regions.Thecontributionfrommultijetproductionnearlymatches thedifferencesbetweentheyieldsindataandfromtheother pro-cessesin theCR1,CR2, andCR3becauseitis estimatedfromthe datainthefourregionsaccordingtothemethoddescribed inthe previoussection.Themeasuredcrosssectionforthetwottbb def-initionsinthefiducialphasespace, aswellasforthetotalphase spaceintroducedinSection3,are giveninTable2.The measure-mentuncertaintyisdominatedbythesystematiceffectsfromthe simulationsample sizes, QGLcorrections, and

μ

R and

μ

F

depen-dencesonchangesinscale.

Because of the large overlap between the two definitions of thettbb fiducialphasespace,themeasuredcrosssectionsare nu-merically equal at the quoted precision. The measurements are comparedwithNLOpredictionsfrom powheg forinclusivett pro-duction interfaced with either pythia or herwig++ (v2.7.1) [63], usingtheEE5CUEtune [64] forthelatter.Predictionsfrom Mad-Graph5_amc@nlo atNLOinterfacedwith pythia fortt production with up to two extra massless partons (5FS) merged using the FxFxscheme [15], andforttbb productionwithmassiveb quarks (4FS), are also compared with the measurements. The predicted crosssectionsarenotrescaledbyanyNLOtoNNLOK-factor,which forinclusivett productionamountsto1.1–1.15 [40].Measuredand predictedcross sectionsare shownin Fig.3.The predictions un-derestimate the measured cross section by a factor of 1.5–2.4,

corresponding to differences of 1–2 standard deviations. This is consistentwiththeresultsfromRefs. [20–24].

9. Summary

The first measurement ofthe ttbb cross section inthe all-jet final state was presented,using35

.

9 fb−1 ofdatacollected in pp collisions at

s

=

13 TeV.Thecrosssection isfirstmeasured ina fiducialregion ofparticle-levelphasespacebydefining two cate-gories ofttbb events,andsubsequentlythisresultiscorrected to the total phase space. One of the defined fiducial regions corre-spondsto ignoringparton-level information,whiletheother uses parton-level informationto identifytheparticle-leveljetsthat do not originate fromthe decay oftop quarks.For both definitions, thecrosssectionismeasuredtobe1

.

6

±

0

.

1(stat)+00..54(syst) pb.The crosssectioninthetotalphasespaceisobtainedbycorrectingthis measurementfortheexperimentalacceptanceonthejets originat-ing fromthetop quarks,whichyields 5

.

5

±

0

.

3(stat)+11..63(syst) pb. This measurement provides valuable input to studies of the ttH process, where the Higgs boson decays into a pair of b quarks, andforwhichthenormalizationandmodellingofthettbb process representaleadingsourceofsystematicuncertainty.Furthermore, these results represent a stringent test of perturbative quantum chromodynamics at the LHC. Predictions from severalgenerators are compared withmeasurements andfound to be smaller than the measuredvalues bya factorof1.5–2.4, corresponding to1–2 standarddeviations.Thisisconsistentwithpreviousresultsforthe ttbb cross sectionandcalls forfurtherexperimental and theoret-ical studiesoftheassociatedproductionoftopquark pairsandb jets.

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the

(7)

Fig. 2. Distributioninthe2DCSVintheSR(upperleft),CR1(upperright),CR2(lowerright),andCR3(lowerleft)regions.Forclarity,thetwo-dimensionaldistributionwith largestandnext-to-largestb taggingdiscriminantscoresfortheadditionaljetshavebeenunrolledtoonedimension,andtheresultingbinsorderedaccordingtoincreasing valuesoftheratiobetweenexpectedsignalandbackgroundyieldsineachbinoftheSR.ThesmallbackgroundsincludettV,ttH,singletopquark,V+jets,anddiboson production.Hatchedbandscorrespondtouncertainties.Thebottompanelsshowthepulldistribution.Thepullisdefinedasthebinbybindifferencebetweendataand predictedyieldsafterthefit,dividedbytheuncertaintiesaccountedforcorrelationsbetweendataandpredictionsafterthefit.

Table 2

Measuredandpredictedcrosssectionsforthedifferentdefinitionsofthettbb phasespaceconsideredinthisanalysis.For measurements,thefirstuncertaintyisstatistical,whilethesecondoneisfromthesystematicsources.Theuncertaintiesinthe predictedcrosssectionsincludethestatisticaluncertainty,thePDFuncertainties,andtheμRandμFdependencesonchanges

inscale.Theuncertaintiesinscaleforpartonshowersarenotincluded,andamounttoabout15%for powheg+pythia.Unless specifiedotherwise, pythia isusedforthemodellingthepartonshower,hadronization,andtheunderlyingevent.

Fiducial, parton-independent (pb) Fiducial, parton-based (pb) Total (pb) Measurement 1.6±0.1+0.5 −0.4 1.6±0.1+ 0.5 −0.4 5.5±0.3+ 1.6 −1.3 powheg(tt) 1.1±0.2 1.0±0.2 3.5±0.6 powheg(tt) + herwig++ 0.8±0.2 0.8±0.2 3.0±0.5 MadGraph5_amc@nlo (4FS ttbb) 0.8±0.2 0.8±0.2 2.3±0.7 MadGraph5_amc@nlo (5FS tt+jets, FxFx) 1.0±0.1 1.0±0.1 3.6±0.3

technicalandadministrativestaffs atCERN andatother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentersand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythecomputinginfrastructure essential toour analyses. Finally, we acknowledge the enduring support for the construc-tionandoperationofthe LHCandtheCMSdetectorprovided by thefollowingfundingagencies: BMBWFandFWF(Austria);FNRS

and FWO(Belgium); CNPq,CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES andCSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); AcademyofFinland,MEC,andHIP(Finland);CEAandCNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NK-FIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN(Italy);MSIPandNRF(RepublicofKorea);MES(Latvia);LAS

(8)

Fig. 3. Comparisonofthemeasuredttbb productioncrosssections(verticallines)withpredictionsfromseveralMonteCarlogenerators(squares),forthreedefinitionsof ourttbb regionsofphasespace:fiducialparton-independent(left),fiducialparton-based(middle),total(right).Thedark(light)shadedbandsshowthestatistical(total) uncertaintiesinthemeasuredvalue.UncertaintyintervalsinthetheoreticalcrosssectionsincludethestatisticaluncertaintyaswellastheuncertaintiesinthePDFsandthe

μRandμFscales.

(Lithuania);MOEandUM(Malaysia);BUAP,CINVESTAV,CONACYT, LNS,SEP,andUASLP-FAI(Mexico);MOS(Montenegro);MBIE(New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portu-gal);JINR(Dubna);MON, ROSATOM,RAS,RFBR,andNRCKI (Rus-sia);MESTD(Serbia);SEIDI,CPAN,PCTI,andFEDER(Spain);MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter,IPST,STAR,andNSTDA(Thailand);TUBITAKandTAEK (Turkey);NASUandSFFR(Ukraine); STFC(United Kingdom);DOE andNSF(USA).

Individuals have received support from the Marie-Curie pro-gramandtheEuropeanResearchCouncilandHorizon2020Grant, contractNos.675440,752730,and765710 (EuropeanUnion);the LeventisFoundation;theAlfredP.SloanFoundation;theAlexander von HumboldtFoundation;theBelgianFederal SciencePolicy Of-fice;theFondspourlaFormationàlaRecherchedansl’Industrieet dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.hprojectn.30820817;theBeijingMunicipalScience& Technol-ogyCommission,No. Z181100004218003; TheMinistryof Educa-tion,YouthandSports (MEYS)oftheCzechRepublic;theLendület (“Momentum”)ProgramandtheJánosBolyaiResearchScholarship of the Hungarian Academy of Sciences, the New National Excel-lence ProgramÚNKP,the NKFIA research grants 123842, 123959, 124845,124850,125105,128713,128786,and129058(Hungary); the Council of Science and Industrial Research, India; the HOM-ING PLUS program of the Foundation for Polish Science, cofi-nanced from European Union, Regional Development Fund, the MobilityPlusprogram of theMinistry ofScience andHigher Ed-ucation,theNationalScienceCenter(Poland), contractsHarmonia 2014/14/M/ST2/00428,Opus2014/13/B/ST2/02543,2014/15/B/ST2/ 03998,and2015/19/B/ST2/02861,Sonata-bis2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Re-search Fund; the Ministry of Science and Education, grant no. 3.2989.2017(Russia); the Programa Estatalde Fomento de la In-vestigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509andthe ProgramaSeveroOchoa del

Prin-cipado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund forPostdoctoralFellowship,ChulalongkornUniversityandthe Chu-lalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand);theNvidiaCorporation;TheWelchFoundation, contractC-1845;andtheWestonHavensFoundation(USA). References

[1] A.Bredenstein,A.Denner,S.Dittmaier,S.Pozzorini,NLOQCDcorrectionsto ttbb productionattheLHC:2.Fullhadronicresults,J.HighEnergyPhys.03 (2010)021,https://doi.org/10.1007/JHEP03(2010)021,arXiv:1001.4006. [2] ATLAS Collaboration, Observation of Higgsboson production inassociation

withatopquarkpairattheLHCwiththeATLASdetector,Phys.Lett.B784 (2018)173,https://doi.org/10.1016/j.physletb.2018.07.035,arXiv:1806.00425. [3] CMSCollaboration,ObservationofttH production,Phys.Rev.Lett.120(2018)

231801,https://doi.org/10.1103/PhysRevLett.120.231801,arXiv:1804.02610. [4] ATLASCollaboration,SearchforthestandardmodelHiggsbosonproducedin

associationwithtopquarks anddecayinginto abb pairinpp collisionsat

s=13 TeV withtheATLASdetector,Phys.Rev.D97(2018)072016,https:// doi.org/10.1103/PhysRevD.97.072016,arXiv:1712.08895.

[5] ATLASCollaboration,SearchforthestandardmodelHiggsbosondecayinginto bb producedinassociationwithtopquarksdecayinghadronicallyinpp colli-sionsat√s=8 TeV withtheATLASdetector,J.HighEnergyPhys.05(2016) 160,https://doi.org/10.1007/JHEP05(2016)160,arXiv:1604.03812.

[6] CMSCollaboration,SearchforttH productionintheall-jetfinalstatein proton-protoncollisionsat√s=13 TeV,J.HighEnergyPhys.06(2018)101,https:// doi.org/10.1007/JHEP06(2018)101,arXiv:1803.06986.

[7] CMSCollaboration, SearchforttH productionintheH→bb decaychannel withleptonic tt decays inproton-protoncollisionsat √s=13 TeV,J. High EnergyPhys. 03(2019)026,https://doi.org/10.1007/JHEP03(2019)026,arXiv: 1804.03682.

[8] ATLASCollaboration,Searchforfour-top-quarkproductioninthesingle-lepton andopposite-signdileptonfinalstatesinpp collisionsat √s=13 TeV with theATLAS detector,Phys. Rev.D99 (2019)052009,https://doi.org/10.1103/ PhysRevD.99.052009,arXiv:1811.02305.

[9] CMSCollaboration,Searchforstandardmodelproductionoffourtopquarksin thelepton+jetschannelinpp collisionsat√s=8 TeV,J.HighEnergyPhys. 11(2014)154,https://doi.org/10.1007/JHEP11(2014)154,arXiv:1409.7339. [10] CMSCollaboration,Searchforstandardmodelproductionoffourtopquarksin

proton-protoncollisionsat√s=13 TeV,Phys.Lett.B772(2017)336,https:// doi.org/10.1016/j.physletb.2017.06.064,arXiv:1702.06164.

(9)

[11] Q.-H.Cao,S.-L.Chen,Y.Liu,ProbingHiggswidthandtopquarkYukawa cou-plingfromttH andtttt productions,Phys.Rev.D95(2017)053004,https:// doi.org/10.1103/PhysRevD.95.053004,arXiv:1602.01934.

[12] Q.-H.Cao,S.-L.Chen,Y.Liu,R.Zhang,Y.Zhang,Limitingtopquark-Higgsboson interactionandHiggs-bosonwidthfrommultitopproductions,Phys.Rev.D99 (2019)113003,https://doi.org/10.1103/PhysRevD.99.113003,arXiv:1901.04567. [13] S.Höche,F.Krauss,P.Maierhöfer,S.Pozzorini,M.Schonherr,F.Siegert, Next-to-leadingorderQCDpredictionsfortop-quarkpairproductionwithuptotwo jetsmergedwithapartonshower,Phys.Lett.B748(2015)74,https://doi.org/ 10.1016/j.physletb.2015.06.060,arXiv:1402.6293.

[14] J.Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-levelandnext-to-leadingorderdifferentialcrosssections,andtheirmatching toparton showersimulations,J. HighEnergy Phys. 07(2014) 079,https:// doi.org/10.1007/JHEP07(2014)079,arXiv:1405.0301.

[15] R.Frederix,S. Frixione,Merging meets matching inMC@NLO, J. High En-ergyPhys.12(2012)061,https://doi.org/10.1007/JHEP12(2012)061,arXiv:1209. 6215.

[16] M.V. Garzelli, A.Kardos, Z. Trócsányi, Hadroproduction ofttbb final states at LHC: predictionsat NLOaccuracy matched with parton shower,J. High Energy Phys.03(2015)083,https://doi.org/10.1007/JHEP03(2015)083, arXiv: 1408.0266.

[17] F.Cascioli,P.Maierhöfer,N.Moretti,S.Pozzorini,F.Siegert,NLOmatchingfor ttbb productionwithmassiveb-quarks,Phys.Lett.B734(2014)210,https:// doi.org/10.1016/j.physletb.2014.05.040,arXiv:1309.5912.

[18]G.Bevilacqua,M.V.Garzelli,A.Kardos,ttbb hadroproductionwithmassive bot-tomquarkswithPowHel,arXiv:1709.06915,2017.

[19] T.Ježo,J.M.Lindert,N.Moretti,S.Pozzorini,NewNLOPSpredictionsfortt + b-jetproductionattheLHC,Eur.Phys.J.C78(2018)502,https://doi.org/10. 1140/epjc/s10052-018-5956-0,arXiv:1802.00426.

[20] ATLASCollaboration,Measurementsoffiducialcross-sectionsfortt production withoneortwoadditionalb-jetsinpp collisionsat√s=8 TeV usingthe AT-LASdetector,Eur.Phys.J.C76(2016)11,https://doi.org/10.1140/epjc/s10052 -015-3852-4,arXiv:1508.06868.

[21] ATLASCollaboration,Measurementsofinclusiveanddifferentialfiducial cross-sectionsoftt productionwithadditionalheavy-flavourjetsinproton-proton collisionsat √s=13 TeV with theATLAS detector,J.HighEnergy Phys.04 (2019)046,https://doi.org/10.1007/JHEP04(2019)046,arXiv:1811.12113. [22] CMSCollaboration,Measurementofthecrosssectionratioσttbbttjjinpp

col-lisionsat√s=8 TeV,Phys.Lett.B746(2015)132,https://doi.org/10.1016/j. physletb.2015.04.060,arXiv:1411.5621.

[23] CMSCollaboration,Measurementoftt productionwithadditionaljetactivity, includingb quarkjets,inthedileptondecay channelusingpp collisionsat

s=8 TeV,Eur.Phys.J.C76(2016)379,https://doi.org/10.1140/epjc/s10052 -016-4105-x,arXiv:1510.03072.

[24] CMSCollaboration,Measurementsoftt crosssectionsinassociationwithb jets andinclusivejetsandtheirratiousingdileptonfinalstatesinpp collisionsat

s=13 TeV,Phys.Lett.B776(2018)355,https://doi.org/10.1016/j.physletb. 2017.11.043,arXiv:1705.10141.

[25] CMSCollaboration,CMSLuminosityMeasurementsforthe2016DataTaking Period, CMSPhysicsAnalysis SummaryCMS-PAS-LUM-17-001, 2017,https:// cds.cern.ch/record/2257069.

[26] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,https://doi.org/10.1088/1748-0221/3/08/S08004.

[27] P.Nason,AnewmethodforcombiningNLOQCDwithshowerMonteCarlo algorithms,J.HighEnergyPhys.11(2004)040,https://doi.org/10.1088/1126 -6708/2004/11/040,arXiv:hep-ph/0409146.

[28] S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod,J.HighEnergyPhys.11(2007)070,

https://doi.org/10.1088/1126-6708/2007/11/070,arXiv:0709.2092.

[29] S.Alioli, P.Nason, C. Oleari,E.Re, Ageneral framework for implementing NLOcalculationsinshowerMonteCarloprograms:thePOWHEGBOX,J.High Energy Phys.06(2010)043,https://doi.org/10.1007/JHEP06(2010)043, arXiv: 1002.2581.

[30] S.Frixione,P.Nason,G.Ridolfi,Apositive-weightnext-to-leading-orderMonte Carloforheavyflavourhadroproduction,J.HighEnergyPhys.09(2007)126,

https://doi.org/10.1088/1126-6708/2007/09/126,arXiv:0707.3088.

[31] S.Alioli,P.Nason,C.Oleari,E.Re,NLOsingle-topproduction matchedwith showerinPOWHEG:s- andt-channelcontributions,J.HighEnergyPhys.09 (2009) 111,https://doi.org/10.1088/1126-6708/2009/09/111, arXiv:0907.4076; Erratum:https://doi.org/10.1007/JHEP02(2010)011.

[32] E.Re,Single-topWt-channelproductionmatchedwithpartonshowersusing thePOWHEGmethod,Eur.Phys.J.C71(2011)1547,https://doi.org/10.1140/ epjc/s10052-011-1547-z,arXiv:1009.2450.

[33] H.B.Hartanto,B.Jager,L.Reina,D.Wackeroth,Higgsbosonproductionin asso-ciationwithtopquarksinthePOWHEGBOX,Phys.Rev.D91(2015)094003,

https://doi.org/10.1103/PhysRevD.91.094003,arXiv:1501.04498.

[34] J.Alwall,S.Höche,F.Krauss,N.Lavesson,L.Lönnblad,F.Maltoni,M.L.Mangano, M.Moretti,C.G.Papadopoulos,F.Piccinini,S.Schumann,M.Treccani,J.Winter, M.Worek,Comparativestudyofvariousalgorithmsforthemergingofparton

showersandmatrixelementsinhadroniccollisions,Eur.Phys.J.C53(2008) 473,https://doi.org/10.1140/epjc/s10052-007-0490-5,arXiv:0706.2569. [35] T.Sjöstrand, S.Ask,J.R. Christiansen,R.Corke, N.Desai,P.Ilten,S.Mrenna,

S.Prestel,C.O.Rasmussen,P.Z.Skands,AnintroductiontoPYTHIA8.2, Com-put.Phys.Commun.191(2015)159,https://doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[36] R.D.Ball,V.Bertone,S.Carrazza,C.S.Deans,L.DelDebbio,S.Forte,A.Guffanti, N.P.Hartland,J.I.Latorre,J.Rojo,M.Ubiali(NNPDF),Partondistributionsfor the LHCRunII,J.HighEnergyPhys. 04(2015)040,https://doi.org/10.1007/ JHEP04(2015)040,arXiv:1410.8849.

[37] CMSCollaboration,Eventgeneratortunesobtainedfromunderlyingeventand multipartonscatteringmeasurements,Eur.Phys. J.C76(2015)155,https:// doi.org/10.1140/epjc/s10052-016-3988-x,arXiv:1512.00815.

[38] CMSCollaboration,InvestigationsoftheImpactofthePartonShowerTuning inPythia8intheModellingoftt at√s=8 and13 TeV,CMSPhysicsAnalysis SummaryCMS-PAS-TOP-16-021,2016,https://cds.cern.ch/record/2235192/. [39] S.Agostinelli,etal., Geant4, Geant4—asimulationtoolkit,Nucl.Instrum.

Meth-odsPhys.Res.,Sect.A506(2003)250,https://doi.org/10.1016/S0168-9002(03) 01368-8.

[40] M.Czakon,A.Mitov,Top++:aprogramforthecalculationofthetop-pair cross-sectionathadroncolliders,Comput.Phys.Commun.185(2014)2930,https:// doi.org/10.1016/j.cpc.2014.06.021,arXiv:1112.5675.

[41] N.Kidonakis,Topquarkproduction,https://doi.org/10.3204/DESY-PROC-2013 -03/Kidonakis,arXiv:1311.0283,2013.

[42] Y.Li,F.Petriello,CombiningQCDandelectroweakcorrectionstodilepton pro-ductionintheframeworkoftheFEWZsimulationcode,Phys.Rev.D86(2012) 094034,https://doi.org/10.1103/PhysRevD.86.094034,arXiv:1208.5967. [43] T.Gehrmann,M.Grazzini,S.Kallweit,P.Maierhöfer,A.vonManteuffel,S.

Poz-zorini,D.Rathlev,L.Tancredi,W+W−productionathadroncollidersinnext to next toleading order QCD,Phys. Rev.Lett. 113(2014) 212001, https:// doi.org/10.1103/PhysRevLett.113.212001,arXiv:1408.5243.

[44] J.M.Campbell,R.K.Ellis,C.Williams,VectorbosonpairproductionattheLHC, J.HighEnergyPhys.07(2011)018,https://doi.org/10.1007/JHEP07(2011)018, arXiv:1105.0020.

[45] M.Cacciari,G.P.Salam,G.Soyez,Theanti-kTjetclusteringalgorithm,J.High

Energy Phys. 04(2008) 063,https://doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[46] M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,https://doi.org/10.1140/epjc/s10052-012-1896-2,arXiv:1111.6097. [47] M.Cacciari,G.P.Salam,Pileupsubtractionusingjet areas,Phys.Lett.B659

(2008)119,https://doi.org/10.1016/j.physletb.2007.09.077,arXiv:0707.1378. [48] CMSCollaboration, Particle-flowreconstructionand globaleventdescription

withtheCMSdetector,J.Instrum.12(2017)P10003,https://doi.org/10.1088/ 1748-0221/12/10/P10003,arXiv:1706.04965.

[49] CMSCollaboration,JetenergyscaleandresolutionintheCMSexperimentin pp collisionsat 8 TeV,J.Instrum.12(2017)P02014,https://doi.org/10.1088/ 1748-0221/12/02/P02014,arXiv:1607.03663.

[50] CMSCollaboration,Identificationofheavy-flavourjetswiththeCMSdetectorin pp collisionsat13 TeV,J.Instrum.13(2018)P05011,https://doi.org/10.1088/ 1748-0221/13/05/P05011,arXiv:1712.07158.

[51] CMS Collaboration, The CMStrigger system, J. Instrum. 12 (2017) P01020,

https://doi.org/10.1088/1748-0221/12/01/P01020,arXiv:1609.02366. [52] CMSCollaboration,PerformanceoftheCMSmuondetectorandmuon

recon-structionwithproton-protoncollisionsat√s=13 TeV,J.Instrum.13(2018) P06015,https://doi.org/10.1088/1748-0221/13/06/P06015,arXiv:1804.04528. [53] CMSCollaboration,Performanceofelectronreconstructionandselectionwith

the CMSdetector inproton-protoncollisions at √s=8 TeV,J. Instrum. 10 (2015) P06005, https://doi.org/10.1088/1748-0221/10/06/P06005, arXiv:1502. 02701.

[54] CMSCollaboration, PerformanceofQuark/GluonDiscrimination in8 TeVpp Data,CMSPhysicsAnalysisSummaryCMS-PAS-JME-13-002,2013,https://cds. cern.ch/record/1599732.

[55] CMSCollaboration,PerformanceofQuark/GluonDiscriminationin13 TeV Data, CMSDetectorPerformanceSummaryCMS-DP-2016-070,2016,http://cds.cern. ch/record/2234117.

[56] H.Voss,H.Höcker,J.Stelzer,F.Tegenfeldt,TMVA:toolkitformultivariatedata analysiswithROOT,PoSACAT(2007)040,https://cds.cern.ch/record/1116810, arXiv:physics/0703039.

[57] E.M. Metodiev,B.Nachman,J. Thaler,Classificationwithoutlabels:learning frommixedsamplesinhighenergyphysics,J.HighEnergyPhys. 10(2017) 174,https://doi.org/10.1007/JHEP10(2017)174,arXiv:1708.02949.

[58] ATLASCollaboration,Measurementoftheinelasticproton-protoncrosssection at√s=13 TeV withtheATLASdetectorattheLHC,Phys.Rev.Lett.117(2016) 182002,https://doi.org/10.1103/PhysRevLett.117.182002,arXiv:1606.02625. [59] J.R.Christiansen,P.Z.Skands,Stringformationbeyondleadingcolour,J.High

Energy Phys. 08(2015)003,https://doi.org/10.1007/JHEP08(2015)003,arXiv: 1505.01681.

[60] S.Argyropoulos,T.Sjöstrand,Effectsofcolorreconnectionontt finalstates at the LHC, J. High Energy Phys. 11 (2014) 043, https://doi.org/10.1007/ JHEP11(2014)043,arXiv:1407.6653.

(10)

[61] CMSCollaboration,Studyoftheunderlyingeventintopquarkpairproduction inpp collisionsat13 TeV,Eur.Phys.J.C79(2019)123,https://doi.org/10.1140/ epjc/s10052-019-6620-z,arXiv:1807.02810.

[62] CMSCollaboration,Measurementofdifferentialcrosssectionsforthe produc-tionoftopquarkpairsandofadditionaljetsinlepton+jetseventsfrompp collisionsat√s=13 TeV,Phys.Rev.D97(2018)112003,https://doi.org/10. 1103/PhysRevD.97.112003,arXiv:1803.08856.

[63] M.Bähr,S.Gieseke,M.A.Gigg,D.Grellscheid,K.Hamilton,O.Latunde-Dada, S.Plätzer,P.Richardson,M.H.Seymour,A.Sherstnev,B.R.Webber,Herwig++ physicsandmanual,Eur.Phys.J.C58(2008)639,https://doi.org/10.1140/epjc/ s10052-008-0798-9,arXiv:0803.0883.

[64] S.Gieseke,C.Rohr,A.Siodmok,ColourreconnectionsinHerwig++,Eur.Phys.J. C72(2012)2225,https://doi.org/10.1140/epjc/s10052-012-2225-5,arXiv:1206. 0041.

TheCMSCollaboration

A.M. Sirunyan

,

A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam,

F. Ambrogi,

T. Bergauer,

J. Brandstetter,

M. Dragicevic,

J. Erö,

A. Escalante Del Valle,

M. Flechl,

R. Frühwirth

1

,

M. Jeitler

1

,

N. Krammer,

I. Krätschmer,

D. Liko,

T. Madlener,

I. Mikulec,

N. Rad,

J. Schieck

1

,

R. Schöfbeck,

M. Spanring,

D. Spitzbart,

W. Waltenberger,

C.-E. Wulz

1

,

M. Zarucki

InstitutfürHochenergiephysik,Wien,Austria

V. Drugakov,

V. Mossolov,

J. Suarez Gonzalez

InstituteforNuclearProblems,Minsk,Belarus

M.R. Darwish,

E.A. De Wolf,

D. Di Croce,

X. Janssen,

A. Lelek,

M. Pieters,

H. Rejeb Sfar,

H. Van Haevermaet,

P. Van Mechelen,

S. Van Putte,

N. Van Remortel

UniversiteitAntwerpen,Antwerpen,Belgium

F. Blekman,

E.S. Bols,

S.S. Chhibra,

J. D’Hondt,

J. De Clercq,

D. Lontkovskyi,

S. Lowette,

I. Marchesini,

S. Moortgat,

Q. Python,

K. Skovpen,

S. Tavernier,

W. Van Doninck,

P. Van Mulders

VrijeUniversiteitBrussel,Brussel,Belgium

D. Beghin,

B. Bilin,

H. Brun,

B. Clerbaux,

G. De Lentdecker,

H. Delannoy,

B. Dorney,

L. Favart,

A. Grebenyuk,

A.K. Kalsi,

A. Popov,

N. Postiau,

E. Starling,

L. Thomas,

C. Vander Velde,

P. Vanlaer,

D. Vannerom

UniversitéLibredeBruxelles,Bruxelles,Belgium

T. Cornelis,

D. Dobur,

I. Khvastunov

2

,

M. Niedziela,

C. Roskas,

D. Trocino,

M. Tytgat,

W. Verbeke,

B. Vermassen,

M. Vit,

N. Zaganidis

GhentUniversity,Ghent,Belgium

O. Bondu,

G. Bruno,

C. Caputo,

P. David,

C. Delaere,

M. Delcourt,

A. Giammanco,

V. Lemaitre,

A. Magitteri,

J. Prisciandaro,

A. Saggio,

M. Vidal Marono,

P. Vischia,

J. Zobec

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

F.L. Alves,

G.A. Alves,

G. Correia Silva,

C. Hensel,

A. Moraes,

P. Rebello Teles

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas,

W. Carvalho,

J. Chinellato

3

,

E. Coelho,

E.M. Da Costa,

G.G. Da Silveira

4

,

D. De Jesus Damiao,

C. De Oliveira Martins,

S. Fonseca De Souza,

L.M. Huertas Guativa,

H. Malbouisson,

J. Martins

5

,

D. Matos Figueiredo,

M. Medina Jaime

6

,

M. Melo De Almeida,

C. Mora Herrera,

L. Mundim,

H. Nogima,

W.L. Prado Da Silva,

L.J. Sanchez Rosas,

A. Santoro,

A. Sznajder,

M. Thiel,

E.J. Tonelli Manganote

3

,

F. Torres Da Silva De Araujo,

A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

C.A. Bernardes

a

,

L. Calligaris

a

,

T.R. Fernandez Perez Tomei

a

,

E.M. Gregores

b

,

D.S. Lemos,

(11)

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov,

G. Antchev,

R. Hadjiiska,

P. Iaydjiev,

M. Misheva,

M. Rodozov,

M. Shopova,

G. Sultanov

InstituteforNuclearResearchandNuclearEnergy,BulgarianAcademyofSciences,Sofia,Bulgaria

M. Bonchev,

A. Dimitrov,

T. Ivanov,

L. Litov,

B. Pavlov,

P. Petkov

UniversityofSofia,Sofia,Bulgaria

W. Fang

7

,

X. Gao

7

,

L. Yuan

BeihangUniversity,Beijing,China

M. Ahmad,

G.M. Chen,

H.S. Chen,

M. Chen,

C.H. Jiang,

D. Leggat,

H. Liao,

Z. Liu,

S.M. Shaheen

8

,

A. Spiezia,

J. Tao,

E. Yazgan,

H. Zhang,

S. Zhang

8

,

J. Zhao

InstituteofHighEnergyPhysics,Beijing,China

A. Agapitos,

Y. Ban,

G. Chen,

A. Levin,

J. Li,

L. Li,

Q. Li,

Y. Mao,

S.J. Qian,

D. Wang,

Q. Wang

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

Z. Hu,

Y. Wang

TsinghuaUniversity,Beijing,China

M. Xiao

ZhejiangUniversity,Hangzhou,China

C. Avila,

A. Cabrera,

C. Florez,

C.F. González Hernández,

M.A. Segura Delgado

UniversidaddeLosAndes,Bogota,Colombia

J. Mejia Guisao,

J.D. Ruiz Alvarez,

C.A. Salazar González,

N. Vanegas Arbelaez

UniversidaddeAntioquia,Medellin,Colombia

D. Giljanovi ´c,

N. Godinovic,

D. Lelas,

I. Puljak,

T. Sculac

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic,

M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,

S. Ceci,

D. Ferencek,

K. Kadija,

B. Mesic,

M. Roguljic,

A. Starodumov

9

,

T. Susa

InstituteRudjerBoskovic,Zagreb,Croatia

M.W. Ather,

A. Attikis,

E. Erodotou,

A. Ioannou,

M. Kolosova,

S. Konstantinou,

G. Mavromanolakis,

J. Mousa,

C. Nicolaou,

F. Ptochos,

P.A. Razis,

H. Rykaczewski,

D. Tsiakkouri

UniversityofCyprus,Nicosia,Cyprus

M. Finger

10

,

M. Finger Jr.

10

,

A. Kveton,

J. Tomsa

CharlesUniversity,Prague,CzechRepublic

E. Ayala

EscuelaPolitecnicaNacional,Quito,Ecuador

E. Carrera Jarrin

(12)

H. Abdalla

11

,

E. Salama

12

,

13

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

S. Bhowmik,

A. Carvalho Antunes De Oliveira,

R.K. Dewanjee,

K. Ehataht,

M. Kadastik,

M. Raidal,

C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,

L. Forthomme,

H. Kirschenmann,

K. Osterberg,

M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

F. Garcia,

J. Havukainen,

J.K. Heikkilä,

T. Järvinen,

V. Karimäki,

M.S. Kim,

R. Kinnunen,

T. Lampén,

K. Lassila-Perini,

S. Laurila,

S. Lehti,

T. Lindén,

P. Luukka,

T. Mäenpää,

H. Siikonen,

E. Tuominen,

J. Tuominiemi

HelsinkiInstituteofPhysics,Helsinki,Finland

T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,

F. Couderc,

M. Dejardin,

D. Denegri,

B. Fabbro,

J.L. Faure,

F. Ferri,

S. Ganjour,

A. Givernaud,

P. Gras,

G. Hamel de Monchenault,

P. Jarry,

C. Leloup,

E. Locci,

J. Malcles,

J. Rander,

A. Rosowsky,

M.Ö. Sahin,

A. Savoy-Navarro

14

,

M. Titov

IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

S. Ahuja,

C. Amendola,

F. Beaudette,

P. Busson,

C. Charlot,

B. Diab,

G. Falmagne,

R. Granier de Cassagnac,

I. Kucher,

A. Lobanov,

C. Martin Perez,

M. Nguyen,

C. Ochando,

P. Paganini,

J. Rembser,

R. Salerno,

J.B. Sauvan,

Y. Sirois,

A. Zabi,

A. Zghiche

LaboratoireLeprince-Ringuet,CNRS/IN2P3,EcolePolytechnique,InstitutPolytechniquedeParis,France

J.-L. Agram

15

,

J. Andrea,

D. Bloch,

G. Bourgatte,

J.-M. Brom,

E.C. Chabert,

C. Collard,

E. Conte

15

,

J.-C. Fontaine

15

,

D. Gelé,

U. Goerlach,

M. Jansová,

A.-C. Le Bihan,

N. Tonon,

P. Van Hove

UniversitédeStrasbourg,CNRS,IPHCUMR7178,Strasbourg,France

S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,

C. Bernet,

G. Boudoul,

C. Camen,

A. Carle,

N. Chanon,

R. Chierici,

D. Contardo,

P. Depasse,

H. El Mamouni,

J. Fay,

S. Gascon,

M. Gouzevitch,

B. Ille,

Sa. Jain,

F. Lagarde,

I.B. Laktineh,

H. Lattaud,

A. Lesauvage,

M. Lethuillier,

L. Mirabito,

S. Perries,

V. Sordini,

L. Torterotot,

G. Touquet,

M. Vander Donckt,

S. Viret

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

G. Adamov

GeorgianTechnicalUniversity,Tbilisi,Georgia

Z. Tsamalaidze

10

TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann,

L. Feld,

M.K. Kiesel,

K. Klein,

M. Lipinski,

D. Meuser,

A. Pauls,

M. Preuten,

M.P. Rauch,

C. Schomakers,

J. Schulz,

M. Teroerde,

B. Wittmer

Şekil

Fig. 1. Distributions in the QGLR (upper) and the CWoLa BDT discriminants (lower). Both are after preselection, requiring P ( χ 2 )  &gt; 10 − 6 and at least eight selected jets.
Fig. 2. Distribution in the 2DCSV in the SR (upper left), CR1 (upper right), CR2 (lower right), and CR3 (lower left) regions
Fig. 3. Comparison of the measured ttbb production cross sections (vertical lines) with predictions from several Monte Carlo generators (squares), for three definitions of our ttbb regions of phase space: fiducial parton-independent (left), fiducial parton-ba

Referanslar

Benzer Belgeler

Haksız vergi rekabeti, devletin, diğer devletlerin mali menfaatlerine zarar verecek Ģekilde, vergiden kaçınmasının veya vergi kaçakçılığının bir sonucudur ve bu

Bu açıdan “Bir grafik tasarım sorunu olarak görme engellilere yönelik karton ambalaj tasarımda estetik ve işlevsellik algısı üzerine uygulamalar” isimli tez

Eleştirilerinde sanatın işlevinden halk edebiyatına kadar geniş bir yelpazeye yönelen Akın, şiir eleştirilerinde daha çok İkinci Yeni ve İkinci Yeni içerisinde de

Ayrıca kozmetik alanında yaşanılan sorunları en aza indirmek ve %100 müşteri memnuniyetine ulaşmak ve satış hızını kozmetik ürünlere de aktarabilmek adına

Böylece, aç ıkça görülen kısıtlamalara (ve Kate Moss’un sandviç yerken çektiği foto ğrafın Vogue ve katılımcılar tarafından basılabilir bir şaka olarak

bulundurularak, bu unsurların ürünü farklı kılması, daha amacına yönelik olduğunu göstermesi için grafik tasarım unsurlarına ve problem çözen bir tasarıma sahip

Babalığın toplum tarafından nasıl algılandığı, görevlerinin nasıl belirlendiği konusunu ele alan Yörükoğlu ( 2004) babanın, her şeyden önce, eşi ve çocukları

Satı Bey, derginin ikinci sayısındaki “Durkheim Hakkında” başlıklı yazısında da Gökalp ve çevresindekilerin ismini vermeden Durkheim ve takipçilerinin görüşlerini