• Sonuç bulunamadı

A new canonical induction formula for p-permutation modules [Une nouvelle formule d'induction canonique pour modules de p-permutation]

N/A
N/A
Protected

Academic year: 2021

Share "A new canonical induction formula for p-permutation modules [Une nouvelle formule d'induction canonique pour modules de p-permutation]"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

C. R.

Acad.

Sci.

Paris,

Ser. I

www.sciencedirect.com

Group theory

A

new

canonical

induction

formula

for

p-permutation

modules

Une nouvelle formule d’induction canonique pour modules de

p-permutation

Laurence Barker,

Hatice Mutlu

Department of Mathematics, Bilkent University, 06800 Bilkent, Ankara, Turkey

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Article history:

Received1October2018

Acceptedafterrevision9April2019 Availableonline24April2019 PresentedbytheEditorialBoard

Applying RobertBoltje’s theoryof canonical induction, wegive arestriction-preserving formulaexpressinganyp-permutationmoduleasaZ[1/p]-linearcombinationofmodules induced and inflated from projective modules associated with subquotient groups. The underlyingconstructionsinclude,foranygivenfinitegroup,aringwithaZ-basisindexed by conjugacyclasses oftriples(U,K,E) where U is a subgroup, K isa p-residue-free normalsubgroupofU ,andE isanindecomposableprojectivemoduleofthegroupalgebra ofU/K .

©2019Académiedessciences.PublishedbyElsevierMassonSAS.Allrightsreserved.

r

é

s

u

m

é

Enapplication de lathéoriedel’induction canonique deRobert Boltje,nous présentons uneformule stable par restrictionau moyendelaquelle tout modulede p-permutation estexprimésousformedecombinaisonZ[1/p]-linéairedesinductionsdesinflationsdes modulesprojectifsassociésàdesgroupesdesous-quotients.Lesconstructionsconcernées comprennent,pourtoutgroupefini,unanneauquiauneZ-baseindexéeparlesclassesde conjugaisondestriplets(U,K,E)avecU unsous-groupe,Op(K)=KU etE unmodule projectifindécomposabledel’algèbredegroupedeU/K .

©2019Académiedessciences.PublishedbyElsevierMassonSAS.Allrightsreserved.

1. Introduction

WeshallbeapplyingBoltje’stheoryofcanonicalinduction[2] totheringof p-permutation modules.Ofcourse, p isa prime.Weshallbeconsidering p-permutationmodulesforfinitegroupsoveranalgebraicallyclosedfield

F

of characteris-tic p.A reviewofthetheoryofp-permutationmodulescanbefoundinBouc–Thévenaz[6,Section2].

E-mail addresses:barker@fen.bilkent.edu.tr(L. Barker),hatice.mutlu@bilkent.edu.tr(H. Mutlu). https://doi.org/10.1016/j.crma.2019.04.004

(2)

Acanonicalinductionformulaforp-permutationmoduleswasgivenbyBoltje[3,Section4] andshowntobe

Z-integral.

Itexpressesany p-permutationmodule,uptoisomorphism,asa

Z-linear

combinationofmodulesinducedfromaspecial kindofp-permutationmodule,namely,the1-dimensionalmodules.

We shallbe inducingfromanotherspecial kindof p-permutationmodule. LetG bea finitegroup. Weunderstandall

F

G-modulestobefinite-dimensional.Anindecomposable

F

G-moduleM issaidtobe exprojective providedthefollowing equivalent conditions hold up to isomorphism: there exists a normal subgroup K



G such that M is inflated from a projective

F

G

/

K -module;thereexistsK



G suchthatM isadirectsummandofthepermutation

F

G-module

F

G

/

K ;every vertexof M acts triviallyon M;some vertexofM actstrivially on M. Generally,an

F

G-module X iscalled exprojective providedeveryindecomposabledirectsummandof X isexprojective.

Theexprojectivemodulesdoalreadyplayaspecialroleinthetheoryofp-permutationmodules.Indeed,the parametriza-tionoftheindecomposable p-permutationmodules,recalledinSection2,characterizesanyindecomposablep-permutation moduleasaparticulardirectsummandofamoduleinducedfromanexprojectivemodule.

We shallgive a

Z

[

1

/

p

]

-integral canonicalinductionformula,expressingany p-permutation

F

G-module,upto isomor-phism,asa

Z

[

1

/

p

]

-linearcombinationofmodulesinducedfromexprojectivemodules.Moreprecisely,weshallbeworking withtheGrothendieckringforp-permutation modulesT

(

G

)

andweshallbeintroducinganothercommutativering

T (

G

)

which, roughly speaking,has a free

Z-basis

consistingoflifts ofinduced modules of indecomposableexprojective mod-ules. We shallconsider a ringepimorphism linG

:

T (

G

)

T

(

G

)

and its

Q-linear

extension linG

: Q

T (

G

)

→ Q

T

(

G

)

. The latter is split by a

Q-linear

map canG

: Q

T

(

G

)

→ Q

T (

G

)

which, as we shall show, restricts to a

Z

[

1

/

p

]

-linear map canG

: Z[

1

/

p

]

T

(

G

)

→ Z[

1

/

p

]

T (

G

)

.

Let

K

beafieldofcharacteristiczerothatissufficientlylargeforourpurposes.Tomotivatefurtherstudyofthealgebras

Z

[1

/

p]

T (

G

)

and

K

T (

G

)

,wementionthat,notwithstandingtheformulasfortheprimitiveidempotentsof

KT

(

G

)

inBoltje [4,3.6],Bouc–Thévenaz[6,4.12] and[1],therelationshipbetweenthoseidempotentsandthebasis

{[

MG

P,E

: (

P

,

E

)

G

P(

E

)

}

remains mysterious. In Section 4,we shallprove that

K

T (

G

)

is

K-semisimple

aswell as commutative,in other words, the primitive idempotents of

K

T (

G

)

comprise a basis for

K

T (

G

)

. We shall also describe how, via linG, each primitive idempotentof

KT

(

G

)

liftstoaprimitiveidempotentof

K

T (

G

)

.

2. Exprojectivemodules

Weshallestablishsomegeneralpropertiesofexprojectivemodules.

Given H

G, we write GIndH and HResG to denotethe inductionand restrictionfunctors between

FG-modules

and

F

H -modules.WhenH



G,wewrite

G

InfG/H todenotetheinflationfunctorto

F

G-modulesfrom

FG

/

H -modules.Givena finitegroup L andanunderstoodisomorphismL

G,wewrite LIsoG todenotetheisogationfunctorto

F

L-modulesfrom

F

G-modules,wemeantosay,

L

IsoG

(

X

)

isthe

F

L-moduleobtainedfroman

FG-module

X bytransportofstructureviathe understoodisomorphism.

Letusclassifytheexprojective

F

G-modulesuptoisomorphism.Wesaythat G is p-residue-free providedG

=

Op

(

G

)

, equivalently, G is generated by the Sylow p-subgroups of G. Let

Q(

G

)

denote the set of pairs

(

K

,

F

)

, where K is a p-residue-free normalsubgroup of G and F is an indecomposableprojective

F

G

/

K -module,two such pairs

(

K

,

F

)

and

(

K

,

F

)

being deemed the same provided K

=

K and F

=

F. We define an indecomposable exprojective

F

G-module MKG,F

=

GInfG/K

(

F

)

.Byconsideringvertices,weobtainthefollowingresult.

Proposition2.1.TheconditionM

=

MGK,Fcharacterizesabijectivecorrespondencebetween:

(a) theisomorphismclassesofindecomposableexprojective

F

G-modulesM,

(b) theelements

(

K

,

F

)

of

Q(

G

)

.

In particular, for a p-subgroup P of G, the condition E

=

NG(P)InfNG(P)/P

(

E

)

characterizes a bijective correspondence

between, uptoisomorphism,theindecomposableexprojective

F

NG

(

P

)

-modules E withvertex P andtheindecomposable projective

F

NG

(

P

)/

P -modulesE.Itfollowsthatthewell-knownclassificationoftheisomorphismclassesofindecomposable p-permutation

FG-modules,

asinBouc–Thévenaz [6, 2.9] for instance,can be expressedas inthe next result. Let

P(

G

)

denotethesetofpairs

(

P

,

E

)

where P isa p-subgroupofG and E isanexprojective

FN

G

(

P

)

-modulewithvertex P ,two suchpairs

(

P

,

E

)

and

(

P

,

E

)

beingdeemedthesameprovided P

=

PandE

=

E.Wemake

P(

G

)

becomea G-setviathe actions onthecoordinates.Wedefine MG

P,E tobe theindecomposable p-permutation

F

G-modulewithvertex P inGreen correspondencewithE.

Theorem2.2.TheconditionM

=

MG

P,Echaracterizesabijectivecorrespondencebetween:

(a) theisomorphismclassesofindecomposablep-permutation

FG-modules

M,

(b) theG-conjugacyclassesofelements

(

P

,

E

)

P(

G

)

.

(3)

Proposition2.3.Let

(

P

,

E

)

P(

G

)

.LetK bethenormalclosureofP inG.ThenMGP,EisexprojectiveifandonlyifNK

(

P

)

actstrivially onE.Inthatcase,K isp-residue-free,P isaSylowp-subgroupofK ,wehaveG

=

NG

(

P

)

K ,theinclusionNG

(

P

)



G inducesan isomorphismNG

(

P

)/

NK

(

P

)

=

G

/

K ,andMGP,E

=

M

K,F

G ,whereF istheindecomposableprojective

FG

/

K -moduledetermined,upto isomorphism,bytheconditionE

=

NG(P)InfNG(P)/NK(P)IsoG/K

(

F

)

.

Proof. WriteM

=

MG

P,E.IfM isexprojectivethen K actstriviallyonM and,perforce,NK

(

P

)

actstriviallyon E.

Conversely,supposeNK

(

P

)

actstriviallyonE.ThenP ,beingavertexofE,mustbeaSylowp-subgroupofNK

(

P

)

.Hence, P isaSylow p-subgroupofK .ByaFrattiniargument,G

=

NG

(

P

)

K andwehaveanisomorphismNG

(

P

)/

NK

(

P

)

=

G

/

K as specified.Let X

=

GIndNG(P)

(

E

)

.Theassumptionon E impliesthat X haswell-defined

F-submodules

Y

=



kk

⊗N

G(P)x

:

x

E



,

Y

=



kk

⊗N

G(P)xk

:

xk

E

,



kxk

=

0



summed over a left transversalkNK

(

P

)

K . Making use of thewell-definedness, an easy manipulation shows that the actionof NG

(

P

)

on X stabilizes Y andY.Similarly, K stabilizes Y andY.So Y andY are

FG-submodules

of X .Since

|

K

:

NK

(

P

)

|

is coprime to p, we have Y

Y

=

0. Since

|

K

:

NK

(

P

)

|

= |

G

:

NG

(

P

)

|

, a consideration ofdimensions yields X

=

Y

Y.

Fixalefttransversal

L

forNK

(

P

)

inK .Forg

NG

(

P

)

and



L

,wecanwrite g



= 

ghg with



g

L

andhg

NK

(

P

)

. Bytheassumptionon E again,hgx

=

x forallx

E.So

g







x

=



 g



gx

=





g

gx

=







gx

summedover



L

.Wehaveshownthat NG(P)ResG

(

Y

)

=

E.Asimilarargumentinvolvingasumover

L

showsthat K acts

trivially onY .Therefore,Y

=

MKG,F.Ontheotherhand,Y is indecomposablewithvertex P and,bytheGreen correspon-dence,Y

=

MG

P,E.

2

Weshallbemakinguseofthefollowingclosureproperty.

Proposition2.4.Givenexprojective

FG-modules

X andY ,thenthe

FG-module

X

FY isexprojective.

Proof. Wemayassumethat X andY areindecomposable.Then X andY are,respectively,directsummandsofpermutation

F

G-moduleshavingtheform

F

G

/

K and

FG

/

L whereK



G



L.ByMackeydecompositionandtheKrull–SchmidtTheorem, everyindecomposabledirectsummandof X

Y isadirectsummandof

F

G

/(

K

L

)

.

2

3. Acanonicalinductionformula

Throughout,welet

K

beaclassoffinitegroupsthatisclosedundertakingsubgroups.WeshallunderstandthatG

∈ K

. Weshallabusenotation,neglectingtousedistinct expressionstodistinguishbetweena linearmap andits extensiontoa largercoefficientring.

Specializingsome generaltheory in Boltje[2], we shallintroduce a commutative ring

T (

G

)

anda ring epimorphism linG

:

T (

G

)

T

(

G

)

.Weshallshowthatthe

Z

[

1

/

p

]

-linearextensionlinG

: Z[

1

/

p

]

T (

G

)

→ Z[

1

/

p

]

T

(

G

)

hasasplittingcanG

:

Z

[

1

/

p

]

T

(

G

)

→ Z[

1

/

p

]

T (

G

)

.Asweshallsee,canG istheuniquesplittingthatcommuteswithrestrictionandisogation.

To be clear about the definition of T

(

G

)

, the Grothendieck ring of the category of p-permutation

F

G-modules, we mentionthatthesplitshortexactsequencesarethedistinguishedsequencesdeterminingtherelationson T

(

G

)

.The mul-tiplicationon T

(

G

)

isgivenbytensorproductover

F.

Givena p-permutation

FG-module

X ,we write

[

X

]

todenotethe isomorphismclassof X .Weunderstandthat

[

X

]

T

(

G

)

.ByTheorem2.2,

T

(

G

)

=



(P,E)GP(G)

Z

[

MGP,E

]

as a direct sum ofregular

Z-modules,

the notation indicating that the index runs over representatives of G-orbits.Let Tex

(

G

)

denote the

Z-submodule

of T

(

G

)

spanned by the isomorphism classesof exprojective

F

G-modules. By Proposi-tion2.4,Tex

(

G

)

isasubringofT

(

G

)

.ByProposition2.1,

Tex

(

G

)

=



(K,F)GQ(G)

Z[

MGK,F

] .

For H

G, theinductionandrestriction functors GIndH andHResG give rise toinductionandrestriction maps

G

indH and HresG betweenT

(

H

)

andT

(

G

)

.Similarly, given L

∈ K

andan isomorphism

θ

:

L

G,we havean evident isogation map LisoθG

:

T

(

L

)

T

(

G

)

.Inparticular,giveng

G,we haveanevidentconjugationmap gHcon

g

H.Boltjenotedthat,when

K

isthe set ofsubgroups of agiven fixed finitegroup, T is aGreen functor in thesense of [2, 1.1c].Forarbitrary

K,

a classofadmitted isogationsmustbe understood,andthe isogationsandinclusionsbetweengroupsin

K

mustsatisfythe

(4)

axiomsofacategory. Grantedthat,then T is stillaGreenfunctorinan evidentsense wherebytheconjugationsreplaced byisogations.

Followingaconstruction in[2,2.2],adaptationtothecaseofarbitrary

K

beingstraightforward,weformtheG-cofixed quotient

Z-module

T

(

G

)

=

 

UG

Tex

(

U

)



G

whereG actsonthedirectsumviatheconjugationmapsgUcongU.HarnessingtheGreenfunctorstructureofT ,the

restric-tionfunctorstructureofTexandnotingthat Tex

(

G

)

isasubringofT

(

G

)

,wemake

T

becomeaGreenfunctormuchasin [2,2.2],withtheevident isogationmaps.Inparticular,

T (

G

)

becomesa ring,commutativebecause T

(

G

)

iscommutative. GivenxU

Tex

(

U

)

,wewrite

[

U

,

xU

]

G todenotetheimageofxU in

T (

G

)

.Anyx

T (

G

)

canbeexpressedintheform

x

=



UGG

[

U

,

xU

]G

where thenotationindicates that theindexrunsover representativesofthe G-conjugacyclassesofsubgroupsof G.Note that x determines

[

U

,

xU

]

and xG butnot, in general, xU. Let

R(

G

)

be the G-set of pairs

(

U

,

K

,

F

)

where U

G and

(

K

,

F

)

Q(

U

)

.Wehave

T

(

G

)

=



UGG,(K,F)NG(U)Q(U)

Z

[

U

,

[

MUK,F

]] =



(U,K,F)GR(G)

Z

[

U

,

[

MKU,F

]] .

Wedefinea

Z-linear

maplinG

:

T (

G

)

T

(

G

)

suchthat linG

[

U

,

xU

]

=

GindU

(

xU

)

.Asnotedin[2,3.1],thefamily

(

linG

:

G

∈ K)

isa morphismofGreenfunctors lin

:

T →

T .Inparticular,themap linG

:

T (

G

)

T

(

G

)

isa ringhomomorphism. Extendingtocoefficientsin

Q,

weobtainanalgebramap

linG

: Q

T

(

G

)

→ Q

T

(

G

) .

Let

πG

:

T

(

G

)

Tex

(

G

)

bethe

Z-linear

epimorphismsuch that

πG

actsastheidentity onTex

(

G

)

and

πG

annihilates theisomorphismclassofeveryindecomposablenon-exprojectivep-permutation

F

G-module.By

Q-linear

extensionagain, weobtaina

Q-linear

epimorphism

πG

: Q

T

(

G

)

→ Q

Tex

(

G

)

.After[2,5.3a,6.1a],wedefinea

Q-linear

map

canG

: Q

T

(

G

)

→ Q

T

(

G

) , ξ

1

|

G

|



U,VG

|

U

|

möb

(

U

,

V

)[

U

,

UresV

(

π

V

(V

resG

(ξ )))]G

wheremöb

()

denotestheMöbiusfunctionontheposetofsubgroupsofG.

Theorem3.1.Considerthe

Q-linear

mapcanG.

(1) WehavelinG◦canG

=

idQT(G).

(2) ForallH

G,wehave

H

resG◦canG

=

canHHresG.

(3) ForallL

∈ K

andisomorphisms

θ

:

L

G,wehaveLisoθGcanG

=

canLLisoθG.

(4) canG

[

X

]

= [

X

]

forallexprojective

F

G-modulesX .

Thosefourproperties,takentogetherforallG

∈ K

,determinethemapscanG.

Proof. By[2,6.4],part(1)willfollowwhenwehavecheckedthat,foreveryindecomposablenon-exprojectivep-permutation

F

G-module M, wehave

[

M

]



K<G GindK

(Q

T

(

K

))

.By[3,2.1,4.7],we mayassumethat G is p-hypoelementary.By[3, 1.3(b)], M isinducedfromNG

(

P

)

whereP isavertexofM.ButM isnon-exprojective,so P isnotnormalinG.Thecheck iscomplete.Parts(2),(3),(4)followfromtheproofof[2,5.3a].

2

Parts(2)and(3)ofthetheoremcanbeinterpretedassayingthatcan

:

T

T

isamorphismofrestrictionfunctors.It is nothard tocheckthat, when

K

isclosedunderthe takingofquotientgroups, thefunctors T , Tex,

T

can beequipped withinflationmaps,andthemorphismslinandcanarecompatiblewithinflation.

Thelatesttheoremimmediatelyyieldsthefollowingcorollary.

Corollary3.2.Givenap-permutation

F

G-moduleX ,then

[

X

] =

1

|

G

|



U,VG

(5)

Givenp-permutation

FG-modules

M and X ,withM indecomposable,wewritemG

(

M

,

X

)

todenotethemultiplicity of M asadirectsummandof X .Wewrite

πG

(

X

)

todenotethedirectsummandof X , well-defineduptoisomorphism,such that

[

πG

(

X

)

]

=

πG

[

X

]

.

Lemma3.3.Let

p

beasetofprimes.Supposethat,forallV

∈ K

,allp-permutation

F

V -modulesY ,allU



V suchthatV

/

U isa cyclic

p-group,

andallV -fixedelements

(

K

,

F

)

Q(

U

)

,wehave

mU(MUK,F

,

π

U(UResV

(

Y

)))

=



(J,E)∈Q(V)

mU(MUK,F

,

UResV

(

MVJ,E

))

mV

(

MVJ,E

,

π

V

(

Y

)) .

Then,forallG

∈ K

,wehave

|

G

|

pcanG

[

Y

]

T (

G

)

,where

|

G

|

pdenotesthe

p

-partof

|

G

|

.

Proof. Thisisaspecialcaseof[2,9.4].

2

Wecannowprovethe

Z

[

1

/

p

]

-integralityofcanG.

Theorem3.4.The

Q-linear

mapcanGrestrictstoa

Z

[

1

/

p

]

-linearmap

Z

[

1

/

p

]

T

(

G

)

→ Z[

1

/

p

]

T (

G

)

.

Proof. Let

p

be the set of primes distinct from p. Let V , Y , U , K , F be as in the latest lemma. We must obtain the equalityinthelemma.WemayassumethatY isindecomposable.IfY isexprojective,then

πU

(

UResV

(

Y

))

=

UResV

(

Y

)

and

πV

(

Y

)

=

X , whencetherequiredequalityisclear.So wemayassumethat Y is non-exprojective.Then

πV

(

Y

)

isthe zero module.Itsuffices toshow that MUK,F isnot adirectsummand ofUResV

(

Y

)

.Foracontradiction, supposeotherwise.The hypothesison

|

V

:

U

|

impliesthat U containstheverticesofY .So Y

|

VIndU

(

X

)

forsome indecomposable p-permutation

F

U -module X . Bearing in mind that

(

K

,

F

)

is V -stable, a Mackey decomposition argument shows that MKU,F

=

X . The V -stabilityof

(

K

,

F

)

alsoimpliesthat K



V .So

Y

|

VIndUInfU/K

(

F

) ∼

=

VInfV/KIndU/K

(

F

) .

WededucethatY isexprojective.Thisisacontradiction,asrequired.

2

Proposition3.5.The

Z-linear

maplinG

:

T (

G

)

T

(

G

)

issurjective.However,the

Z

[

1

/

p

]

-linear mapcanG

: Z[

1

/

p

]

T

(

G

)

Z

[

1

/

p

]

T (

G

)

neednotrestricttoa

Z-linear

mapT

(

G

)

T (

G

)

.Indeed,puttingp

=

3 andG

=

SL2

(

3

)

,lettingY bethe isomorphi-callyuniqueindecomposablenon-simplenon-projectivep-permutation

FG-module

andX theisomorphicallyunique2-dimensional simple

F

Q8-module,thenthecoefficientofthestandardbasiselement

[

Q8

,

X

]

GincanG

(

[

Y

])

isequalto2

/

3.

Proof. Sinceevery 1-dimensional

F

G-moduleisexprojective,thesurjectivityofthe

Z-linear

map linG followsfromBoltje [3,4.7].Routinetechniquesconfirmthecounter-example.

2

4. The

K

-semisimplicityofthecommutativealgebra

K

T (

G

)

Let

I(

G

)

betheG-setofpairs

(

P

,

s

)

where P isap-subgroupofG ands isap-elementofNG

(

P

)/

P .Let

K

beafieldof characteristiczerosuchthat

K

hasrootsofunitywhose orderisthe p-partoftheexponentofG.Choosingandfixingan arbitraryisomorphismbetweenasuitable torsionsubgroupof

K

− {

0

}

andasuitabletorsionsubgroupof

F

− {

0

}

,wecan understandBrauercharactersof

F

G-modulestohavevaluesin

K.

Forap-elements

G,wedefineaspecies



G

1,sof

KT

(

G

)

, we mean,an algebra map

KT

(

G

)

→ K

, such that



G

1,s

[

M

]

is thevalue, at s, ofthe Brauer character ofa p-permutation

F

G-moduleM.Generally,for

(

P

,

s

)

I(

G

)

,we defineaspecies



G

P,s of

KT

(

G

)

suchthat



GP,s

[

M

]

=



NG(P)/P

1,s

[

M

(

P

)

]

,where M

(

P

)

denotesthe P -relativeBrauerquotientof MP.Thenext result,well-known,canbefoundinBouc–Thévenaz[6,2.18, 2.19].

Theorem4.1.Given

(

P

,

s

),

(

P

,

s

)

I(

G

)

,then



G

P,s

=



PG,s ifandonlyifwehaveG-conjugacy

(

P

,

s

)

=

G

(

P

,

s

)

.Theset

{



GP,s

:

(

P

,

s

)

G

I(

G

)

}

isthesetofspeciesof

KT

(

G

)

anditisalsoabasisforthedualspaceof

KT

(

G

)

.Thedualbasis

{

eGP,s

: (

P

,

s

)

G

I(

G

)

}

isthesetofprimitiveidempotentsof

KT

(

G

)

.Asadirectsumoftrivialalgebrasover

K,

wehave

K

T

(

G

)

=



(P,s)GI(G)

K

eGP,s

.

Let

J (

G

)

betheG-setofpairs

(

L

,

t

)

whereL isap-residue-freenormalsubgroupofG andt isap-elementofG

/

L.We defineaspecies



GL,t of

KT

ex

(

G

)

suchthat,givenanindecomposableexprojective

F

G-moduleM,then



L,t

(6)

istheinflationofan

F

G

/

L-module M,inwhichcase,



L,t

G isthevalue,att,oftheBrauercharacterofM.Itiseasytoshow that,givena p-subgroup P

G anda p-element s

NG

(

P

)/

P ,then



PG,s

[

M

]

=



L,t

G

[

M

]

forallexprojective

F

G-modulesM ifandonlyifL isthenormalclosureofP inG andt isconjugatetotheimage ofs inG

/

L.Hence,viathelatesttheorem, weobtainthefollowinglemma.

Lemma4.2.Given

(

L

,

t

),

(

L

,

t

)

J (

G

)

,then



GL,t

=



GL,tifandonlyifL

=

Landt

=

G/Lt,inotherwords,

(

L

,

t

)

=

G

(

L

,

t

)

.Theset

{



GL,t

: (

L

,

t

)

G

J (

G

)

}

isthesetofspeciesof

KT

ex

(

G

)

anditisalsoabasisforthedualspaceof

KT

ex

(

G

)

.

Let

K(

G

)

betheG-setoftriples

(

V

,

L

,

t

)

whereV

G and

(

L

,

t

)

J (

V

)

.Given

(

L

,

t

)

J (

G

)

,wedefineaspecies



G G,L,t of

K

T (

G

)

suchthat,forx

T (

G

)

expressedasasumasinSection3,



GG,L,t

(

x

)

=



GL,t

(

xG

) .

Generally,for

(

V

,

L

,

t

)

K(

G

)

,wedefineaspecies



G

V,L,t of

K

T (

G

)

suchthat



GV,L,t

(

x

)

=



VV,L,t

(V

resG

(

x

)) .

Using Lemma4.2,astraightforward adaptationofthe argumentin[6,2.18] gives thenext result. Thisresultalsofollows fromBoltje—Raggi-Cárdenas—Valero-Elizondo[5,7.5].

Theorem 4.3.Given

(

V

,

L

,

t

),

(

V

,

L

,

t

)

K(

G

)

,then



G

V,L,t

=



GV,L,t if andonly if

(

V

,

L

,

t

)

=

G

(

V

,

L

,

t

)

.Theset

{



VG,L,t

:

(

V

,

L

,

t

)

G

K(

G

)

}

isthesetofspeciesof

K

T (

G

)

anditisalsoabasisforthedualspaceof

K

T (

G

)

.Thedualbasis

{

eGV,L,t

: (

V

,

L

,

t

)

G

K(

G

)

}

isthesetofprimitiveidempotentsof

K

T (

G

)

.Asadirectsumoftrivialalgebrasover

K,

wehave

K

T

(

G

)

=



(V,L,t)GK(G)

K

eGV,L,t

.

WehavethefollowingeasycorollaryonliftsoftheprimitiveidempotentseG P,s.

Corollary4.4.Given

(

P

,

s

)

I(

G

)

,theneGP,s,P,sistheuniqueprimitiveidempotente of

K

T (

G

)

suchthatlinG

(

e

)

=

eGP,s.

References

[1] L.Barker,Aninversionformulafortheprimitiveidempotentsofthetrivialsourcealgebra,J.PureAppl.Math.(2019),https://doi.org/10.1016/j.jpaa.2019. 04.008,inpress.

[2]R.Boltje,Ageneraltheoryofcanonicalinductionformulae,J.Algebra206(1998)293–343. [3]R.Boltje,Linearsourcemodulesandtrivialsourcemodules,Proc.Symp.PureMath.63(1998)7–30. [4] R.Boltje,Representationringsoffinitegroups,theirspeciesandidempotentformulae,preprint.

[5]R.Boltje,G.Raggi-Cárdenas,L.Valero-Elizondo,The−+and−+constructionsforbisetfunctors,J.Algebra523(2019)241–273. [6]S.Bouc,J.Thévenaz,Theprimitiveidempotentsofthep-permutationring,J.Algebra323(2010)2905–2915.

Referanslar

Benzer Belgeler

Stripped of its original function (standardization and policing of production), GOST is still con- stitutive of a Soviet brand, as it now objectifies differences and affinities

This study aimed to investigate how the changing role from a nonnative English teacher to a native Turkish teacher affects teachers’ identity construction in terms of

In order to improve the coding efficiency, the color, gray-tone and binary parts of the document inuige will be considered se])arately throughout this the­ sis. In

Furthermore, mapping these significant differentially- expressed genes to the p53 interaction network revealed a putative interaction network representing functional outcomes

Daha önce [5] numaralı kaynakta çalışılan ağırlıklı Orlicz uzaylarında de la Vallée Poussin toplamlarıyla yaklaşım ile ilgili bazı teoremler ağırlıklı

· Yerel çevreye ilişkin hazırlanmış çeşitli haritalara bakarak beşeri özellikler hakkında farklı çıkarımlarda (örneğin, ana ulaşım güzergahları, kentsel

Kelsen’e göre ise her hukuk normu zorunlu olarak bir sistem içerisinde varlık gösterebileceğinden dolayı uluslararası hukukun normları da bir sistem

Essentially, the study investigates the fundamental reasons through using empirical data and attempts to propose a hybrid model that covers the active participations of state,