• Sonuç bulunamadı

Co doping induced structural and optical properties of sol-gel prepared ZnO thin films

N/A
N/A
Protected

Academic year: 2021

Share "Co doping induced structural and optical properties of sol-gel prepared ZnO thin films"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Co

doping

induced

structural

and

optical

properties

of

sol–gel

prepared

ZnO

thin

films

Ebru

Gungor

a,∗

,

Tayyar

Gungor

a

,

Deniz

Caliskan

b

,

Abdullah

Ceylan

c

,

Ekmel

Ozbay

b

aEnergySystemsEngineeringDepartment,MehmetAkifErsoyUniversity,Burdur15030,Turkey bNanotechnologyResearchCenter,BilkentUniversity,Ankara06800,Turkey

cSNTGLaboratory,PhysicsEngineeringDepartment,HacettepeUniversity,Ankara06800,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15November2013 Receivedinrevisedform14June2014 Accepted20June2014

Availableonline27June2014 Keywords:

ZnO Co:ZnO Thinfilm

Ultrasonicspraypyrolysis

a

b

s

t

r

a

c

t

ThepreparationconditionsforCodopingprocessintotheZnOstructurewerestudiedbytheultrasonic spraypyrolysistechnique.StructuralandopticalpropertiesoftheCo:ZnOthinfilmsasafunctionofCo concentrationswereexamined.ItwasobservedthathexagonalwurtzitestructureofZnOisdominantup tothecriticalvalue,andafterthevalue,thecubicstructuralphaseofthecobaltoxideappearsintheX-ray diffractionpatterns.Everyband-edgeofCo:ZnOfilmsshiftstothelowerenergiesandallareconfirmed withthePLmeasurements.CosubstitutioninZnOlatticehasbeenprovedbytheopticaltransmittance measurementwhichisobservedasthelossoftransmissionappearinginspecificregionduetoCo2+

characteristictransitions.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Zinc oxide(ZnO)isa II–VIcompound semiconductor witha

widedirectbandgapof3.37eVatroomtemperature.Inaddition

totheelectricalandopticalpropertiesofundopedZnO,the

tran-sitionmetaldopedZnOformsarepromisingcandidatematerials

inthefieldofspintronics(spin-electronics).Variousmethodssuch

aspulsedlaserdeposition[1],chemicalvaportransport[2],

elec-trodeposition[3],co-precipitation[4]andsolid-statereaction[5],

andspraypyrolysis[6]canbeusedtosynthesizeZnO.Amongthese

methods,spraypyrolysistechniquecanbeapplicablewithout

vac-uumenvironment;ofcourse,thistechniqueischeapanddisplaying

comparablepropertiesandcompetitivefunctionalitywiththat

pro-ducedbyothertechniques.Theresearchhasbeenincreasedon

theternarysemiconductorssuchastransitionmetaldopedZnO

owingtoitshighCurietemperaturefortheferromagnetic

tran-sitioncalculatedinbulkmaterialsandfoundtobearound300K

[7–10].

CodopingcreatesaconsiderablechangeinthebandgapofZnO

[11–14],butthisvariationhasbeenreportedasanincreaseinsome

otherresearchandasadecreaseinthebandgapforZnOinother

research.Thiscaseindicatestheuncertainty.Areasonforthiscan

bestructuraldefectsintheZnOcrystallatticeaswellasbecause

∗ Correspondingauthor.

E-mailaddress:egungor@mehmetakif.edu.tr(E.Gungor).

ofthevacanciesinthecrystalstructure orinterstitials[15].The

uncontrolledcasesasthestructuraldefectsand/orimpuritiesthat

ariseasgrowingthefilmaffectsthebondingnature,chargetransfer

andthebandstructureinthematerial.Thismakesitverydifficult

toobtainreproducible deviceperformance andreliability.Some

authorsreportedintheliteraturethatred-shiftisattributedtothe

sp–dexchangeandsomeotherauthorsobservedthatblue-shiftis

attributedtotheBurnstein–MosseffectconsideringtheCo

con-centration.Whenthevolumesolubilitylimitintwo-component

andmulticomponentalloyshasreacheda certainconcentration,

thefirstphaseremainsconstantandthentheextraphasesappear.

In ordertodeterminethesolubilitylimit,onehastofollowthe

changeofthelatticespacingandconcentrationobtainedfromthe

X-raydiffraction(XRD)andSEM-EDSspectrum,respectively.There

isuncertaintyaboutsolubilitylimitforCodopedZnO.Leeetal.

[16]reportedthatthedopedCoionwasfullysubstitutedintoa

ZnOlatticeat5mol%,butthesecondaryphaseoftheCo3O4was

formedabove5mol%ofCodoping.However,otherreports[17,18]

haveindicatedthatCocanbeincorporatedinthematrixofZnOup

to7–10at%withoutforminganysecondphase.Allthesereports

thusindicatethatCohasalimitedsolubilityinZnOupto10at%.In

contrasttothis,Rath[19]observedthatallthepeaksmatchwell

withthewurtzitestructureofZnOinbothpureandCodopedZnO

samplesuptoacobaltconcentrationof20%.

Inthisstudy,weaimedtocontributetoclarifytheuncertainty

forbandgapshift.Thatiswhy,weinvestigatethestructuraland

opticalpropertiesofZnOandCo:ZnO(CZO)thinfilmsthatwere

http://dx.doi.org/10.1016/j.apsusc.2014.06.132 0169-4332/©2014ElsevierB.V.Allrightsreserved.

(2)

ZnOandCo:ZnO(CZO)thinfilmsweredepositedonto

ultrason-icallycleanedglasssubstratesusingtheultrasonicspraypyrolysis

(USP)method.Forconventional USPmethod,thesubstratesare

fixedandprecursorsolutionsprayedoverahotsubstrate.The

sub-stratetemperaturewaskeptat 400◦C. Thesaltsofzinc acetate

dehydrate(Zn(CH3COO)2·2H2O,99.9%-Merck)andcobaltacetate

tetrahydrate(Co(CH3COO)2·4H2O,99.9%-Merck)wereusedasthe

metalsourceswhich weresolvedin methanol.Inorder to

pro-duceaclearandhomogeneoussolutionmonoethanolamine(MEA)

andaceticacidwereaddedintotheprecursorsolutionwhichwas

stirredat60◦Catamoderatespeedfor1h.Inthestarting

solu-tions,Cocontentswerechangedfrom0.01Mto0.05Mandsamples

werelabeledasCZO1–CZO5(Table1).Zncontent(0.05M)washeld

atconstant.Thesolutionflowratewasheldconstantat5ml/min.

Nozzle,100kHzoscillatorfrequency,usedinthisstudywasina

downwardverticalconfigurationandthenozzletosubstrate

dis-tancewas12cm.Compressedairwasusedasthecarriergas.The

filmsweredepositedforabout10min.Amoredetaileddescription

ofthemethodtoobtainthethinfilmsandthecharacteristicsof

thespraypyrolysisdeviceusedwerereportedinpreviouspaper

[6].X-raydiffraction(XRD)spectrawerecollectedwithaD-Max

X-raydiffractometer(RigakuInternationalCorp.,Japan)withCuK␣

(=1.5405 ´˚A)toobtainthestructuralinformationofthefilms.The

chemicalcompositionofthethinfilmswasmeasuredusingenergy

dispersivespectroscopy(EDS)withaJeolJSM-7000F-EDSelectron

microscope.TheopticalmeasurementsoftheCo:ZnOthin films

werecarriedoutatroomtemperatureusingT70Model

Spectropho-tometer(PG Instrument) inthe wavelengthrange 300–900nm.

Photoluminescence(PL)spectraweremeasuredusinga100mW

He-Cdlaser(=325nm)astheexcitationsourceanda HORIBA

Jobin-Yvon1mmonochromator.

3. Resultsanddiscussion

3.1. Structuralproperties

TheX-raypatternsforCo:ZnOthinfilmsatroomtemperature

andreferencepeakpositionsarepresentedinFig.1a.Theresults

pointedout showedthat thereisnoimpurity and/orunreacted

phaseofZnandCoconsideringthereferencepeakpositions,(100),

(002),(101),and(103)peaksofZnOwereobserved.However,

(111)and(200)peaksat36.9◦ and42.7◦ Braggangleofcobalt

oxide,respectively, were observed.The starting molarity up to

0.03MofprecursorsolutionincludedCo,(002)peakofhexagonal

wurtzitestructurebecomesmoreintensivecomparingwithother

peaks(Fig.1b).Inthesefilms,upto0.03M,thehexagonalwurtzite

structureofZnOseemstobeprotected.Inthedopingprocess,itis

observedthatthereisalimitationofCodopingintotheZnO

struc-ture.Themolarityisthengreaterand/orequaltothe0.03Mvalue,

Fig.1.X-raydiffractionpatternsofCo:ZnOthinfilms(a),andintensitydifferences of(002)and(200)peaksforthefilms(b).“|”and“”symbolsindicatethereference forZnO(JCPDS36-1451)andforCoO(JCPDS43-1004),respectively.Thevariation oftheCoconcentrationobtainedfromEDSwithstartingsolutionmolarity(c).

(200)peakwhichbelongstothecubicstructureofcobaltoxide

whichthenstartstooccur.ThislimitvalueisconfirmedusingEDS

measurements.Table1summarizestherelativechemicalcontent

oftheoxygen,zincandcobaltpresentinthefilmsasafunctionof

contentofthecobaltacetatetetrahydrateinsertedinthestarting

solution.We observedthattheCosubstitutedZnsiteupto12%

(Fig.1c)whichcorrespondedto0.03Mwithoutshowinganyextra

phaseinXRDspectra.Peakscorrespondingtotheglasssubstrate

elementssuchasSiandCawerealsodetected.The(002)peak

indi-catingastrongorientationalongthec-axisofZnOwithhexagonal

wurtzitestructureisreplacedby(200)orientationwiththecubic

(3)

Fig.2.StructuralparametersofCo:ZnOthinfilmsaccordingtotheXRDresultsvs Comolarity;forc-latticeparameter(“䊉”symbol)anddiffractionangle2for(002) peak(“”symbol).

Fig.3. NormalizedexperimentalopticaltransmissionspectraforCo:ZnOthinfilms accordingtotransmissionvalueat800nm.

tothehigherBraggangle,andalsothecalculatedc-lattice

parame-terdecreasesduetotheincreasingofCoconcentrationintheZnO

structure(Fig.2).Buttheintensityof(200)peakdecreaseswhen

CoisdopedintotheZnOstructurewiththemolarityvalueofmore

than0.04M.

3.2. Opticalproperties

TheopticaltransmissionspectraofZnOandCodopedZnOthin

filmsamplesareshowninFig.3.TheeffectsofCodopingintothe

ZnOlatticeareclearlyobservedintheopticaltransmissionspectra.

TheincreaseofCoconcentrationintheZnOstructuredecreasesthe

opticaltransmittanceandimpartsdeepgreencolortothesamples

(Fig.4).Inaddition,increasingCoconcentrationalsomodifies

opti-caltransmittanceforthespecificregionduetoCo2+characteristic

transitions.Thesetransitionsalsosuppresstheinterferencefringes

inthisregionofCo:ZnOfilmsifthefilmthicknessissufficientto

createinterferencefringe.Inordertoeliminate theinfluenceof

differencesinsamplethickness,normalizedtransmittancetothe

valueat800nmweretakenintoaccount.Theabsorptionpeaks,

indicated with arrows in Fig. 3, centered at 571nm (2.18eV),

619nm(2.01eV)and662nm(1.88eV),arerelatedto

character-isticfeaturesofd–dtransitionofCo2+ions.Theyareassignedto

transition from 4A

2(F)state to 2E(G),4T1(P) and 2A1(G) states,

respectively[15].Thisisaclearevidencetoprovetheexistenceof

Fig.4. Experimentalopticaltransmissionspectra(solidline)of0.02MCocontent instartingsolutionforCo:ZnOthinfilm:Alsothetheoreticalopticaltransmission spectra(“o”symbol)areshownforcomparison.

Table2

Calculatedfilmthicknesst(nm),refractiveindexnfor532nmwavelengthandEg

(eV)opticalbandgapvaluesoftheCo:ZnO(CZO)thinfilmsvsthemolarityofCoin thestartingsolutions.

Samplename MolarityofCo(M) t(nm) n(532nm) Eg(eV)

ZnO 0.00 75±2 1.73 3.330 CZO1 0.01 105±2 2.23 3.072 CZO2 0.02 95±2 2.42 3.061 CZO3 0.03 160±2 2.73 2.985 CZO4 0.04 170±2 2.63 3.020 CZO5 0.05 180±2 2.59 3.030

CoatthetetrahedralsitesoftheZnOhexagonalwurtzitestructure

asCo2+.ComparingtheionicradiiofCo2+(0.058nm)whichisvery

closetoionicradii ofZn2+ (0.060nm)and theabsorptionpeaks

we canconcludethat theCoatomicallysubstitutesonZnsites.

Thisisalsoconfirmedinmanygroups,whichincludedavariety

ofmethodsandopticalabsorption[15,18,20–22].

Theopticaltransmissionspectrumcanbeusedinthe

determi-nationoftheopticalconstantsofthethinfilmdepositedontothe

transparentsubstrate.Whentheproductoftherefractiveindex

andfilmthicknessofthefilmhaveallowedtheformationof

inter-ference fringes,classicalmethods suchastheenvelopemethod

developed bySwanepoel [23]canbeused.Aswellasthe

num-beroftheinterferencefringesanddepthofthefringesarecrucial

toperformthismethod.However,PointwiseUnconstrained

Mini-mizationAlgorithm(PUMA)[24]andmanyotheriterativemethods

[25] canbeusedwhentheinterferencefringesobservedornot

observed inthetransmissionspectrum.Consideringthenormal

dispersionrelation,therefractiveindexdecreaseswiththe

increas-ingwavelength.ThisisnotvalidfortheCo:ZnOthinfilmsforthe

region where theloss of transmissiondue toCo2+

characteris-tictransitionswhichmodulatethetransmittancespectrumofour

samplesisobserved.Therefore,weusedPUMAtechniqueforthis

limitedregionwhichstartsfromtheinflexionwavelengthtothe

wavelengthcorrespondingfirstcharacteristictransitionwhichis

centeredat571nm(2.18eV).Inflexionwavelengthisdefinedfrom

secondderivativeofopticaltransmissioncurve[6,26].Thereisan

excellentagreementbetweentheexperimentalspectraand

theo-reticalspectraforallthesamplesandoneoftheexperimentaland

computedopticaltransmissionspectrafortheCo:ZnOthinfilmare

showninFig.4.Calculatedfilmthicknessandrefractiveindexfor

532nmaregiveninTable2.Thevalueofrefractiveindexis

(4)

Fig.5.OpticalabsorptionspectraoftheCo:ZnOandZnOthinfilmsas(˛h)2h

behavior.

0.03M.Then,therefractiveindexstartstodecreaseagain.Having

suchaturningpointisinagreementwiththeotherobservations

suchasXRDandPLmeasurements.

Notonlythefilmthicknessandrefractiveindexbutalsooptical

absorptionspectrumcanbeobtainedfromtheopticaltransmission

spectrumusingsuitablemethods.Absorptionedgesforthe

semi-conductorsinformthethresholdofchargetransitionbetweenthe

highestfilledbandandthelowestemptyband.Theopticalbandgap

ofthefilmscanbecalculatedusingthefollowingequation[27]:

˛h

v

=A(h

v

−Eg)n (1)

whereAistheprobabilityparameterforthetransition,Egisthe

bandgapofthematerial,histheincidentphotonenergy,and

nisthetransitioncoefficient.Thevalueofnisknown:,2forthe

measurementofanindirectbandgapand1/2foradirectbandgap.

Fig.5a–fshowstheplotof(˛h)2vsthephotonenergy(h)of

theCo:ZnOthinfilms.Thedirectbandgapofthefilmswas

deter-minedbytakingtheintersectionoftheextrapolatedlinesfromthe

linearverticalandhorizontalregionsneartheband-edgeofthe

(˛h)2=0curve.AstheCoconcentrationisincreasedintheZnO

Fig.6.PLspectraofCo:ZnOandZnOthinfilmsatroomtemperature.

Table3

Photoluminescence(PL)analysisfromGaussianfittingprocesswithtwoGaussian peakscenteredat1and2forsamples,andcomputedopticalbandgap(Eg).

MolarityofCo(M) 1(nm) 2(nm) Eg(eV) 0.00 379.65 – 3.26 0.01 390.95 407.41 3.17 0.02 397.64 415.20 3.12 0.03 401.87 417.93 3.09 0.04 389.01 406.93 3.18 0.05 396.18 412.80 3.13

structure,redshiftisobservedintheabsorptionedgeduetothe

sp-dexchange interactionsbetweenthebandelectronsand the

localizedd-electronsoftheCo2+ionssubstitutingZn2+ions.

Cal-culatedvalueoftheopticalbandgapwithincreasingComolarity

from0to0.05MisgiveninTable1.

Fig. 6 shows the PL spectra of as-grown samples.

Photolu-minescencespectraofthesampleshavebeenrecordedatroom

temperature.ThePLemissionintheUVbandswasobserved.

Band-edgetransitionsaswellasdirect-bandtransitionsforZnOataround

380nm(3.26eV)areobserved.Gaussianfittingwasperformedon

thePLspectraofthesamplescontainingCo.Amongthetwopeaks

oneiscenteredaround400nm(1)assignedtothebandgap

tran-sitionandtheotherpeaksassignedtothenear-band-edge(NBE)

emission are centered at 407nm, 415nm,418nm, 407nm and

413nmforthesamplesCZ01,CZ02,CZ03,CZ04andCZ05,

respec-tively(Table3).Bandgapvaluesaredecreasinguptoathreshold

valueofCoconcentration.Thisbehavioris alsoobservedin the

refractiveindexvariation.Inaddition,theobservedPLintensity

begantodecreasewhenthecobaltwasintroducedintotheZnO

structure.

4. Conclusion

ThestructureandopticalpropertiesofCodopedZnOfilmswere

studiedwithrespecttocobaltconcentrationinthestartingsolution

inwhichthecobaltacetatetetrahydratewasusedasaCosource.

OurstudiesshowthatCodopingaffectsZnOlatticeimmediately.

WhentheComolarityisgreaterthanthe0.03MorCo

concentra-tionobtainedfromEDSanalysisisabout12%,theZnO(002)peak

intensitydecreasesandCoO(200)peakintensityincreaseswith

increasingCoconcentration.CosubstitutioninZnOlatticehasbeen

provedbytheopticaltransmittancemeasurement,whereasitis

notclearlyseenintheXRDdiffractogramfortheCZO1andCZO2

sample. Theopticaltransmittance decreaseswithincreasingCo

(5)

visiblelight.WhentheZn2+ionsarereplacedwithCo2+ionsinthe

ZnOlattice,thefilmsabsorbvisiblelight,andthecolorofthefilms

turntodeepgreen.ThecharacterofthebandgapoftheCZOfilmsis

directtypewithcobaltdoping.Whenthecobaltdopingisincreased,

Taucplotsarebecomingamoreroundedinshapeandtheinflexion

pointmovestothelongerwavelengths.Thebandgapobtainedfrom

Tauc’splotshiftingtowardtothelongerwavelengthswasverified

withroomtemperaturePLmeasurement.Thebandgapnarrowing

canbeattributedthattheconductionbandandthevalenceband

shifteddownwardandupward,respectively.Weconcludedthat

thered-shiftistypicallyattributedtothesp–dexchangebetween

theZnObandelectronsandlocalizedd-electronsassociatedwith

thedopedCo2+cations.

Acknowledgement

ThisstudywassupportedbyThe ScientificResearch Unitof

MehmetAkifErsoyUniversitywithprojectnumbers110-NAP-10,

0172-NAP-13,and0173-NAP-13.

References

[1]M.G.Tsoutsouva,C.N.Panagopoulos,D.Papadimitriou,I.Fasaki,M.Kompitsas, ZnOthinfilmspreparedbypulsedlaserdeposition,MaterSciEngB176(6) (2011)480–483.

[2]S.Kumar,Y.J.Kim,B.H.Koo,H.Choi,C.G.Lee,Ferromagnetismin chemically-synthesizedCo-dopedZnO,J.KoreanPhys.Soc.55(3)(2009)1060–1064. [3]M.Harati,D.Love,W.M.Lau,Z.Ding,Preparationofcrystallinezincoxidefilms

byone-stepelectrodepositioninReline,MaterLett89(2012)339–342. [4]S.Vempati,A.Shetty,P.Dawson,K.K.Nanda,S.B.Krupanidhi,Solution-based

synthesisofcobalt-dopedZnOthinfilms,ThinSolidFilms524(2012)137–143. [5]S.Karamat,R.S.Rawat,T.L.Tan,P.Lee,S.V.Springham,R.Anis-ur-Rehman, H.D.Chen,Sun,Excitingdilutemagneticsemiconductor:copper-dopedZnO,J. Supercond.Nov.Magn.26(2013)187–195.

[6]E.Gungor,T.Gungor,Effectofthesubstratemovementontheopticalproperties ofZnOthinfilmsdepositedbyultrasonicspraypyrolysis,Adv.Mater.Sci.Eng. (2012),articleID:594971(7pages).

[7]M.Tay,Y.Wu,G.C.Han,T.C.Chong,Y.K.Zheng,etal.,Ferromagnetismin inho-mogeneousZn1−xCoxOthinfilms,JApplPhys100(2006)063910.

[8]T.Dietl,H.Ohno,F.Matsukura,J.Cibert,D.Ferrand,Zenermodeldescriptionof ferromagnetisminzinc-blendemagneticsemiconductors,Science287(2000) 1019–1022.

[9]K.Sato,H.Katayama-Yoshida,Materialdesignfortransparentferromagnets withZnO-basedmagneticsemiconductors,Jpn.J.Appl.Phys.Pt.2(39)(2000) L555–L558.

[10]K.Sato,H.Katayama-Yoshida,Stabilizationofferromagneticstatesby elec-trondopinginFe-,Co-orNi-dopedZnO,Jpn.J.Appl.Phys.Pt.2(40)(2001) L334–L336.

[11]K.J.Kim,Y.R.Park,Spectroscopicellipsometrystudyofopticaltransitionsin Zn1−xCoxOalloys,ApplPhysLett81(2002)1420.

[12]M.Bouloudenine,N.Viart,S.Colis,A.Dinia,BulkZn1−xCoxOmagnetic semi-conductorspreparedbyhydrothermaltechnique,ChemPhysLett397(2004) 73–76.

[13]S.V.Bhat,F.L.Deepak,TuningthebandgapofZnObysubstitutionwithMn2+, Co2+andNi2+,SolidStateCommun135(2005)345–347.

[14]X.Liu,E.Shi,Z.Chen,H.Zhang,L.Song,H.Wang,S.Yao,Structural,optical andmagneticpropertiesofCo-dopedZnOfilms,JCrystGrowth296(2006) 135–140.

[15]M.Ivill,S.J.Pearton,S.Rawal,L.Leu,P.Sadik,R.Das,A.F.Hebard,M.Chisholm, J.D.Budai,D.P.Norton,Structureandmagnetismofcobalt-dopedZnOthin films,NewJ.Phys.10(2008)065002.

[16]H.-J.Lee,S.H.Choi,C.R.Cho,H.K.Kim,S.-Y.Jeong,Theformationofprecipitates intheZnCoOsystem,EurophysLett72(1)(2005)76–82.

[17]M.Bouloudenine,N.Viart,S.Colis,J.Kortus,A.Dinia,ApplPhysLett87(2005) 052501.

[18]C.B.Fitzgerald,M.Venkatesan,J.G.Lunney,L.S.Dorneles,J.M.D.Coey, Cobalt-dopedZnOatroomtemperaturedilutemagneticsemiconductor,ApplSurfSci 247(2005)493–496.

[19]C.Rath,S.Singh,P.Mallick,D.Pandey,N.P.Lalla,N.C.Mishra,Effectofcobalt substitutiononmicrostructureandmagneticpropertiesinZnOnanoparticles, IndianJ.Phys.83(4)(2009)415–421.

[20]A.C.Tuan,etal.,A.C.Tuan,J.D.Bryan,A.B.Pakhomov,V.Shutthanandan,S. The-vuthasan,D.E.McCready,D.Gaspar,M.H.Engelhard,J.W.RogersJr.,K.Krishnan, D.R. Gamelin,S.A. Chambers, Epitaxial growth and properties of cobalt-dopedZnOonalpha-Al2O3single-crystalsubstrates,PhysRevB70(2004) 054424.

[21]C.Song,F.Zeng,K.W.Geng,X.B.Wang,Y.X.Shen,F.Pan,Themagnetic prop-ertiesofCo-dopedZnOdilutedmagneticinsulatorfilmspreparedbydirect currentreactivemagnetronco-sputtering,JMagnMagnMater309(2007) 25–30.

[22]K.Samanta,P.Bhattacharya,R.S.Katiyar,OpticalpropertiesofZn1−xCoxOthin filmsgrownonAl2O3(0001)substrates,ApplPhysLett87(2005)101903. [23]R.Swanepoel,Determinationofthethicknessandopticalconstantsof

amor-phoussilicon,J.Phys.E.:Sci.Instrum.16(1983)1214–1222.

[24]E.G.Birgin,I.Chambouleyron,J.M.Martinez,Estimationofopticalconstants ofthinfilmsusingunconstrainedoptimization,J.Comput.Phys.151(1999) 862–888.

[25]T.Güngör,B.Saka,Calculationoftheopticalconstantsofathinlayerupona transparentsubstratefromthereflectionspectrumusingageneticalgorithm, ThinSolidFilms467(2004)319–325.

[26]R.Dolbec,M.A.ElKhakani,A.M.Serventi,M.T.Rudeau,R.G.Saint-Jacques, Microstructureandphysicalpropertiesofnanostructuredtinoxidethinfilms grownbymeansofpulsed laserdeposition,ThinSolidFilms419(2002) 230–236.

[27]J.Tauc,R.Grigorovici,A.Vancu,Opticalpropertiesandelectronicstructureof amorphousgermanium,Phys.Stat.Solidi15(1966)627.

Şekil

Fig. 1. X-ray diffraction patterns of Co:ZnO thin films (a), and intensity differences of (0 0 2) and (2 0 0) peaks for the films (b).“|” and “” symbols indicate the reference for ZnO (JCPDS 36-1451) and for CoO (JCPDS 43-1004), respectively
Fig. 2. Structural parameters of Co:ZnO thin films according to the XRD results vs Co molarity; for c-lattice parameter (“䊉” symbol) and diffraction angle 2 for (0 0 2) peak (“” symbol).
Fig. 6. PL spectra of Co:ZnO and ZnO thin films at room temperature.

Referanslar

Benzer Belgeler

Edir.ne Rüştiye ve Öğretmen Okulu'nu bitirdi.. Taha

In this note we have considered H ∞ control of a class of systems with in%nitely many right half plane poles. We have demonstrated that the problem can be solved by using the existing

lanan tüm termik santrallar tüvenan kömür tüketecek biçimde planlanmıştır.. santrallarda tüketilecek kömürün tüvenan olarak mı, yoksa zenginleştirilmiş olarak mı

Zn 8 Cu 1 was found to have lower photoactivity than the ternary Zn 8 Cu 1 Bent composite, which is most likely due to the greater specific surface area and adsorption ability of

Figure 27. GhostMiner test results; decision tree deployed on the validation file... Quadstone user interface and subfoci.. spond), then by going through the sorted cases and

Results show us that information sha- ring with suppliers positively affect suppliers performance while long term relationship with suppliers do not have any impact on

Çalışmanın yayım yanlılığı durumunu ortaya çıkarmak için yapılan heterojenlik testi sonucunda, meta-analize dahil edilen çalışmaların yayım durumuna

Batılı bir müzik, dans ve eğlence türü olan tango, İstanbul’un eğlence mekânlarında görülmeye başlamadan çok önce, Batı müziği Osmanlı’da