• Sonuç bulunamadı

ON PARA-SASAKIAN MANIFOLDS

N/A
N/A
Protected

Academic year: 2021

Share "ON PARA-SASAKIAN MANIFOLDS "

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ON PARA-SASAKIAN MANIFOLDS

Ahmet YILDIZ

1

, Mine TURAN

1

, Bilal Eftal ACET

2

1Dumlupnar University, Faculty of Arts and Science, Department of Mathematics, Kütahya

2Adyaman University, Faculty of Arts and Science, Department of Mathematics, Adyaman ahmetyildiz@dumlupinar.edu.tr minegturan@hotmail.com eacet@adiyaman.edu.tr

Geli Tarihi:12.08.2010 Kabul Tarihi: 05.01.2011

ABSTRACT

The object of the present paper is to study Para-Sasakian manifolds satisfying certain conditions on the curvature tensor.

M.S.C. 2000: 53B20, 53C15, 53C25.

Key words: Sasakian manifolds, Para-Sasakian manifolds, Weyl-pseudosymmetric manifolds.

PARA-SASAKIAN MANFOLDLAR ÜZERNE ÖZET

Bu çalmann amac erilik tensörü üzerinde belirli artlar salayan Para-Sasakian manifoldlar

incelemektir.

Anahtar Kelimeler: Sasakian manifoldlar, Para-Sasakian manifoldlar, Weyl-pseudosimetrik manifoldlar.

1.Introduction

In ([1]), T. Adati and K. Matsumoto defined para-Sasakian and special para-Sasakian manifolds which are considered as special cases of an almost paracontact manifold introduced by I. Sato and K. Matsumoto ([10]). In the same paper, the authors studied conformally symmetric para-Sasakian manifolds and they proved that an n- dimensional (n>3) conformally symmetric para-Sasakian manifold is conformally flat and special para-Sasakian (n>3). In ([5]), U. C. De and N. Guha showed that an n-dimensional Weyl-semisymmetric para-Sasakian manifold is conformally flat

.

Let (M,g) be an n-dimensional differentiable manifold of class C . We denote by ’ the Levi-Civita connection. We define endomorphisms R(X,Y ) and X

š

Y by

R(X,Y)Z = [’XY]Z -’[X,Y]Z, (1)

(X

š

Y )Z = g(Y,Z)X - g(X,Z)Y, (2) respectively, where X, Y, Z



(M) and (M) is being the Lie algebra of vector fields on M. The Riemannian- Christoffel tensor R is defined by R(X,Y,Z,W)=g(R(X,Y)Z,W),W



(M).

By the definition of the Weyl conformal curvature tensor C of n-dimensional (n>3) differentiable manifold

(2)

1 ( , ) ( , )

( , ) ( , )

( , ) ( , )

2

g Y Z QX g X Z QY C X Y Z R X Y Z

S Y Z X S X Z Y n

ª  º

  ¬«  »¼ (3)

], Y ) Z , X ( g X ) Z , Y ( g )[ n )(

n

( 



 

2 1

W

where Q denotes Ricci operator, i.e. S(X,Y)=g(QX,Y) andW is the scalar curvature of M ([11]). The Weyl conformal curvature tensor C is defined by C(X,Y,Z,W)=g(C(X,Y)Z,W). If C=0, then M is called conformally flat.

For a (0,k)-tensor field T, kt1, on (M,g) we define R˜T, C˜T, and Q(g,T) by ( ( , )R X Y T X˜ )( 1,...,Xk) T R X Y X X( ( , ) 1, 2,...,Xk)T X R X Y X( 1, ( , ) 2,...,Xk)

 ... T X X( 1, 2,..., ( , )R X Y Xk), (4) ( ( , )C X Y T X˜ )( 1,...,Xk) T C X Y X X( ( , ) 1, 2,...,Xk)T X C X Y X( 1, ( , ) 2,...,Xk)

 ... T X X( 1, 2,..., ( , )C X Y Xk), (5) Q g T X X( , )( 1, 2,...,Xk) T X(( šY X X) 1, 2,...,Xk)T X( 1, (X šY X) 2,...,Xk)

 ... T X X( 1, 2,..., (XšY X) k), (6) respectively ([7]).

If the tensor R˜C (respectively C˜R) and Q(g,C) are linearly dependent then M is called Weyl- pseudosymmetric. This is equivalent to

( , )

R C˜ L Q g CC (7) (respectively C R˜ L Q g CC ( , )), which holds on the set UC {x M C: z0 at x} where LC is some function on UC. If R C˜ 0 then M is called Weyl-semisymmetric (see ([6]), ([7]), ([8])). If ’ C 0 then M is called conformally symmetric (see [4]). It is obvious that a conformally symmetric manifold is Weyl-semisymmetric.

Furthermore we define the tensors R( ,[ XC and C( ,[ XR on (M,g) by (R( ,X) C)(Y,Z)W = R( ,X)C(Y,Z)W-C(R( ,X)Y,Z)W[ ˜ [ [

-C(Y,R( ,X)Z)W- C(Y,Z)R( ,X)W[ [ , (8) (C( ,X)[ ˜R)(Y,Z)W = C( ,X)R(Y,Z)W-R(C( ,X)Y,Z)W[ [

-R(Y,C( ,X)Z)W- R(Y,Z)C( ,X)W[ [ . (9)

In this study our aim is to obtain the characterization of P-Sasakian manifolds satisfying the conditions

( , ) ( , ) 0

R[ X ˜ C C[ X ˜ R and R( ,[ X)˜ C C( ,[ XR L Q g CC ( , ).

(3)

2.Preliminaries

Let M be an n-dimensional contact manifold with contact form K , i.e. Kš(dK)n z It is well known that a 0.

contact manifold admits a vector field [ , called the characteristic vector field, such that ( ) 1K [ and ( , ) 0

dK [ X for every X



(M). Moreover, M admits a Riemannian metric g and a tensor field I of type (1,1) such that

I2   … , ( , )I K [ g X [ K( )X , ( ,g X IY) dK( , )X Y .

We then say that ( , , , )I [ K g is a contact metric structure. A contact metric manifold is said to be a Sasakian if (’XI)Y g X Y( , )[ K ( )Y X ,

holds, where ’denotes the operator of covariant differentiation with respect of g ([3]). In this case, we have

’X[ IX,R X Y( , )[ K( )Y XK( )X Y.

Now we give a structure similar to Sasakian but not contact.

An n-dimensional differentiable manifold M is said to admit an almost paracontact Riemannian structure ( , , , )I [ K g , where Iis a (1,1)- tensor field, [ is a vector field, K is a 1-form and g is a Riemannian metric on M such that

I[ 0, K I$ 0,K [ ( ) 1,g X( , )[ K( )X , I2X X K( )X [, (gI IX, Y) g X Y( , )K( ) ( )X K Y ,

for all vector fields X and Y on M. The equation ( )K [ is equivalent to 1 K {1, and then [ is just metric dual of K , where g is the Riemannian metric on M. If ( , , , )I [ K g satisfy the following equations

dK , 0 ’X[ IX,

  (’XI)Y g X Y( , )[ K ( )Y X2 ( ) ( ) ,K X K [Y

then M is called a Para-Sasakian manifold or, briefly, a P-Sasakian manifold. Especially , a P-Sasakian manifold M is called a special para-Sasakian manifold or, briefly, a SP-Sasakian manifold if M admits a 1-form K satisfying

XK)( )Y g X Y( , )K( ) ( ).X K Y In a P-Sasakian manifold the following relations hold:

( , ) (1 ) ( )

S X [ nK X , (10)

(4)

Q[ (n1)[, (12) R(X,Y)[ K(X)Y K(Y)X, (13)

, ) Y , X ( g Y ) X ( Y ) X , (

R [ K  [ (14) for any vector fields X, Y, Z F(M),(see ([2]),([9]) and ([10])).

A Para-Sasakian manifold M is said to be K -Einstein if its Ricci tensor S is of the form S agbK K… , where ,

a b are smooth functions on M ([2]).

3. Main results

In the present section our aim is to find the characterization of the P-Sasakian manifolds satisfying the conditions

( , ) ( , ) 0

R[ X ˜ C C[ X ˜ R and ( ,R[ X)˜ C C( ,[ XR L Q g CC ( , ).

Theorem 1.Let M be an n-dimensional, n>3, P-Sasakian manifold. If the condition ( ,R[ X)˜ C C( ,[ XR 0 holds on M then the manifold is anK -Einstein manifold.

Proof. Let M (n>3) a Para-Sasakian manifold. Then from (8) and (9) we have n

( ( ,R[ XC Y Z W)( , ) R( ,[ X R Y Z W) ( , ) R R( ( ,[ X Y Z W) , ) R Y R( , ( ,[ X Z W) ) R Y Z R( , ) ( ,[ X W)

S(R( ,X)Y,W)Z+g(R( ,X)Y,W)QZ -S(R( ,X)Z,W)Y-g(R( ,X)Z,W)QY 1

-S(Z,R( ,X)W)Y+S(Y,R( ,X)W)Z 2

-g(Z,R( ,X)W)QY+g(Y,R( ,X)W)QZ n

[ [

[ [

[ [

[ [

ª º

« »

« »

  « »

« »

¬ ¼

(15)

g(R( ,X)Y,W)Z-g(R( ,X)Z,W)Y +g(Y,R( ,X)W)Z-g(Z,R( ,X)W)Y (n 1)(n 2)

[ [

W

[ [

ª º

   ¬« »¼,

and

W ) Z , Y ) X , ( C ( R W ) Z , Y ( R ) X , ( C W ) Z , Y )(

R ) X , ( C

( [ ˜ [  [

R(Y,C([,X)Z)WR(Y,Z)C([,X)W

(5)

S(X,R(Y,Z)W) -S( ,R(Y,Z)W)X +(1-n)g(X,R(Y,Z)W) - (R(Y,Z)W)QX -S(X,Y)R( ,Z)W+(1-n) (Y)R(X,Z)W -(1-n)g(X,Y)R( ,Z)W+ (Y)R(QX,Z)W 1

+S(X,Z)R( ,Y)W+(1-n) (Z)R(Y,X)W 2

+(1-n)g(X,Z)R( ,Y)W+ (Z)R(Y,QX)W -S(X,W)R(Y

n

[ [ [ K

[ K

[ K

[ K

[ K

 

,Z) +(1-n) (W)R(Y,Z)X -(1-n)g(X,W)R(Y,Z) + (W)R(Y,Z)QX

[ K

[ K

ª º

« »

« »

« »

« »

« »

« »

« »

« »

« »

« »

« »

¬ ¼

(16)

g(X,R(Y,Z)W) -g( ,R(Y,Z)W)X -g(X,Y)R( ,Z)W+ (Y)R(X,Z)W +g(X,Z)R( ,Y)W+ (Z)R(Y,X)W . ( 1)( 2)

-g(X,W)R(Y,Z) + (W)R(Y,Z)X

n n

[ [

[ K

W

[ K

[ K

ª º

« »

« »

   « »

« »

¬ ¼

Multiplying equations (15) and (16) with [ and using the condition ( , )R[ X ˜ C C( ,[ X)˜ , we can write R 0

S(R( ,X)Y,W) (Z)+(1-n)g(R( ,X)Y,W) (Z) -S(R( ,X)Z,W) (Y)-(1-n)g(R( ,X)Z,W) (Y) -S(Z,R( ,X)W) (Y)+S(Y,R( ,X)W) (Z)

1 -(1-n)g(Z,R( ,X)W) (Y)+(1-n)g(Y,R( ,X)W) (Z) 2 -S(X,R(Y,Z)W)-(1-n)g(X,R(Y,Z)W)

+S(X,Y)g(

n

[ K [ K

[ K [ K

[ K [ K

[ K [ K

 

Z,W)-(1-n)g(X,Y)g(Z,W) +S(X,Z)g(Y,W)+(1-n)g(X,Z)g(Y,W)

ª º

« »

« »

« »

« »

« »

« »

« »

« »

« »

¬ ¼

(17)

g(R( ,X)Y,W) (Z)-g(R( ,X)Z,W) (Y) +g(Y,R( ,X)W) (Z)-g(Z,R( ,X)W) (Y) ( 1)( 2)

-g(X,R(Y,Z)W)-g(X,Y)g(Z,W)+g(X,Z)g(Y,W)

n n

[ K [ K

W [ K [ K

ª º

« »

   ««¬ »»¼

=0.

Putting Y W [ in (17) and then using (10) and (11), we get

> @

1 5(1-n)g(X,Z)-8(1-n) ( ) ( ) 3 ( , )

2 X Y S X Z

n K K

 



> @

4 g(X,Z)- ( ) ( ) 0.

( 1)( 2) X Z

n n

W K K

   (18)

From equation (18), we obtain

4 5

( , ) (1 ) ( , )

3( 1) 3

S X Z n g X Z

n W

§   ·

¨  ¸

© ¹

(6)

Thus M is an K -Einstein manifold.

Theorem 2. Let M be an n-dimensional, n>3, P-Sasakian manifold. If the condition

( , ) ( , ) C ( , )

R[ X ˜ C C[ X ˜ R L Q g C is satisfied on M, then M is either conformally flat, in which case M is a SP-Sasakian manifold, or LC  holds on M. 1

Proof.Assume that M, (n>3), is satisfying the condition ( ,R[ X)˜ C C( ,[ XR L Q g CC ( , ). So we have

R( ,X)C(Y,Z)W-C(R( ,X)Y,Z)W-C(Y,R( ,X)Z)W -C(Y,Z)R( ,X)W-C( ,X)R(Y,Z)W+R(C( ,X)Y,Z)W +R(Y,C( ,X)Z)W+R(Y,Z)C( ,X)W

( X)C(Y,Z)W-C(( X)Y,Z)W

=L .

-C(Y,( X)Z)W-C(Y,Z)( X)W

C

[ [ [

[ [ [

[ [

[ [

[ [

š š

ª º

« š š »

¬ ¼

(20)

Using (6) and multypling equation (20) with [ , we have

(R( ,X)C(Y,Z)W)- (C(R( ,X)Y,Z)W)- (C(Y,R( ,X)Z)W) - (C(Y,Z)R( ,X)W)- (C( ,X)R(Y,Z)W)+ (R(C( ,X)Y,Z)W) + (R(Y,C( ,X)Z)W)+ (R(Y,Z)C( ,X)W)

g(X,C(Y,Z)W)- (C(Y,Z)W) (X) -g(X,Y) (C( ,Z)W)+ (Y) (C(X,Z)W)

C -g(

L

K [ K [ K [

K [ K [ K [

K [ K [

K K

K [ K K

X,Z) (C(Y, )W)+ (Z) (C(Y,X)W) . + (W) (C(Y,Z)X)

K [ K K

K K

ª º

« »

« »

« »

« »

¬ ¼

(21)

Using equations (10) and (11) in (21), we have

(C(Y,Z)W) (X)-g(X,C(Y,Z)W)- (C(R( ,X)Y,Z)W) - (C(Y,R( ,X)Z)W)- (C(Y,Z)R( ,X)W)- (C( ,X)R(Y,Z)W) +g(C( ,X)Y,W) (Z)-g(Z,W) (C( ,X)Y)+g(Y,W) (C( ,X)Z) -g(C( ,X)Z,W) (Y)+g(Y,C( ,X)W) (Z)-g(Z,C( ,X)W) (Y)

LC

K K K [

K [ K [ K [

[ K K [ K [

[ K [ K [ K

g(X,C(Y,Z)W)- (C(Y,Z)W) (X) -g(X,Y) (C( ,Z)W)+ (Y) (C(X,Z)W) -g(X,Z) (C(Y, )W)+ (Z) (C(Y,X)W) . + (W) (C(Y,Z)X)

K K

K [ K K

K [ K K

K K

ª º

« »

« »

« »

« »

¬ ¼

(22)

Interchanging X and Y in (22), we obtain

(7)

(C(X,Z)W) (Y)-g(Y,C(X,Z)W)- (C(R( ,Y)X,Z)

- (C(X,R( ,Y)Z)W)- (C(X,Z)R( ,Y)W)- (C( ,Y)R(X,Z)W) +g(C( ,Y)X,W) (Z)-g(Z,W) (C( ,Y)X)+g(X,W) (C( ,Y)Z) -g(C( ,Y)Z,W) (X)+g(X,C( ,Y)W) (Z)-g(Z,C( ,Y)W) (X)

g(

LC

K K K [

K [ K [ K [

[ K K [ K [

[ K [ K [ K

Y,C(X,Z)W)- (C(X,Z)W) (Y) -g(Y,X) (C( ,Z)W)+ (X) (C(Y,Z)W) -g(Y,Z) (C(X, )W)+ (Z) (C(X,Y)W) . + (W) (C(X,Z)Y)

K K

K [ K K

K [ K K

K K

ª º

« »

« »

« »

« »

¬ ¼

(23)

Substracting (23) from (22), we get

(C(Y,Z)W) (X)- (C(X,Z)W) (Y)-g(X,C(Y,Z)W)+g(Y,C(X,Z)W) + (C(R(X,Y) ,Z)W)- (C(Y,R( ,X)Z)W)+ (C(X,R( ,Y)Z)W) - (C(Y,Z)R( ,X)W)+ (C(X,Z)R( ,Y)W)- (C( ,X)R(Y,Z)W) + (C( ,Y)R(X,Z)W)+g(Y,W) (C( ,X)Z)-g(X,W) (

K K K K

K [ K [ K [

K [ K [ K [

K [ K [ K C( ,Y)Z)

g(X,C(Y,Z)W)-g(Y,C(X,Z)W)+2 (C(X,Z)W) (Y)

-2 (C(Y,Z)W) (X)-2 (Z) (C(X,Y)W)+g(X,Z) (C( ,Y)W) . -g(Y,Z) (C( ,Y)W)+ (W) (C(Y,X)Z)

LC

[

K K

K K K K K [

K [ K K

ª º

« »

« »

« »

¬ ¼

(24)

Putting Z= in (24) we get

3 (C(X, )W) (Y)-3 (C(Y, )W) (X)+g(X,C(Y, )W)

[1 ] 0.

-g(Y,C(X, )W)-2 (C(X,Y)W)

LC K [ K K [ K [

[ K

ª º

 «¬ »¼ (25)

So a contraction of (25) with respect to X gives us

[1LC]

>

K(C( ,Y)W)[

@

0. (26) If LC 0then M is Weyl-semisymmetric and so equation (26) is reduced to

K(C( ,Y)W)[ 0, (27)

which gives

S(Y,W)= 1 ( , ) ( ) ( ).

( 1) g Y W ( 1) n Y W

n n

W W K K

§  · §  ·

¨  ¸ ¨  ¸

© ¹ © ¹ (28)

Therefore M is an -Einstein manifold. So using (27) and (28) the equation (24) takes the form

C(Y,Z,W,X) 0,

which means that M is conformally flat. So by ([2]), M is a SP-Sasakian manifold.

If L z0and K(C( ,Y)W)[ 0,then 1L 0, which gives L 1. This completes the proof of the our

(8)

REFERENCES

[1] Adati T. and Matsumoto K., On conformally recurrent and conformally symmetric P-Sasakian manifolds, (1997), TRU Math.,13, 25-32.

[2] Adati T. and Miyazawa, T., On P-Sasakian manifolds satisfying certain conditions, (1979), Tensor N.S., 33, 173-178.

[3] Blair D.E., Contact manifolds in Riemannian geometry, (1976), Lectures Notes in Mathematics 509, Springer-Verlag, Berlin, 146p.

[4] Chaki M.C., and Gupta B., On conformally symmetric spaces, (1963), Indian J. Math., 5, 113-122.

[5] De U. C. and Guha N., On a type of P-Sasakian manifold, (1992), Istanbul Univ. Fen Fak. Mat. Der., 35- 39.

[6] Deszcz R., Examples of four-dimensional Riemannian manifolds satisfying some pseudo-symmetry curvature conditions, Geometry and Topology of submanifolds, II (Avignon, 1988), 134-143, World Sci.

Publishing, Teaneck, NJ, (1990).

[7] Deszcz R., On pseudosymmetric spaces, (1990), Bull. Soc. Math. Belg., 49, 134-145.

[8] Deszcz R., On four-dimensional Riemannian warped product manifolds satisfying certain pseudo- symmetry curvature conditions, (1991), Colloq. Math., 1, 103-120.

[9] Sato I., On a structure similar to the almost contact structure, (1976), Tensor N.S., 30, 219-224.

[10] Sato I. and Matsumoto K., On P-Sasakian manifolds satisfying certain conditions, (1979), Tensor N.S., 33, 173-178.

[11] Yano K., Kon M., Structures on manifolds, (1984), World Scientific, 508p.

Referanslar

Benzer Belgeler

Figure 1(a) and (b) show scanning electron microscopy (SEM) images of damage craters formed by single bursts (67 pulses per burst, 200 MHz pulse repetition rate, 300 fs pulse

We believe that future work should build on this literature by inves- tigating intergenerational effects of partner responsiveness on offspring happiness, comparing the roles

We investigate whether this phenomenon exists by modeling the processing cost of each query as the sum of its terms' posting list lengths (as in [36]) and repeating

Our results showed that resveratrol treatment not only increased the positive staining in hypertensive rats, but also excessively reduced the positive staining in the renal

For while some excellent critiques of climate security discourse have been produced in recent years, as noted above, none of these has been published within any of the

punishment which any plausible theory of legal punishment must accommodate: the fact that the kind of punishment that our legal systems dispense is in an important sense a public

Within the empiric case of this study that analyzes civil society and state relations under migrant health field in Turkey, this thesis argues that the recent migration wave was

Hüseyin el-Maruf’un, Acem Arslan isimli zimmiye olan üç yüz on akçe borcunu itiraf ettiği mahkeme kaydıdır. Şuhûdü’l-hâl: - Eş-şeyh Ömer Çelebi bin Hızır Aga