• Sonuç bulunamadı

hydrogels Surfactant ion effects and metal on the mechanical properties ofalginate International Journal of Biological Macromolecules

N/A
N/A
Protected

Academic year: 2021

Share "hydrogels Surfactant ion effects and metal on the mechanical properties ofalginate International Journal of Biological Macromolecules"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Surfactant

and

metal

ion

effects

on

the

mechanical

properties

of

alginate

hydrogels

Hakan

Kaygusuz

a,b

,

Güls¸

en

Akın

Evingür

c

,

Önder

Pekcan

d

,

Regine

von

Klitzing

b

,

F.

Bedia

Erim

a,∗

aIstanbulTechnicalUniversity,FacultyofScienceandLetters,Maslak34469Istanbul,Turkey

bStranski-LaboratoriumfürPhysikalischeundTheoretischeChemie,InstitutfürChemie,TechnischeUniversitätBerlin,Strassedes17.Juni124,10623

Berlin,Germany

cPiriReisUniversity,FacultyofScienceandLetters,Tuzla34940Istanbul,Turkey dKadirHasUniversity,FacultyofScienceandLetters,Cibali,34083Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received25March2016

Receivedinrevisedform4June2016 Accepted1July2016

Availableonline2July2016 Keywords:

Alginate Surfactant

Mechanicalproperties

a

b

s

t

r

a

c

t

Thispaperaddressesthecontrolledvariationofthemechanicalpropertiesofalginategelbeadsby

chang-ingthealginateconcentrationorbyaddingdifferentsurfactantsorcross-linkingcations.Alginatebeads

containingnonionicBrij35oranionicsodiumdodecylsulfate(SDS)surfactantswerepreparedwithtwo

differenttypesofcations(Ca2+,Ba2+)ascrosslinkers.Compressionmeasurementswereperformedto

investigatetheeffectofthesurfactantandcationtypesandtheirconcentrationsontheYoung’smodulus

ofalginatebeads.TheYoung’smoduluswasdeterminedbyusingHertztheory.Foralltypesofalginate

gelbeadstheYoung’smodulusshowedanincreasingvalueforincreasingalginatecontents.Addition

oftheanionicsurfactantSDSincreasestheYoung’smodulusofthealginatebeadswhiletheadditionof

non-ionicsurfactantBrij35leadstoadecreaseinYoung’smodulus.Thisoppositebehaviorisrelatedto

thecontraryeffectofbothsurfactantsonthechargeofthealginatebeads.WhenBa2+ionswereusedas

crosslinkercation,theYoung’smodulusofthebeadswiththesurfactantSDSwasfoundtobe

approxi-matelytwotimeshigherthanthemodulusofbeadswiththesurfactantBrij35.Anionspecificeffectwas

foundforthecrosslinkingabilityofdivalentcations.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Alginateisamaterialofinterestduetoitsuniqueanduseful properties.Beingextractedfrommarinebrownalgae,alginatesare non-toxicand ediblepolysaccharides.Thispolymerisa copoly-mer of 1–4 linked ␤-d-mannuronate (M) and ␣-l-guluronate (G)homopolymericblocks.Thispolyelectrolyteformscrosslinked hydrogelswithdivalentcations,andthishydrogelstructureisused inmanyapplications.Applicationsofcrosslinkedalginateshavea widerange,includingcontrolledrelease,drugdelivery formula-tionsandwasteremovalagents[1–5].

Addition of various dopants to alginate formulations may increasethechemicalandmechanicalstabilityofthegels.Oneof thecandidatesfordopantsissurfactants.Previously,theeffectof cationicsurfactantcetyltrimethylammoniumbromide(CTAB)on viscosityand theeffectof SDSonaggregationof alginate

solu-∗ Correspondingauthor.

E-mailaddress:erim@itu.edu.tr(F.B.Erim).

tionwerestudiedbyYangetal.[6,7].Rheologicalandturbidity measurementswerecarriedoutinaqueousmixturesof hydropho-bically modified alginates with cationic, anionic and nonionic surfactantswerealsoreportedbefore[8].

TheeffectofdifferentcrosslinkingcationsonYoung’s modu-lusvaluesofalginatebeads[9],theeffectofcompressionspeed [10],theeffectsofM/Gratioofalginateandofthecrosslinking cationtype[11]onmechanicalbehaviorhavebeenreportedbefore. Recentlytheeffectsofthecrosslinkingionandpolyaminoacid coat-ingonthemechanicalpropertiesofalginatebeadswerereported [12].Besidesbeads,theeffectofthecrosslinkingiononthe mechan-icalpropertiesofdisc-shapedalginatesarealsoreported,suchas therecentstudybyKaklamanietal.[13].

Theimportanceofthealginatematerialsinbiomedical appli-cations such as drug release studies and scaffolds for tissue engineering requires mechanical strength of thesegels. Surfac-tantsplayanimportantrolefortheuptakeandreleaseofdrugs. Accordingtoourknowledge,sofartheeffectofsurfactantonthe mechanicalpropertiesofalginategelbeadshasn’tbeenstudied. Thispaperreportsforthefirsttime,theeffectofsurfactant incor-http://dx.doi.org/10.1016/j.ijbiomac.2016.07.004

(2)

Fig.1.Schematicrepresentationoftheunaxialcompressionmeasurement.

poration intoalginate gelsonthe Young’s modulusof alginate beads.Twodifferenttypesofsurfactants (nonionic:Brij35 and anionic:sodiumdodecylsulfate)wereused.Surfactantadded algi-nateswerecrosslinkedbycalciumorbariumions.Theeffectof crosslinkingionsonYoung’smoduluswasalsostudied.

2. Materialsandmethods

Alginicacidsodium salt (viscosity of 2% solution∼250 cps) wasfromSigma-Aldrich.Thisalginateisextractedfrom Macrocys-tispyriferaandhasaM/Gratioaround1.6[14].Calciumchloride dihydratewaspurchasedfromJ.T.Baker.Brij®35,sodiumdodecyl sulfate(SDS)andbariumchloridedihydratewereobtainedfrom Merck.Allreagentswereusedwithoutfurtherpurification.The criticalmicelleconcentration(cmc)ofBrij®35isabout0.09mmol/L andabout8mmol/LforSDS.Inthepresentstudybothsurfactants wereusedwellabovetheirrespectivecriticalmicelle concentra-tions(cmc).

Accuratelyweighedalginatewasdissolvedindeionizedwater andnecessarilyamountsofsurfactantswereaddedintothealginate solutions.Thesolutionswerestirredcarefullyinordertoprevent bubbleformation.ThepHofthe1%alginatesolutionwasaround 6.7.AdditionofSDSintoalginatedidnotchangethepH signifi-cantly.Ontheotherhand,incorporationofBrij35 intoalginate solutions decreased thepH slightly toaround 6.45. After com-pletedissolution,themixtureofalginateandsurfactantwereadded dropwisetothegellingsolution(e.g.CaCl2orBaCl2)usingasyringe

of 0.8cm inner diameter.The concentrationof thecrosslinking solutionswasselectedas3%ofCaCl2orBaCl2(w/v)inthe

exper-imentsdealing withthe effect of surfactants. For the effect of crosslinkerionexperiments,theconcentrationswere2,3and5%of CaCl2orBaCl2(w/v).Formedbeadsweretransferredintostorage

vesselsandkeptinthegellingmediafor12hatroomtemperature inordertocompletegelation.

CompressionmeasurementswerecarriedoutusinganInstron 3345testingmachineattachedwitha10Nforcetransducer.The diameterofeachbeadwasmeasuredusingadigitalcaliperandall ofthemeasurementswereconductedatleastintriplicate.Asingle beadwasplacedontoaplatform,asshowninFig.1.Aprobewith aflatendwasusedtocompressthebead.Compression measure-mentswereperformedataspeedof0.5mm/minandupto40% deformationratioat25◦C.

Inordertoclarifythestatisticalsignificanceoftheresults,single factoranalysisofvariance(ANOVA)testswereconductedforeach dataset.Thelevelofstatisticalsignificancewasassumedas0.05 andstatisticalcalculationswasdoneusingRstatisticalsoftwarev. 3.02[15].

3. Results

Theeffect ofcrosslinkercation, alginateand surfactant con-centrationson beadsize is shown onTable 1. Bariumalginate

Fig.2. TheForceF(N)and(H/2)3/2curvesof4%(w/v)alginatebeadscrosslinked

with3%(w/v)BaCl2containing(a)0,5,111and333timescmcBrij35and(b),0,

3.1,12.5,25and50timescmcSDS.Thearrowsindicatethedirectionofincreasing surfactantconcentration.

beadshavebiggerdiameterthancalciumalginatebeads.Thesizes increasedwithincreasingalginateconcentrations forall formu-lations.Incorporatingbothtypesofsurfactantsintoformulations decreasesthesizesofthebeadsinitially,thenthesizesincrease withincreasingsurfactantconcentrations.For333cmcofBrij35 (i.e.themolarconcentrationofBrij35has333timesofcmcofBrij 35)and50cmcofSDS,thesizesbecamealmostequalto formula-tionswithoutanysurfactantforeachcrosslinkerconcentration.

Theforce(F)versusdisplacement(H)datawasgeneratedfrom thecompressionmeasurements.HertzTheory[16] wasusedto determinetheYoung’smodulus,asshownbelow:

F=4R30.5 E 1−

v

2



H 2



3/2 (1) where Ris theradiusofa bead,EistheYoung’smodulus,His thedisplacement,and



isthePoisson’sratio.First,theforce(F) wasplottedagainstthedisplacement(H)3/2.ThePoissonratiowas

takenas0.5for0.5mm/mincompressionspeedapplied.Thisvalue iscompatiblewithliteraturevalues[10,17].Intheliterature,for the compression speed range between 0.075mm/min [17] and 60mm/min,[10]thePoissonratiowasselectedas0.5.TheYoung’s moduluswasthendeterminedfromtheslopeoflinearregionusing theleastsquareregressionoftheplotofFversus(H/2)3/2.

Twoexamplesofforceversus(H)3/2curvesfor4%(w/v)

algi-natebeadscrosslinkedwith3%(w/v)BaCl2areshowninFig.2(a)

and(b).Fig.2(a)correspondstothe4%(w/v)alginatebeads con-taining0,55,111and333timescmcofBrij35.Fig.2(b)showsthe curvesof4%(w/v)alginatebeadscontaining0,3.1,12.5,25and 50timescmcofSDS.FromcomparingFig.2(a)withFig.2(b),the largerconcentrationsofSDSsurfactantrequiredlargerforce val-uestoproduceagivendegreeofdeformation.Ontheotherhand, thenonionicsurfactantBrij35showstheoppositeeffect.Thesame trendwasobservedforcalciumalginatebeads,withsmallerslope values.Foreachformulation,theYoung’smodulusofatleastthree differentbeadswerecalculatedfromthelinearregionoftheforce versus(H)3/2curves.

StatisticalsignificanceofYoung’smodulusvaluesamong chang-ingsurfactantconcentrationsateachalginateconcentrationwas investigated usingonewayANOVAtests atp=0.05. Except the 1%and2%(w/v)alginatebeadscrosslinkedwithbarium,allseries resultedinp<0.05.Thus,incorporationofBrij35showsnoeffect

(3)

SDS

3.1cmc 2.6±0.3 2.7±0.1 3.1±0.1 3.2±0.6 3.1±0.2 3.3±0.1 3.2±0.2

12.5cmc 3.0±0.2 3.2±0.1 3.1±0.1 3.2±0.1 3.1±0.2 3.4±0.1 3.8±0.2

25cmc 3.1±0.5 3.4±0.1 3.2±0.1 3.8±0.3 3.3±0.1 3.7±0.2 3.6±0.1

50cmc 3.2±0.2 3.5±0.2 3.2±0.1 4.0±0.2 3.4±0.3 3.8±0.1 4.1±0.5

Fig.3.Effectof(a)Brij35and(b)SDSconcentrationsontheYoung’smodulusof thealginatebeadswithvariousalginateconcentrations.Crosslinkingsolution:3% (w/v)CaCl2.Errorbarsindicatestandarderrorsofthemean.

onbariumalginatebeadsatanalginateconcentrationupto2%and

otherresultsarestatisticallysignificant.

Fig.3(a)and(b) showtheeffect ofsurfactanttype and sur-factantconcentrationontheYoung’smodulusofthebeadswith varyingconcentrationsofalginatesolutionsbycrosslinkingwith 3%CaCl2ions.ThemostpronouncedeffectontheYoung’smodulus

isgivenbythealginateconcentration.Byincreasingthealginate concentrationfrom1to4%(w/v)theYoung’smodulusincrease byfactor5–6fromabout50kPatoalmost300kPa.Asseenfrom Fig.3(a),theYoung’smodulusofalginatebeadsdecreaseswithBrij 35concentration.Thisdecreaseismoreapparentforhigher algi-nateconcentrations.Ontheotherhand,thevalueoftheYoung’s modulusofalginatebeadsincreaseswithSDSconcentrationsfor beadscontainingdifferentalginateconcentrations.Itisimportant tonotethattheYoung’smodulusforcalciumcrosslinkedpure algi-natebeadsareintherangeof60–300kPa,whicharecomparable withtheresultsbyKaklamanietal.reportedfor2.5–5%alginateand 1–5MCa2+althoughtheymanufactureddisc-shapedpurealginate

hydrogels[13].

TheeffectofBrij35andSDSconcentrationsontheYoung’s mod-ulusofalginatebeadscrosslinkedwith3%(w/v)BaCl2ionsisshown

inFig.4.WhiletheYoung’smoduliofthebeadsslightlydecrease withBrij35concentration,aconsiderableincreaseintheYoung modulusisobservedwithincreasingSDSconcentration.From com-paringFig.3(b)andFig.4(b),theSDSeffectontheelasticmodules ofalginatebeadsisstrongerforBa-Alginatebeadscomparedto Ca-Alginatebeads.TheYoung’smodulusofbariumalginatebeads

Fig.4.Effectof(a)Brij35and(b)SDSconcentrationsontheYoung’smodulusof thealginatebeadswithvariousalginateconcentrations.Crosslinkingion:3%(w/v) BaCl2.Errorbarsindicatestandarderrorsofthemean.

containing50cmcSDSwasapproximatelytwotimeshigherwhen comparedwiththemodulusofpurebeads.Itshouldbenotedthat therewasnosphericalbariumbeadformationfortheformulations containingSDSand1%(w/v)BaCl2.Theformedgelswereflatand

thereforearenotincludedinthemeasurements.

Inordertounderstandtheeffectofcationconcentrationonthe beadscontainingtheanionicsurfactantSDS,thealginateandSDS concentrationswerekeptconstant(2%and50cmc,respectively), whereastheconcentrationsofbothCaCl2 andBaCl2werevaried

from1to5%(w/v).ThecationeffectonYoung’smodulusofthe beadsisgiveninFig.5.AsseenfromFig.5,theYoung’smodulusof alginatebeadscrosslinkedwithCa2+ionsdecreasesslightlywith

increasingcalciumionconcentration,whereastheYoung modu-lusofbariumalginatebeadsincreasesdramaticallywithincreasing bariumionconcentration.BariumalginategelshavelargerYoung’s modulusthancalciumalginateonesandthisorderisthesamefor formulationscontainingSDS.

4. Discussion

4.1. Effectofalginateconcentration

ThestrongesteffectontheYoung’smodulusiscausedbythe changeinalginateconcentration.Theincreaseinalginatefrom1to 4%leadstoanincreaseinYoung’smodulusbyafactorofabout5–6. Theincreaseinalginateleadstoadensificationofthebeads’

(4)

mate-Fig.5.EffectofcationcrosslinkerconcentrationontheYoung’smodulusof2%(w/v) alginatebeadscontaining50cmcSDS.Errorbarsindicatestandarderrorsofthe mean.

rial.Onehastokeepinmindthatthealginatechainsthemselves formaggregatesviahydrogenbonding.

4.2. Effectofsurfactant

Theconstituentsof thealginatecopolymer,mannuronicacid and guluronicacid,are acidicmonomers havingpKa values 3.2

and 3.6, respectively [18]. However, there is not anyliterature reportaboutthepKavalueofthecopolymer.Accordingtoour

pre-viouselectrophoreticstudywithalginatepolymer,alginatedoes notgain a noticeable electrophoreticmobilitybetweenpH=3.5 and 8.5. However, when SDS added to the medium above its cmc,alginategainsanelectrophoreticmobilitylikea negatively chargedmolecule.Thisbehaviorshowedusaninteractionbetween alginate biopolymer and SDS micelles [19]. Since the interac-tionisnotelectrostatic,itcanbetheoreticallyexpectedthatthe SDS carbon chain and the alginatecopolymer chain show this hydrophobic–hydrophobicinteraction.Inthepresentstudy,since theusedSDSconcentrationiswellabovethecmc,itcanbeassumed that half micelles are formed along the alginate chains which increasethenegativechargedensityofthealginate/SDSassociate. Thisadditionalchargeoffersmoreadsorptionsiteforthedivalent cationsandthereforeahigheramountofcross-linkersthaninthe SDS-freegelbead.Thisincreasingamountofcross-linkerpoints increasesthestiffnessandtheYoung’smodulus.SincetheSDS con-centrationsarewellabovethecmc,asalteffectofAlginateonthe formationofmicellescanbeneglected.

Brij 35 caninteractwiththe alginatevia hydrogenbonding mediatedby theheadgroupor viaassociationbythe aliphatic chain.Thiscouldleadtoareductioninchargeofthealginatechain, sincepotentialchargesofthealginatechainarecoveredby non-ionicBrij35halfmicelles.TheassociationwithBrij35wouldreduce thedensityofadsorptionsitesforthedivalentcationsand there-forethedensityofcross-linkedalginateandtheYoung’smodulus decrease.Ontheotherhandtheassociationviatheheadgroup couldalsohydrophobizethealginatechains,whichwouldleadto anassociationbetweenhydrophobicdomainsrelatedtoanincrease inYoung’smodulus.Obviously,thisinfluenceisminorsincethe Young’smodulusdecreaseswithincreasingBrij35concentration. Fig.6schematizesthisdiscussion.

Fig.6.Schemeofsurfactanteffect.Calciumionsbindstonegativecenterson algi-natechain(a)AdditionofSDSincreasesthenegativechargedensityandthereforea higheramountofcrosslinkers(calciumorbariumions)localizesaroundthealginate chain.ThisincreasedamountofcrosslinkerscausesanincreaseintheYoung mod-ulusandstiffness(b)NonionicBrij35coverssomeofnegativecentersofalginate chains,leadingtoadecreaseincrosslinkingionsandconsequentlygelation.Thus theresistancetobeingdeformedelasticallydecreases(c).

4.3. Ionspecificeffectsincross-linking

Sincetheionicradiusofbarium(135pm)islargerthancalcium (99pm),thehydrationshellaroundBa2+issmallerandlessordered

thanforCa2+.Thismakesiteasierforthenegativegroupsof

algi-natetointeractwithBa2+thantointeractwithCa2+.Thisleadsto

astrongercross-linkingandthereforeahigherYoung’smodulusin presenceofBa2+thanofCa2+.Ofcourseanincreaseincross-linker

(Ba2+)increasesthedensityofcross-linkingpointswhichincreases

theYoung’smodulusofalginateparticles.Itisalsoknownfrom lit-eraturethattheaffinityofalginatetowardsbariumisgreaterthan towardscalcium[20,21].Thisissupposedtoresultinstrongergel formationinthepresenceofbariumions.Thesameorderwasalso observedforbariumandcalciumalginatemicrobeads.[20].Itis notreallyclearwhytheYoung’smodulusdecreaseswith increas-ingCa2+concentration.Here,wecanonlyspeculate.Perhapsthe

Ca2+actsratherlikeasaltinthesystemthanasacross-linker.This

meansthattheCa2+ionsscreenthechargesinthesystem,which

mightreducetheYoung’smodulusoftheparticles. 5. Conclusion

ThepresentstudyshowsthattheYoung’smoduluscanbe eas-ilyvariedbymoreorderofmagnitudebychangingthealginate concentrationorthetypeorconcentrationofthesurfactantorthe cross-linkingdivalentcation.Theeffectofsurfactantonmechanical propertiesofcalciumandbariumalginatebeadswasinvestigated bycompressionmeasurementscombinedwiththeHertzTheory. The Young’s modulus of alginate beads changes withthe type ofusedsurfactantandmetalions.Brij35additiondecreasesthe Young’smoduluswhileSDSadditionincreasestheYoung’s mod-ulusofbothcalciumandbariumalginatebeads.Thisindicatesa differenttypeofassociationofSDSandBrij35tothealginatebeads duetodifferentchargesandthedifferentabilitytoform hydro-genbonding.IncaseofSDSonlyahydrophobicinteractionatlow alginatechargecantakeplace,whileBrij35 canassociatewith thealginatechainviaitheadgrouporviathealiphaticchain.The

(5)

Acknowledgment

H.Kaygusuzacknowledges Scientificand Technical Research Council of Turkey (TÜB˙ITAK)-BIDEB 2214/B scholarship pro-gramme.

References

[1]H.Kaygusuz,F.B.Erim,Alginate/BSA/montmorillonitecompositeswith enhancedproteinentrapmentandcontrolledreleaseefficiency,React.Funct. Polym.73(2013)1420–1425,http://dx.doi.org/10.1016/j.reactfunctpolym. 2013.07.014.

[2]H.Kaygusuz,M.Uysal,V.Adımcılar,F.B.Erim,Naturalalginatebiopolymer montmorilloniteclaycompositesforvitaminB2delivery,J.Bioact.Compat. Polym.30(2015)48–56,http://dx.doi.org/10.1177/0883911514557014. [3]S.Uzas¸c¸ı,F.Tezcan,F.B.Erim,Removalofhexavalentchromiumfromaqueous

solutionbybariumioncross-linkedalginatebeads,Int.J.Environ.Sci.Technol. 11(2013)1861–1868,http://dx.doi.org/10.1007/s13762-013-0377-y. [4]H.Kaygusuz,M.H.C¸os¸kunırmak,N.Kahya,F.B.Erim,Aluminum

alginate-montmorillonitecompositebeadsfordefluoridationofwater,Water AirSoilPollut.226(2014)2257, http://dx.doi.org/10.1007/s11270-014-2257-6.

[5]H.Kaygusuz,S.Uzas¸c¸ı,F.B.Erim,Removaloffluoridefromaqueoussolution usingaluminumalginatebeads,CLEAN−SoilAirWater43(2015)724–730, http://dx.doi.org/10.1002/clen.201300632.

[6]J.Yang,S.Chen,Y.Fang,Viscositystudyofinteractionsbetweensodium alginateandCTABindilutesolutionsatdifferentpHvalues,Carbohydr. Polym.75(2009)333–337,http://dx.doi.org/10.1016/j.carbpol.2008.07.037. [7]J.Yang,J.Zhao,Y.Fang,Calorimetricstudiesoftheinteractionbetween

sodiumalginateandsodiumdodecylsulfateindilutesolutionsatdifferentpH values,Carbohydr.Res.343(2008)719–725,http://dx.doi.org/10.1016/j. carres.2007.12.010.

Particuology9(2011)228–234,http://dx.doi.org/10.1016/j.partic.2010.12. 002.

[12]S.V.Bhujbal,G.A.Paredes-Juarez,S.P.Niclou,P.deVos,Factorsinfluencingthe mechanicalstabilityofalginatebeadsapplicableforimmunoisolationof mammaliancells,J.Mech.Behav.Biomed.Mater.37(2014)196–208,http:// dx.doi.org/10.1016/j.jmbbm.2014.05.020.

[13]G.Kaklamani,D.Cheneler,L.M.Grover,M.J.Adams,J.Bowen,Mechanical propertiesofalginatehydrogelsmanufacturedusingexternalgelation,J. Mech.Behav.Biomed.Mater.36(2014)135–142,http://dx.doi.org/10.1016/j. jmbbm.2014.04.013.

[14]R.Pamies,R.R.Schmidt,M.del,C.L.Martínez,J.G.delaTorre,Theinfluenceof monoanddivalentcationsondiluteandnon-diluteaqueoussolutionsof sodiumalginates,Carbohydr.Polym.80(2010)248–253,http://dx.doi.org/10. 1016/j.carbpol.2009.11.020.

[15]RCoreTeam,R:ALanguageandEnvironmentforStatisticalComputing,2013 http://www.r-project.org.

[16]H.Hertz,ÜberdieberührungfesterelastischerKörper,J.FürDieReineUnd Angew.Math.92(1881)156–171.

[17]K.Kim,J.Cheng,Q.Liu,X.Y.Wu,Y.Sun,Investigationofmechanicalproperties ofsofthydrogelmicrocapsulesinrelationtoproteindeliveryusingaMEMS forcesensor,J.Biomed.Mater.Res.A92(2010)103–113,http://dx.doi.org/10. 1002/jbm.a.32338.

[18]S.J.Horn,E.Moen,K.Østgaard,Directdeterminationofalginatecontentin brownalgaebynearinfra-red(NIR)spectroscopy,J.Appl.Phycol.11(1999) 9–13,http://dx.doi.org/10.1023/A:1008024009954.

[19]N.Öztekin,S.Bas¸kan,F.B.Erim,Determinationofalginatecopolymerin pharmaceuticalformulationsbymicellarelectrokineticchromatography,J. Chromatogr.B850(2007)488–492,http://dx.doi.org/10.1016/j.jchromb. 2006.12.025.

[20]A.Haug,O.Smidsrød,Selectivityofsomeanionicpolymersfordivalentmetal ions,ActaChem.Scand.24(1970)843–854.

[21]Y.A.Mørch,I.Donati,B.L.Strand,G.Skjåk-Braek,EffectofCa2+,Ba2+,andSr2+ onalginatemicrobeads,Biomacromolecules7(2006)1471–1480,http://dx. doi.org/10.1021/bm060010d.

Şekil

Fig. 1. Schematic representation of the unaxial compression measurement.
Fig. 3. Effect of (a) Brij 35 and (b) SDS concentrations on the Young’s modulus of the alginate beads with various alginate concentrations
Fig. 6. Scheme of surfactant effect. Calcium ions binds to negative centers on algi- algi-nate chain (a) Addition of SDS increases the negative charge density and therefore a higher amount of crosslinkers (calcium or barium ions) localizes around the algin

Referanslar

Benzer Belgeler

•  In order to increase the effectiveness of inactivated vaccines, these vaccines should be administered in such a way to allow them to stay in the body longer and to stimulate

The disruption of the calcium alginate matrix occurred faster in a phosphate buffer above pH 5.5 because of the chelating action of phosphate ions and at pH 7.4, the affinity

Although stability characterizes the Turkish-Iranian relationship, especially from 2011 to 2015 the Syrian crisis had revealed the clashing strategic interests of Turkey and Iran

In this study, we compared the slow release coefficients, the encapsulation efficiencies and the initial amount of pyranine in alginate beads crosslinked with different metal (Ca 2+

Desorption of Py in water from the alginate beads cross-linked with calcium ions was studied by using the steady state fluorescence technique.. The fluorescence emission intensity

SEM images of (a) pure sodium alginate, (b) pure PVA, (c) 8 mL glutaraldehyde crosslinked SA/PVA hydrogel, (d) 10 mL glutaraldehyde crosslinked SA/PVA hydrogels, (e) 12

The main objective of the current study was to prepare pH- sensitive Ge/SA hydrogels for sustained delivery of an antihistaminic drug (CTZ HCl) to the

to alginate (generally used to prepare beads) in different proportion and found out 1.25:0.75 (alginate:poloxamer) combination in formulation FB4 was the best formulation..