• Sonuç bulunamadı

Drilling thick fabric woven CFRP laminates with double point angle drills

N/A
N/A
Protected

Academic year: 2021

Share "Drilling thick fabric woven CFRP laminates with double point angle drills"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Materials

Processing

Technology

j o ur n a l ho me p age :w w w . e l s e v i e r . c o m / l o c a t e / j m a t p r o t e c

Drilling

thick

fabric

woven

CFRP

laminates

with

double

point

angle

drills

Yi˘git

Karpat

a,∗

, Burak

De˘ger

b

, Onur

Bahtiyar

b aBilkentUniversity,DepartmentofIndustrialEngineering,Ankara06800,Turkey bTurkishAerospaceIndustriesInc.,Ankara06980,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18February2012

Receivedinrevisedform22April2012 Accepted25May2012

Available online 2 June 2012 Keywords:

Machining Drilling

Carbonfiberreinforcedplastics Diamondcoatedcarbide

a

b

s

t

r

a

c

t

Carbonfiberreinforcedplastics(CFRPs)havemanydesirableproperties,includinghigh

strength-to-weightratio,highstiffness-to-weightratio,highcorrosionresistance,andlowthermalexpansion.These

propertiesmakeCFRPsuitableforuseinstructuralcomponentsforaerospaceapplications.Drillingis

themostcommonmachiningprocessappliedtoCFRPlaminates,anditisdifficultduetotheextremely

abrasivenatureofthecarbonfibersandlowthermalconductivityofCFRP.Itisachallengefor

manufac-turerstodrillCFRPmaterialswithoutcausinganydelaminationontheworkpartwhilealsoconsidering

theeconomicsoftheprocess.ThesubjectofthisstudyisthedrillingoffabricwoventypeCFRP

lami-nateswhichareknowntobemoreresistanttodelaminationthanunidirectionaltypeCFRPlaminates.

Theobjectiveofthisstudyistoinvestigatetheinfluenceofdoublepointangledrillgeometryondrilling

performancethroughanexperimentalapproach.Anuncoatedcarbideandtwodiamondcoatedcarbide

drillswithdifferentdrilltipanglesareemployedindrillingexperimentsofaerospacequalitythick

fab-ricwovenCFRPlaminates.Forceandtorquemeasurementsareusedtoinvestigateappropriatedrilling

conditionsbasedondrillgeometryandidealdrillingparametersaredetermined.Toollifetestsofthe

drillswereconductedandtheconditionofthediamondcoatingisexaminedasafunctionofdrilling

operationalparameters.Highfeedratedrillingexperimentsareobservedtobefavorableintermsofdrill

wear.Feedisobservedtobemoreimportantthanspeed,andtheupperlimitoffeedisdictatedbythe

drilldesignandtherigidityofthemachinedrill.Holediametervariationduetodrillwearismonitored

todeterminedrilllife.Athighfeeds,holediametertoleranceisobservedtobemorecriticalthanhole

exitdelaminationduringdrillingoffabricwovenCFRPlaminates.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Lightweight,durable,andcorrosionresistant,carbonfiber rein-forcedplastics(CFRPs)havebeenincreasinglyusedintheaerospace industrytobuildmorereliableandfuelefficientaircrafts.Currently, fuelcostiscalculatedtobearound32%oftheairlines’operating cost,whereasitwas14%in2003(IATA,2012).Airlineshavereacted tothisfinancialpressurebyreplacingolderaircraftswithanew generationofaircraftsthataremorefuelefficient.Thisefficiency inpartcomesfromincreaseduseofsophisticatedmaterials.

Compositepartsaremanufacturednear-netshape;however, additionalmachiningoperationssuchasdrillingandmillingmay berequiredtomeetfinaldesignspecifications.Thesubjectofthis studyisdrilling,whichisthemostcommonmachiningprocess appliedtocompositelaminates.WhiledrillingCFRPlaminates, cut-tingdrillsrapidlywearoutduetothehighlyabrasivenatureof thecarbonfibersandthelowthermalconductivityofCFRP.The heatgeneratedduringdrillingislocalizedatthecuttingdrilledge, therebycausingrapiddrillwear.Delaminationisacrucialproblem

∗ Correspondingauthor.Tel.:+903122902263;fax:+903122664054. E-mailaddress:ykarpat@bilkent.edu.tr(Y.Karpat).

whendrillingCFRPlaminates,sinceitdecreasestheloadcarrying capabilityofthecompositesbyseparatingtheplies.Delamination iscloselyrelatedtowearandcontrolledduringmachining opera-tions.Dimensionalintegrityoftheholesandholesurfacequality arealsoimportantconsiderations.

Intheliterature,studiesonmachiningCFRParelimited com-paredtostudiesofmetals;however,duetoincreasingusageof thismaterialintheaerospaceindustrythenumberofstudieson machining CFRPlaminates hassignificantly increasedin recent years.Koplevetal.(1983)reportedthesignificanceoffiber direc-tiononthechipformationmechanismandobservedthatbrittle fractureisthemaincauseofchipformation.Caprinoetal.(1998) investigated machining forces during orthogonal machining of CFRPs.Theyobservedthat forcesaremainlydue tothecontact betweenworkmaterialandtheflankfaceofthedrill.Hochengand Dharan(1990)andZhangetal.(2001)developedanalyticalcutting modelsfortheorthogonalmachiningofCFRPlaminatestopredict cuttingforces.Theyusedthesemodelstopredictthecriticalthrust forcebeyondwhichdelaminationoccurs.

Experimentalstudieshavebeenpursuedtobetterunderstand the relationships between process inputs, such as machining parametersanddrillgeometry,andprocessoutputssuchascutting forces,torque,toolwearanddrilledholequality.Inanextensive 0924-0136/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

Fig.1.(a)FiveharnesssatinweaveCFRPand(b)CFRPlaminatecomposition.

experimentalstudy, Chen (1997)conducted tests toreveal the relationshipbetweenmachiningparametersanddelamination.A linearrelationshipwasobservedbetweenthrustforceand delam-inationwhen drilling unidirectionalCFRP composite laminates. MultidirectionalCFRPlaminatesare foundtobemoreresistant todelamination than unidirectionallaminates. It was observed thatdelaminationincreaseswithincreasingflankwear.Tsaoand Hocheng(2005)andHochengandTsao(2005)reportedthepositive influenceofusingbackupplatesondelamination.Itincreasesthe criticalthrustforcevalue,henceallowingdrillingathigherfeeds. Inanefforttoimprovedrillperformance,Piquetetal.(2000) ana-lyzedtheeffectsofdrillgeometryonholequality.Theyreported thatholequalitycanbeimprovedbyapplyingavariablefeedrate whilemachining.DharanandWon(2000)proposedanintelligent controlschemebasedonanexperimentalmodelofthethrustforce andtorqueasafunctionofcuttingparameters.Shyhaetal.(2009) investigatedtheeffectofdrillgeometryandoperatingparameters whendrillingsmalldiameterholeswitharobotmanipulator.They foundthatdrillgeometryandfeedratearethetwomainfactors affectingdrilllife.Theyfoundthatanuncoatedcarbidestepped drillwith140◦pointangleyieldedthebestdrilllifeperformance. RawatandAttia(2009)utilizedthe“machinabilitymaps”approach toselectcuttingconditionswhendrillingfabricwoven compos-ites.Intheirapproach,delaminationlevel,holediametererror,hole circularityerror,andsurfaceroughnessinsidetheholewereall con-sideredasprocessoutputsdependentonspindlespeedandfeed rate.Theyconcludedthathighcuttingspeedsreducethethrust forceduetothermalsoftening.Farazetal.(2009)studiedthewear behaviorofuncoatedandcoatedcarbidedrillswhilemachining fabricwovenCFRPcompositelaminatesunderdrydrilling condi-tions.Theyshowedthatwhenwornout,thecuttingedgeassumesa roundedshapethathindersitsabilitytocutthematerialeffectively. Theyalsoobservedalinearrelationshipbetweenedgerounding andcutting forces.Iliescuet al.(2010) proposeda wearmodel basedonthethrustforceandmachiningparametersfordrilling CFRP. They concluded that while carbide drills represent wear behavioraccordingtopowerlaw,diamondcoateddrills exhibit linearbehavioratthebeginningbutpowerlawtowardtheend ofdrilllife. Theyrecommend usingdiamond coateddrills hav-ing125–130◦pointangle,withoptimumcuttingspeed170m/min andfeed0.05mm/rev.Karpatetal.(2010)presentedexperimental dataonthewearbehaviorofdiamondcoatedcarbidedrills, show-ingthefracturingofdiamondcoatingandedgeroundingofthe carbidesubstrate.LazarandXirouchakis(2011)investigatedthe cuttingforces basedondrillgeometriesandcuttingparameters usingabackingplate;theycalculatedforcedistributionsalongthe cuttingedgesatlowfeedsandalsoconcludedthatfeedanddrill geometryarethemostimportantparameters.Literaturereviewson

machiningcompositesgivenbyTeti(2002)andAbraoetal.(2007) emphasizetheimportanceofdevelopingbetterdrillgeometries andmachiningstrategies.

In this study,uncoatedcarbide and diamondcoated carbide drills having double point angle geometries are tested during drillingoffabricwoventypeCFRPlaminatesunderpractical con-ditions.Experimentaltestswereperformedonaerospacequality thickCFRPmaterialusingastateoftheartmachinetoolspecifically designedforcompositemachining.Anexperimentalanalysishas beenconductedtoinvestigatetheinfluenceofcuttingconditions anddrillgeometryondrillingforcesandtoolwear.

2. Experimentation

ExperimentalstudieswereconductedonaDörriesScharmann Technologies5-axisprecisionmachiningcenter withmaximum 24,000rpmrotationalspeed.FabricwovenCFRPlaminateshave a total of 30 layers, composed of 0◦/90◦ (14 layers) and ±45◦ (16layers)fiberorientationsasshowninFig.1.TheCFRPplates wereultrasonicallyinspected forfaults beforeexperimentation. ThephysicalandmechanicalpropertiesoftheCFRPlaminateused inthisstudyaregiveninTable1.

TheCFRPplatehad asquareshape withedgedimensionsof 920mmandthicknessof10mm.Thedistancebetweenhole cen-tersistakenasequaltotwotimestheholediameter.Analuminum backingplatehaving8mmdiameterholeswasused.All experi-mentswereconductedunderwetdrillingconditionsinorderto preventcarbondust.Thecuttingfluidiswatersolubleoil(Fuchs Ecocool).Duringdrillingexperimentsthethrustforceandtorque weremeasuredbyaKistler9123rotatingdynamometerandits chargeamplifier.Thecuttingforcedata(torqueTandforcesinthree directionsFx,Fy,andFz)werecollected(samplingrateof25kHz) througha dataacquisitionsystemand processedona personal computer.TheexperimentalsetupisshowninFig.2.

Uncoatedanddiamondcoatedcarbidedrillswereusedinthe experiments.Drillsemployedinthisstudyhavetwistdrill geom-etrywithdoublepointangles.Theyareobtainedfromthesame manufacturer. Table 2 shows experimental conditions used in drilling force analysis and drill tip angles. Drill tip angles are measuredwithanopticaltoolmeasurementdevice(Zoller Ventu-rion450/6).UCandDCC-IIdrillshavethesamegeometry.DCC-I and DCC-IIarediamond coatedcarbide drillswithdifferenttip anglesanddifferentprimary(OA)andsecondary(AB)cuttingedge lengths.

ThegeometryofthedoublepointangledrillisshowninFig.3(a) andacomparisonoftooltipgeometriesareshowninFig.3(b).The helixangle(),therakeangle(),andtheclearanceangle()of thedrillsare30◦,7◦,11◦,respectively.Aregiononthedrillnearits

(3)

Table1

MaterialpropertiesofCFRPlaminates.

Material Fibervolume(%,v/v) Strength(MPa) Modulus(GPa) Density(g/cm3) Curedplythickness(mm)

Epoxyimpregnatedgraphitefabric/5-harnesssatina 50 520 52 1.485 0.33

aMechanicalpropertiesofthelaminatearevalidforbothwarpandfilldirectionsat23C.

Table2

RangeofcuttingconditionsusedindrillingforceanalysisonfabricwovenCFRP.

Acronym Toolcoating Diameter(mm) Drilltipangles(2˛,2ˇ) Feed(␮m/rev) Rotationalspeed(rpm)

UC Uncoatedcarbide 6.35 140–60◦ 40,60,100 5000,7500,10,000

DCC-I Diamondcoatedcarbide 6.91 130–60◦ 40,60,100 5000,7500,10,000

DCC-II Diamondcoatedcarbide 6.38 140–60◦ 40,60,100,150 5000,7500,10,000

chiseledge(OAasshowninFig.3(b))isgroundinordertoimprove

drillingperformanceatthetipofthedrill.Fig.3(a)alsoshowsthe differentialcutting(dFc),thrust(dFz)andtangential(dFt)forces actingonthedrill.Multiplyingthedifferentialcuttingforceand thedistancefromthecentergivesthedifferentialtorque.Adding togetheralldifferentialthrustforcesandtorquesalongthecutting edgesyieldstotaltorqueandthrustforceduringdrilling.

3. Experimentalinvestigationofthrustforcesandtorques

A fundamental step in understanding the drilling mechan-ics of CFRP material is the investigation of cutting forces. As

Fig.2. Experimentaltestsetup.(a)FabricwovenCFRPplateand(b)CFRPplateand aluminumbackingplateassembly.

Fig.3. (a)Doublepointangledrillgeometryand(b)profilesofthedoublepoint angledrills.

(4)

Fig.4.Thrustforce(N)andtorque(Ncm)measurementsduringdrillingwithdoublepointdrillgeometryandcharacteristicthrustforcelocations.

mentionedinSection1,theforcesduringdrillinghavebeenthe sub-jectofmanystudiesintheliterature.Cuttingforcemeasurements havebeenusedonlineand/orofflinetomonitordrillcondition. Themagnitudeanddevelopmentofdrillingforcesaredependent onmechanicalpropertiesofthecompositematerial,operational drillingparameters (rotational speed and feed), drillgeometry, anddrillmaterial/coating.Fig.4showsatypicalthrustforceand torquemeasurement,wheredrillgeometrydependent character-isticthrustforceandtorquelocationsareindicated.

Duetodoublepointangle,theentranceregionhastwodifferent slopeswheretheentry(OA)valueisdenotedasFz-enterandthepeak (OB)valueisdenotedasFz-peak.Torquevaluereachesitspeakas soonasthedrillfullyengages(OB)withthematerial.Thethrust forcevaluesmeasuredintheentryregionindicatetheinfluence ofdrilltipanglesonthrustforces.Asuddendropinthrustforces isobservedjust afterthedrilltipleavesthematerial.Sincethe outercuttingedge,whichiscarryingthetorque,wouldstillbein contactwiththematerial,dropintorquefollowsthrustforceafter ashortdelay.Similartotheentryregion,twodifferentslopesare alsoobservedontheexitregion.Thethrustforcevalueimmediately beforethedrilltipleavesthematerialisnamedasFz-int.Thethrust forceattheendofthesecondslopeisnamedasFz-exit.Theamount ofthrustforcesFz-intandFz-exitareimportantsincetheyindicate themagnitudeoftheforcewithwhichthedrillpushesthebottom layersofthelaminate.Thecharacteristicthrustforceandtorque locationscanbeidentifiedusinggeometricalmeasurementsofthe drill,drillingfeedrate,andtimehistoryofthethrustforcesand torques.Itmustbenotedthatthelocationoftheforcepointsis relatedtothedrillanglesandcuttingedgelengths.Foragivendrill tipangle,alargerprimarycuttingedgemovesthelocationofthe peakforcetowardtheleftonthetimeaxisandupwardsonthe thrustforceaxis.ThedecreasebetweenFz-peakandFz-intisrelated bothtothethicknessofthelaminateandthefeedvalue.

Fig.5representsexperimentalforceandtorquemeasurements whendrillingwithuncoatedcarbidedrills asafunctionoffeed underconstantrotationalspeedof5000rpm.Alinearrelationship betweenfeedandthrustforcesandtorquesexistswithinthe exper-imentalrange.

Fig.6representstheinfluence ofcutting speed andfeedon thrustforcesandtorquewhendrillingwithDCC-Idrill.InFig.6(a),

thelinearrelationshipbetweenthrustforcesandfeedisshownfor threedifferentrotationalspeeds.Fig.6(b)showstorque measure-mentsasafunctionoffeedandspeed.

Fig.7(a)and(b)showsthesameobervationsforDCC-IIdrill.It canbeconcludedthattheinfluenceofcuttingspeedisnot signif-icantonthethrustforcesandtorquesfordiamondcoatedcarbide drills.HigherthrustforcesandtorquesaremeasuredwithDCC-II whichhasalargertipangle.

(a) (b) 0 10 20 30 40 50 60 70 80 0 0.02 0.04 0.06 0.08 0.1 0.12 Thr u st For ce , Fz (N) Feed (mm/rev) F z_peak F z_exit F z_int 0 0.05 0.1 0.15 0.2 0.25 0.3 0.12 0.1 0.08 0.06 0.04 0.02 0 Tor q ue, T (Nm ) Feed (mm/rev)

Fig.5.Comparisonofthrustforceandtorquemeasurementsatthreedifferentfeed levelsforuncoatedcarbidedrill.

(5)

(a) (b) 0 20 40 60 80 100 120 140 160 0.12 0.1 0.08 0.06 0.04 0.02 0 Thr u st Force, Fz (N) Feed (mm/rev) Fz_peak (5000 rpm) Fz_int (5000 rpm) Fz_exit (5000 rpm) Fz_peak (7500 rpm) Fz_int (7500 rpm) Fz_exit (7500 rpm) Fz_peak (10000 rpm) Fz_int (10000 rpm) Fz_exit (10000 rpm) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.12 0.1 0.08 0.06 0.04 0.02 0 Tor que, T (Nm) Feed (mm/rev) Torque (Nm) -5000 rpm Torque (Nm) -7500 rpm Torque (Nm) -10000 rpm

Fig.6.Thrustforce(a)andtorque(b)measurementsasafunctionoffeedandspeed forDCC-I.

Fig.8showsthecomparisonofthrustforcesforeachdrilling drillexaminedinthisstudy.UncoatedcarbideandDCC-IIhavethe samegeometry,butthedifferencesinthrustforcesarequitelarge duetothickdiamondcoatinganditsroundingeffectonthecutting edges.DCC-I,withasmallertippointangle,yieldedlowerthrust forcesthanDCC-IIeventhoughithasan8%largerdrilldiameter. ThelowestexitthrustforcesarerecordedwithDCC-Iwhichhas

(a) (b) 0 50 100 150 200 250 0.2 0.15 0.1 0.05 0 Thr u st For ce, Fz ( N ) Feed (mm/rev) Fz_peak (5000 rpm) Fz_int (5000 rpm) Fz_exit (5000 rpm) Fz_peak (7500 rpm) Fz_int (7500 rpm) Fz_exit (7500 rpm) Fz_peak (10000 rpm) Fz_int (10000 rpm) Fz_exit (10000 rpm) 0 0.050.1 0.150.2 0.250.3 0.350.4 0.2 0.15 0.1 0.05 0 Torque, T (N m ) Feed (mm/rev) Torque (Nm) -5000 rpm Torque (Nm) -7500 rpm Torque (Nm) -10000 rpm

Fig.7.Thrustforce(a)andtorque(b)measurementsasafunctionoffeedandspeed forDCC-II.

Fig.8. ComparisonofthrustforcesforeachdrillatN=5000rpm,f=40␮m/rev.

ashortersecondarycuttingedge.Theforceandtorque measure-mentsobtainedfordiamondcoatedcarbidedrillsareinvestigated indetailinthenextsection.

3.1. Influenceofdrilltipanglesondrillingforces

Fig.9showsthethrustforcesactingonadoublepointangledrill andunchipthicknessvariationwithrespecttocuttingedges.Thrust forcemeasurementscanbedividedbytwotocalculateforcesper edge.Thetotalthrustforceactingonthedrillisthesumofthrust forcesactingonthreedifferentsections.Thethrustforceinthe primaryregion(OA)isthesumofchiseledgeforce(Fch)andprimary edgeforce(Fpr).Thethrustforceinsecondaryregion(Fsc)canbe foundbyconsideringpeakandentrythrustforces.Thrustforcesin eachsectionarerepresentedinEq.(1).Thedrilltipangles˛andˇ andthelengthsoftheprimaryandsecondaryedgesaredrilldesign variables.Ifthediameterofthedrillandtheheightofthedrilltip areknown,thelengthsoftheprimaryandsecondaryregionscan becalculated.



Fz-OA= Fz-enter2 =Fch+Fpr



Fz-AB= Fz-peak−2Fz-enter =Fsc

(1)

Theuncutchipthicknessesatprimaryandsecondarycutting edgescanbecalculatedasshowninEq.(2),wherefisthefeedper revolution.Foragivenfeed,increasingtipangleincreasesuncut chipthicknessintherespectivearea.Therefore,increasingtipangle

F

F

F

r

r

α

β

O

A

B

pr ch sc OB OA

f/2

t

t

2

A

1

B

Fig.9.Thrustforcesactingonthedrill(righthandside)anduncutchipthickness variation(lefthandside).

(6)

(a) (b) 0 200 400 600 800 1000 1200 1400 1600 0.04 0.06 0.1 0.15 Specific C u ng Force (Kf) (N/mm^2) Feed (mm/rev) DCC-I (OA) DCC-I (AB) DCC-II (OA) DCC-II (AB) 0 200 400 600 800 1000 1200 0.04 0.06 0.1 0.15 Specific Cung Force (Kt) (Nmm/mm^2) Feed (mm/rev) DCC-I (OA) DCC-I (AB) DCC-II (OA) DCC-II (AB)

Fig.10.Specificcuttingforcescalculatedfor(a)thrustforceand(b)torqueasa functionoffeedperrevolution.

isusuallyaccompaniedbyadecreaseintheedgelengthinorderto keepthetotalareasameunderthecuttingedge.

t1=



f 2



sin(˛), t2=



f 2



sin(ˇ) (2)

Theareaoftheuncutchipunderneathprimaryandsecondary edgescanbewrittenasinEq.(3).

AOA= rOA

sin(˛)t1, AAB= rOB−rOA

sin(ˇ) t2 (3)

ThenEq.(4)canbeusedtocalculatetheaveragespecificcutting forces(relatedtothrustforceandtorque)separatelyforthe pri-maryandsecondarycuttingedges.Torquemeasurementsarealso dividedbytwotocalculateperedgetorquemeasurements.

Kf−p= FAz-OA OA, Kf−s= Fz-AB AAB Kt−p=(r TOA OA/2)AOA, Kt−s= TAB ((rOA+rOB)/2)AAB (4)

Fig.10showsaveragevaluesofspecificcuttingforcescalculated forDCC-IandDCC-IIdrillsat5000rpm.Adecreasingtrendin cut-tingforcesisobservedwithincrerasingfeed.Thisphenenomenon isknowninmachiningassizeeffect.Cuttingedgeradiusandwork materialpropertiesarebelievedtobereasonsforsizeeffect.

DrillingperformancesofDCC-Iand DCC-IIgeometriescanbe comparedbasedonthespecificcuttingforces(KfandKt) calcu-latedat the primary and secondary cuttingedges. Under ideal drillingconditions for a given drill geometry, thrust force and torquemustbedistributedevenlybetweenprimaryandsecondary drillingedges.Ifthesecondarycuttingedgeofthedrillisdesigned tobesmall,thenexitthurstforceswillbesmall.However,athigh

0 20 40 60 80 100 120 0 0.02 0.04 0.06 0.08 0.1 0.12 Thr u st Force, Fz ( N ) Feed(mm/rev) Fz peak Fz exit

Fig.11. Thrustforcesmeasurementsduringdrillingwithapilothole(N=5000rpm).

feedsthetorquecarryingcapabilitywilldecrease.InFig.10(a),itis seenthattheprimaryedgeofDCC-Icarriesmorethrustloadthan thesecondaryedgeduetoitslargersize.Thetorqueloadis car-riedequallyatlowfeedlevel.Asfeedincreases,torqueismainly carriedonthesecondaryedgeduetoitsshorterlengthasshownin Fig.10(b).AsforDCC-II,around100␮m/rev,itdistributesthethrust forceandtorquealmostevenlybetweenprimaryandsecondary edges(Fig.10(a)and(b)).Ingeneral,cuttingcoefficientsaresmaller forDCC-Iduetosmallertipangle,thereforeDCC-Imaybeabetter optionfordrillingthinCFRPlaminates,wherelowfeedsareusually usedtokeepthrustforceslow.DCC-IIgeometrycanbeemployedin drillingthicklaminatesathigherfeeds.Themechanicalproperties oftheCFRPlaminatesdependonmanyfactors,includingcarbon

Fig.12.SEM images ofDCC-II drills (a)N=10,000rpm,f=40␮m/rev and(b) N=10,000rpm,f=100␮m/rev(afterdrilling1728holes).

(7)

Fig.13.SEMimagesoftheflankfaceofDCC-Icuttingdrills:(a)N=15,000rpm,f=75␮m/rev,(b)N=15,000rpm,f=225␮m/rev,(c)N=5000rpm,f=225␮m/rev,(d) N=5000rpm,f=75␮m/revand(e)holeexitscorrespondtoeachexperimentalcondition.

fiberpercentage,carbonfiberdiameter,typeofresinusedinthe matrix,curingconditions,etc.Developinganoptimizeddrill geom-etrywhichwillperformwellatallcompositematerialsmaynot bepossible,asexplainedabove,butdeterminingfavorabledrilling conditionsforagivendrillgeometryorselectingdrillgeometry basedonlaminatethicknessispossible.

Inordertoinvestigatetheinfluenceofthetipofthedrillon thethrustforces,drillingexperimentswerealsoconductedon pre-drilledholesof2.5mm.Thrustforcemeasurementsareshownin Fig.11.Thediameterofthepilotholeisselectedsothatitmatches

thesizeoftheregionOA(seeFig.3).Peakforcesbecomestationary afterthefeedvalueof40␮m/revwhileexitthrustforcecontinues increasingatalowerratethanitdoeswhendrillingwithouta pre-drilledhole.ThecontributionoftheregionOAonthethrustforce measurementscanbecalculatedas50%basedonmeasurements giveninFigs.7and11.

ItmustbenotedthatthechipformationprocessinCFRP lam-inatesconsistsofshearingandbrittlefracturingofthefibers.As feedincreases,duetolargerloads,fibersarecrushedmore eas-ilyanddominantchipformationmechanismbecomesthebrittle

(8)

Fig.14.SEMimagesofthefractureddiamondcoatingzone.

fracturingofthefibers.Thismayexplainplateauincuttingforces withincreasingfeedasshowninFig.11.

4. Investigatingtherelationshipsbetweendrillwearand drillingoperationalparameters

Diamondcoatedcarbideanduncoatedcarbidedrillsareusedin thisstudy.Diamondcoatingisgrownonthesurfaceofthecutting drillthroughchemicalvapordeposition,wherehydrogenandagas containingcarbonaremixedinsideachamberatveryhigh tem-peratures.Thethicknessofthecoatingandthesizeofthediamond particlesareknowntobeimportantintermsofdrillperformance. Diamondcoatingcanbeappliedtoawiderangeofdrill geome-tries;however,thecoating’sthicknessdecreasesthesharpnessof thecuttingdrilledge,whichisnotdesirablewhenmachiningCFRP laminates.Thissectioninvestigatestheconditionofthediamond coatingonthedrillasafunctionofdrillingparameters.Fig.12(a) and12(b)showsthephotosoftheDCC-IIdrillafterdrilling1728 holesat40and100␮m/revat10,000rpm,respectively.Diamond coatingonthedrillisobservedtobedamagedinbothdrillingcases. Lowfeeddrillingcase(Fig.12(a))resultedinmoreseveredamage

Fig.15.(a)ForcevariationinDCC-IIdrillwithrespecttonumberofholesand(b) worndrillthrustforceswithrespecttodrillingparameters.

tothedrill.Thediamondcoatingismostlyfracturedfromtheflank faceofthedrill,andthefracturedareaislargerinthesecondary region.Fig.12(b)showsthatinhighfeeddrillingcase,fractureon thecoatinginitiatesfromthesecondaryregionandgrowstoward theprimaryregion.Atlow feeddrillingcase, thetotaldistance thedrilltravelswithintheholeis2.5timeslargerthanthehigh feedcase. Whenthediamondcoatingisfractured,thrustforces andtorquesincrease.Asaresult,thebottompliesofthelaminate arepushedoutbylargerthrustforces,andeventuallydelamination occurs.

In order to investigatethe influence of largerfeed rates on drillingperformance,testsareperformedwithDCC-Idrillsunder alargerspeedandfeedexperimentalrange(5000-15000rpmand 75–225␮m/rev).Fig.13revealsthewearzoneattheflankfaceof thedrillsafterdrilling1728holes.

Similarly,fracture ofthediamondcoatingismore severeon theflankfacethantherakefaceofthedrill.Thesmallestfracture areaonthediamondcoatingontheflankfacewasobservedinthe experimentalcaseofN=15,000rpm,f=225␮m/rev(ExperimentB) wherealargefeedwastakenathighcuttingspeed(Fig.13(b)). Dia-mondcoatingonthedrillwassignificantlyfracturedattheouter edgeofthecuttingedge,possiblyduetohightorque,fortherewas nosignificantdelaminationattheexitoftheholesasshownin Fig.13(e).Coatingontheprimarycuttingedgeand chiseledge ofthedrillisintact.Theexperimentalcasewiththelowestfeed rate(ExperimentD)yieldedtheworstexperimentalperformancein termsofdiamondcoatingfracturezoneareaandresultedin prob-lemsattheexitoftheholeduetoexcessiveedgeroundingand ineffectivecuttingperformanceasshowninFig.13(e).Highfeed andlowspeeddrillingcase(Fig.13(c))yieldedasmallerfractured areaofthediamondcoatingcomparedtolowfeedandhighspeed drillingcase(Fig.13(a)).Fig.14showsdetailedSEMimagesofthe fracturedcoatingzonethatcorrespondtoexperimentalcase(D) showninFig.13.Thethicknessofthediamondcoatingismeasured tobe9–10␮m.

(9)

0 0.5 1 1.5 2 2.5 3 3.5 4 0 20 40 60 80 100 120 140 160 Time (s) Thrust Force (N) 1st hole 2nd hole 4th hole 2nd Hole 1st Hole 4th Hole

(b)

(a)

0 50 100 150 200 250 1 3 5 7 9 1113151719212325272931 Thrust Force (N) Number of Holes Fz_peak (5000 rpm) Fz_int (5000 rpm) Fz_exit (5000 rpm) Fz_peak (10000 rpm) Fz_exit (10000 rpm) Fz_int (10000 rpm)

Fig.16.(a)Timehistoryofthrustforcemeasurementsasafunctionofnumberofholesand(b)influenceofrotationalspeedonthrustforces(atf=40␮m/rev).

Fig.15(a)showsthevariationinthrustforceswithrespecttothe numberofdrilledholesforDCC-IIafterdrilling1728holesattwo differentfeedswithconstantrotationalspeedof10,000rpm.Forces increaseaccordingtopowerlawandcontinueincreasinglinearly. Forthesamenumberofholes,highfeeddrillingcaseresultedin lowerthrustforcesthaninthelowfeeddrillingcase.Consequently, drillingatlowfeedinitiallyresultsinlowerexitforces,butdue tofasterdrillwear,thrustforcesbecomeevenlargerafterdrilling thesamenumberofholes.Fig.15(b)representsthecomparison ofthrustforcesmeasuredafterdrilling1728holesunderdifferent drillingconditions.Thepositiveinfluenceofhighspeedandfeed canbeseen.Thedifferencesbetweenhighandlowspeedwhen drillingatahighfeedarenotlarge.At5000rpmand75␮m/revfeed drillingconditionwithDCC-Idrill,peakthrustforcewasmeasured as1553Nafterdrilling1728holes.

Fig.16(a)representsexperimentalforcemeasurementswhen drillingwithuncoated carbide cutting drills.After drillingonly four holes, its thrust force value surpasses that of the DCC-II withthesamedrillgeometry.Therateofincreaseinpeakthrust forcesisquitehigh,indicating rapiddrillwearespeciallyatthe primaryregion ofthe drill(Fz-enter and Fz-peak).Theincrease in exitthrustforceisrelativelylowcomparedtoothercharacteristic thrustforcepoints,indicatingalowerwearrateatthesecondary cuttingedge.Fig.16(b)showstheinfluenceofspeedondrilling forces,wherethevariationofcharacteristicthrustforcepointsis shownwithrespecttonumber holesatconstant feed.Apower

lawequationcanbeusedtorepresenttherelationshipbetween thrustforceand numberofholesfortheuncoatedcarbidedrill. Basedonholeexitqualityforuncoatedcarbidedrillsat5000rpm and 40␮m/rev theacceptable drill life was observed tobe 20 holes, aroundwhich theexitthrustforcewas50N (Fig.16(b)). Thisthrustforcevalue(Fz-int)isnamedasthecriticalthrustforce value.

Inordertodeterminedrilllife,holeexitsareusuallyinspected fordelamination.Somevisualtechniqueshavebeenproposedin theliteratureinordertodecidewhetherimperfectionsatthehole exithavereachedanunacceptablelevel.Thesetechniquesmeasure thediameterofthedelaminatedareausingacameraandcalculate anindexrelativetonominalholediameter(Schulzeetal.,2010). Inspectionofdelaminationrequiresadetailedexaminationofthe holesandalsoremovaloftheCFRPlaminatefromthefixturein ordertocheckholeexits.Ontheotherhand,holediameterscan easilybecontrolledduringproductionbyusinggaugesor microm-eters.Inordertoinvestigatetheinfluenceofhighfeedsonhole quality,holediametersareautomaticallymeasuredusinga coor-dinatemeasurement machine(DEA-DeltaSlant) every96holes. Fig.17showsthediametermeasurementvariationsfordifferent drillingconditions.Thedecreaseindiameterisacceptableaslong asitstayswithinspecifiedtolerancesdefinedbythemanufacturer. Adecreasingtrendinholediameterswithrespecttothenumber ofdrilledholesisclearlyobserved.Thelowerlimitofacceptable holediameterisassumedtobe6.35mmwhereDCC-IIdrillwith

(10)

(a)

(b)

6.2 6.25 6.3 6.35 6.4 6.45 1 168 360 457 648 840 1032 1128 1320 1512 1609 1800 1992 2184 2280 2472 2664 2761 2952 3144 3336 3432 3624 3816 3913 3933 4008 Hole Diameter (mm) Hole Number # 6.2 6.25 6.3 6.35 6.4 6.45 Hole Diameter (mm)

Hole Number #

(c)

6.2 6.25 6.3 6.35 6.4 6.45 1 192 384 576 672 864 1056 1153 1344 1536 1728 1824 2016 2208 2305 2496 2688 2880 2976 3168 3360 3457 3648 3840 4032 Hole D iameter (mm) Hole Number#

Fig.17.Variationofdiameterwithrespecttoholenumber:(a)N=15,000rpm, f=225␮m/rev, (b) N=5000rpm, f=225␮m/rev and (c) N=15,000rpm, f=300␮m/rev(DCC-IIdrillwith6.38mmdiameter).

6.38mmnominaldiametersareusedinexperiments.Hole diame-tervariationmeasurementsrevealthathighfeedandspeeddrilling conditions(N=15,000rpm,f=225␮m/rev)reachthelower toler-ancelevelof6.35mmaround4000holesasshowninFig.17(a).No delaminationproblemwasobservedattheholeexits.Whenspeed isreducedto5000rpm,holediametertoleranceisalsoreached around1700holes(Fig.17(b)).Theinfluenceoffasterdrillwearat lowfeedisobservedonholediameters.Whenfeedisincreasedto 300␮m/revat15,000rpm,alargescatteronmeasureddiameters wasobserved.Tolerancelevelwasreachedwithin1700holesas showninFig.17(c).

Basedonthefindings givenabove,increasingfeedand rota-tionalspeedhelpsprotectdiamondcoatingonthedrill,whichin turnresultsinbetterdrillperformanceintermsofholequality. Theresultspresentedinthisstudydonotagreewithmajorityof theresultsreportedin theliterature,where low feedandhigh speeddrillingarerecommendedintermsofdelaminationbased holequalitycriteria.ItmustbenotedthatthepropertiesofCFRP material,drillinggeometry,and rigidityof themachinetool all

playanimportantroleintheseobservations.Therigidityofthe machinetoolisknowntoinfluencedrillingstability,drilllife,and holequality.Increasingthrustforcewithincreasingfeedmayresult invibrationsduringdrilling,whichadverselyaffectprocess out-puts.WhileFig.2maygiveanideaabouttherigidityofthemachine toolusedinthisstudy,animpacthammertestwasperformedto measureitsdynamicproperties.Theresultswereobtainedthrough CutProTMsoftwareandthespindle-toolholder-drillsystemis mea-suredtohaveanaturalfrequencyof3500Hz,stiffnessof1e9N/m, andadampingratioof1.846%(equalinxandydirections).

Intheliterature, thepositiveimpactof usingbackingplates whiledrillingCFRPlaminateshasbeenreportedespeciallywhen drillingunidirectionaltypeCFRPlaminates.Inthisstudy,testsare repeatedwithoutusingabackingplate,andnosignificant differ-enceswereobservedintermsofmeasureddrillingforcesorhole quality.Fabricwovenlaminatesaremoreresistanttodelamination thanunidirectionalCFRPlaminates.Therefore,duringproduction ofunidirectionalCFRPlaminates,fabricwovenCFRPsareusually usedatthetopandbottomofthelaminatestodecreasethe like-lihoodofdelaminationduringdrillingoperations.Arecenttrend inaerospacemanufacturingrequiresCFRPlaminatestobedrilled togetherwithtitanium/aluminumalloyplatesasstacksinorderto makeassemblyoperationseasier.Drillgeometryselectionand/or designbecomesmorechallengingduetodifferentmaterial prop-erties.

5. Conclusions

ThisstudyexaminesdrillingoffabricwovenCFRPlaminates andobservestheperformanceofdrillgeometryasafunctionof drillingoperationalparameters.Theexperimentalstudywas con-ductedunderindustrialconditionsusingspecializedequipmentfor CFRPmachining.

• The interplay among the exit thrust force, thetorque carry-ingcapabilityofthesecondaryedge,andtheloaddistribution betweentheprimaryandsecondaryedgesispresentedasa func-tionofdrillanglesandedgelengths.

• DelaminationinfabricwovenCFRPlaminatesisobservedtobe closelyassociated withtheconditionof thediamondcoating. Peakthrustforcesareobservedtoincreasesignificantlyasaresult offracturingofthediamondcoating.

• DCC-IIdrillgeometryisfoundtobemoresuitabletohighfeed drillingthanDCC-Igeometry.

• Hole diameter toleranceis observed to bemore critical than delaminationduringthedrillingexperimentsconductedinthis study.

Acknowledgements

TheauthorswouldliketothankTheScientific andTechnical ResearchCouncilofTurkey(TUBITAK-Teydeb)andODAGEMA.S. fortheirfinancialsupportofthisstudy.

References

Abrao,A.M.,Faria,P.E.,CamposRubio,J.C.,Reis,P.,Davim,P.,2007.Drillingoffiber reinforcedplastics.Areview.JournalofMaterialsProcessingTechnology186, 1–7.

Caprino,G.,Santo,L.,Nele,L.,1998.Interpretationofsizeeffectinorthogonal machiningofcompositematerials.PartI:unidirectionalglassfibrereinforced plastics.CompositesPartA29A,887–892.

Chen,W.C.,1997.Someexperimentalinvestigationsinthedrillingofcarbonfiber reinforcedplastic(CFRP)compositelaminates.InternationalMachineTools& Manufacture37,1097–1108.

Dharan,C.H.K.,Won,M.S.,2000.Machiningparametersforanintelligentmachining systemforcompositelaminates.InternationalMachineTools&Manufacture40, 415–426.

(11)

Faraz,A.,Biermann,D.,Weinert,K.,2009.Cuttingedgerounding:aninnovativedrill wearcriterionindrillingCFRPcompositelaminates.InternationalMachineTools &Manufacture49,1185–1196.

Hocheng,H.,Dharan,C.H.K.,1990.Delaminationduringdrillingincomposite lami-nates.JournalofEngineeringforIndustry112,236–239.

Hocheng, H., Tsao, C.C., 2005. The path towards delamination-free drilling of composite materials. Journal of Materials Processing Technology 167, 251–264.

Iliescu,D.,Gehin,D.,Gutierrez,M.E.,Girot,F.,2010.Modelinganddrillwearin drillingofCFRP.InternationalMachineTools&Manufacture50,204–213. International Air Transport Association (IATA) Fact Sheet:Fuel, 2012.

http://www.iata.org/pressroom/facts figures/fact sheets/pages/fuel.aspx. Karpat,Y.,Camuscu,N.,Kılıc¸,A.,Sonat,F.,De˘ger,B.,Bahtiyar,O.,2010.Drillingcarbon

fiberreinforcedplasticswithdiamondcoatedcarbidecuttingdrills.In: Pro-ceedingsofthe36thInternationalMatadorConference,Manchester,UK,pp. 205–208.

Koplev,A.,Lystrup,A.,Vorm,T.,1983.Thecuttingprocess,chipsandcuttingforces inmachiningCFRP.Composites14,371–376.

Lazar,M.B.,Xirouchakis,P.,2011. Experimentalanalysisofdrillingfiber rein-forced composites. International Machine Tools & Manufacture 51 (12), 937–946.

Piquet,R.,Ferret,B.,Lachaud,F.,Swider,P.,2000.Experimentalanalysisofdrilling damageinthincarbon/epoxyplateusingspecialdrills.CompositesPartA: AppliedScienceandManufacturing31,1107–1115.

Rawat,S.,Attia,H.,2009.Characterizationofthedryhighspeeddrillingprocessof wovencompositesusingmachinabilitymapsapproach.CIRPAnnals– Manufac-turingTechnology58,105–108.

Schulze,V.,Becke,C.,Weidenmann,K.,Dietrich,S.,2010.Machiningstrategiesfor holemakingincompositeswithminimalworkpiecedamagebydirectingthe processforcesinwards.JournalofMaterialsProcessingTechnology211(3), 329–338.

Shyha,I.S.,Aspinwall,D.K.,Soo,S.L.,Bradley,S.,2009.Drillgeometryandoperating effectswhencuttingsmalldiameterholesinCFRP.InternationalMachineTools &Manufacture49,1008–1014.

Teti,R.,2002.Machiningofcompositematerials.CIRPAnnals– Manufacturing Tech-nology51,611–634.

Tsao,C.C.,Hocheng,H.,2005.Effectsofexitback-upondelaminationindrilling compositematerialsusingasawdrillandacoredrill.InternationalJournalof MachineDrills&Manufacture45,1261–1270.

Zhang,L.B.,Wang,L.J.,Liu,X.Y.,2001.Amechanicalmodelforpredictingcritical thrustforcesindrillingcompositelaminates.ProceedingsoftheInstitutionof MechanicalEngineers215,398–405.

Referanslar

Benzer Belgeler

Of 158 patients who underwent pterygium surgery, 8 patients with pterygium on both sides of the cornea (5% of all the pterygium surgeries) were included in the study.. All

shows the pulmonary atresia and the anatomy of the double aortic arch (DAA) (white bold arrows), with the right subclavian and right common carotid arteries originating from

The purpose of the research is to examine the Ahmed body for different yaw angles ranging from 0° to 80° through CFD analysis and determine the flow characteristics as

Calculations are done by using both exact boundary  value  solutions  and  semi‐empirical  approximate  solution  and  results  are  compared.  Good  agreement 

Bu çalışmanın amacı; farklı konsantrasyonlardaki (2, 5 ve 7 mol/L) alkali ön-işlemin, farklı kumaş örgüsündeki (bezayağı, dimi ve ribs) %100 Lyocell kumaşların

Değerli okurlarımız, dergimizin bu sayısında; halk sağlığı hemşireliği, cerrahi hastalıkları hemşireliği, iç hastalıkları hemşireliği, çocuk sağlığı

Results showed that TFT’s fabricated with as-deposited films do not show gate field control over the channel layer but after a thermal treatment performed at temperatures higher

Bu çalışmada ise günümüzde kullanılan bir taşıt modeli etrafında oluşan hava akışı deneysel ve sayısal yöntemler kullanılarak incelenmiş, taşıt modelinin