• Sonuç bulunamadı

Microfluidic droplet content detection using integrated capacitive sensors

N/A
N/A
Protected

Academic year: 2021

Share "Microfluidic droplet content detection using integrated capacitive sensors"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

B:

Chemical

j ou rn a l h o m ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n b

Microfluidic

droplet

content

detection

using

integrated

capacitive

sensors

Pelin

Kubra

Isgor,

Merve

Marcali,

Mert

Keser,

Caglar

Elbuken

UNAM-NationalNanotechnologyResearchCenter,InstituteofMaterialsScienceandNanotechnology,BilkentUniversity,06800Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12August2014

Receivedinrevisedform

18December2014

Accepted7January2015

Availableonline14January2015

Keywords: Microdroplets

Capacitivesensor

Coplanarelectrodes

Dropletcontentsensing

a

b

s

t

r

a

c

t

Microfluidiccapacitivesensorshavebeenusedfordetectionofdroplets,howevertheyhavebeenlacking thesensitivityrequiredfordetectingthecontentofdroplets.Inthisstudy,wedevelopedascalable, portable,robustandhighsensitivitycapacitivemicrodropletcontentdetectionsystemusingcoplanar electrodeswithnanometerthicksilicondioxide(SiO2)passivationlayerandoff-the-shelfcapacitive

sensors.Themicrofluidicchipwehavedesignedprovideseasyandrapidmodificationofdropletcontent bymixingtwoaqueousliquidsatanygivenratio.Thechangeindielectricconstantofthedropletcontent leadstothechangeincapacitivesignal.Thedielectriccontentofdropletswasmodifiedcontinuously whilecorrespondingcapacitancesignalwasmeasured.Theresolutionofthesystemwasmeasuredas 3dielectricpermittivityunits.Theresultswereverifiedusingasemiconductorparameteranalyzer.The applicationspecificintegratedcircuitusedinthisworkenablesaportable,low-costdetectionsystem andmatchestheperformanceofbench-topanalyzers.Automatedandprecisemeasurementofdielectric contentindropletsforbiochemicalassaymonitoringisamajorapplicationofthepresentedsystem.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Microdroplet based microfluidic systems are very handy platformsforapplicationsthatrequireexperimentationonlarge libraries of samples. The fundamental requirements of most microdroplet systems are formation of monodisperse droplets, measuringtherateofdropletformationanddetectingthe analyt-icalcontentofdroplets.Opticalcountingofdropletsandoptical detectionofdropletcontentarethemostprevalenttechniquesin theliterature[1,2].Opticaldetectionoftenrequiresbulky compo-nentsandfluorescentlabelingthatincreasesthecomplexityand costofthesystem[3].Quenchingoflabelsandsterical interfer-encewithmolecularbindingareotherdrawbacksoffluorescent labeling techniques [4]. Although, optical systems can detect dropletsatveryhighrates(ontheorderofkHz),thesesystemsare notscalable[5].Ontheotherhand,electricalsensingtechniques provideascalableand labelfree alternativefordropletcontent detection,whichallowsmultiplesensorsina smallfootprintat very low cost. Using off-the-shelf and low cost electrical com-ponents for highsensitivity droplet contentdetection can take

∗ Correspondingauthor.Tel.:+903122903550;fax:+903122664365.

E-mailaddress:elbuken@unam.bilkent.edu.tr(C.Elbuken).

microdroplet-based microfluidic systems one step further, and turnthemintoprogrammableandeasy-to-useplatforms.

Electricalsensingfordropletbasedmicrofluidicswasinitially focused ondropletcountingusingeither resistiveor capacitive measurements.Somegroupshavemeasuredthechangein resis-tanceduetothepresenceofdropletsbetweentheelectrodes[6,7]. Luoetal.utilizedanelectrochemicaldetectiontechniqueto mea-suredropletsizeanditsioniccontent[8].Duetothesignificant changeinconductivityofthedispersedandcontinuousphase,very highsensitivitycanbeobtainedinresistivedropletmonitoring. However,direct contact betweenthedropletand theelectrode surfaceshouldbeavoidedtominimizetheriskofelectrolysisand pinningofdropletsonelectrodesurfacewhicheventuallyleadsto cross-contaminationbetweendroplets[9].

Capacitivedetectionofdropletsisalabelfreeandnon-contact detectionmethod [10].Chen etal. andRen etal. have demon-strated capacitivesensingof droplets usingcoplanarelectrodes

[11,12].Usingelectro-wettingondielectric(EWOD)systems,they have showed droplet detection and droplet volume metering. Othergroupshavedemonstrateddetectionofdropletsandtheir contentbyusingthecapacitivecomponentofimpedancesignal

[13,14].However,thesestudiesutilizecustom-madeelectronics thatrequirehighlyspecializedexpertise[10].Inaddition,these sys-temscanonlydetectthepresenceofthedropletandtheyarenot sensitiveenoughtodetectthecontentofthedroplets.

http://dx.doi.org/10.1016/j.snb.2015.01.018

(2)

change.

Inthisstudy,wehavedesignedaY-junctionmicrofluidicdevice that allows rapid and easy modification of droplet content by mixing two liquids,ethanol and distilled (DI)water. High sen-sitivitylabel-freedroplet contentdetectionwas achievedusing coplanarelectrodescoatedwithananometerthickSiO2

passiv-ation layer,commercially available,low-cost capacitivesensors andamicroprocessor.Thesystemwascharacterizedby modify-ingthedielectriccontentofthedropletsontherunandmeasuring thecorrespondingcapacitance signal. Theresults wereverified by comparative measurements of our detection system and a semiconductor parameter analyzer. The capacitive signal was enhanced by minimizingthe thicknessof the passivationlayer that separates the coplanar electrodes from the microchannel. Thissystemprovideslabelfree capacitivedropletcontent mea-surementswhichenablesdielectricspectroscopyindropletbased systems.

2. Experimental

Inthisstudy,weconductedexperimentsusingamicrofluidic deviceschematicallyshowninFig.1.Dropletswereformedusing aT-junctiongeometry[17,18].Inordertochangethedroplet con-tentontherun,weutilizedaY-junctionthatfeedstwodifferent aqueousphases.Atthedownstreamofthedropletgeneration sec-tion,amixingregionandadetectionregionwereplaced.Detection regionconsistsofcoplanarelectrodesthatwereplacedafterthe mixingregion.Theseelectrodeswerepassivatedby360nmSiO2

dielectriclayer.Aphotographofthefabricateddeviceisshownin

Fig.2.

Duringexperiments,dropletswereformedatvaryingethanol andDIwaterconcentrations.Mixingregionensuredthatethanol andDIwaterwereproperlymixedtoobtainhomogeneousdroplets. Themeasuredcapacitancesignalchangesduetothestarkcontrast betweendielectricpermittivity ofthecontinuousand dispersed phasewhenadropletentersthesensingregion.

Itisimportanttopassivatetheelectrodesinordertoprevent cross-contamination between droplets and pinning of droplets ontotheelectrodes.Forpassivationofelectrodes,thereare fun-damentallytwo fabrication options: spin-coating and thin film deposition.We havestudiedbothmethodsindetail inorderto obtainathin,pin-holefreeuniformpassivationlayercoatingto enhancethecapacitancesignal.Wehavepassivatedelectrodesby spincoatingofpolydimethylsiloxane(PDMS),andalsobyplasma enhancedchemicalvapordeposition(PECVD)ofSiO2.Weshowed

thatthethicknessof thepassivationlayercanbedecreased by addingtoluenetothePDMSmixture.Westudiedtheeffectofspin speedonthethicknessofthePDMSand toluene-thinnedPDMS coatedlayer[18].

modeinairunderambienttemperature.ATap190Al-Gprobewith aforceconstantofapproximately48N/mandresonancefrequency of190kHzwasused.Byusingtheanalyticalmodelinourprevious study,electrodewidthandgapweredeterminedas200␮mand 50␮m,respectively[19].

Microfabricated electrodes werepassivated witheither spin coatingofPDMS,toluenethinnedPDMSorthinfilmdepositionof SiO2usingPECVD.Forstudyingtheeffectofspinspeedonthe

thick-nessofthecoatedlayer,thePDMSmixturewasspunonmicroscope slidesfor5minatspinratesvaryingfrom1000rpmto7000rpm.In ordertogetthetoluenethinnedPDMS,PDMSmixturewasmixed withtoluenein1:3(w/w)ratio.Then,thepreparedmixturewas spuncoatedonmicroscopeslidesfor2minatsamespinrates.After spincoating,glassslideswerebakedat110◦Cfor2h.Variationof passivationlayerthicknesswithrespecttospinrateisdiscussed inSection3.2.SiO2passivationlayerwasdepositedusingPECVD

(Vaksis,CVD-Handy).Targetpressure,RFpowerandheaterwere setas1Torr,10W,and200◦C,respectively.Thethicknessofthe passivationlayerwasadjustedbythedepositionduration.

ThicknessoftheSiO2,PDMSandtoluene-thinnedPDMS

passiv-ationlayersweremeasuredusingaVariableAngleSpectroscopic Ellipsometer(J.A.Woollam,V-VASE).Ellipsometerwasusedatan incidenceangleof 65◦.Cauchydispersionfunctionwasusedto determinepassivationlayerthicknesses.Inordertofit experimen-taldata,refractiveindicesofPDMSandtoluene-thinnedPDMSwere takenas1.42,andrefractiveindexofSiO2wastakenas1.55.

Themicrochannelswerefabricatedusingstandardsoft lithog-raphy methods[20].Molds werefabricatedby patterningSU-8 photoresistona4inchsiliconwaferusingphotolithography.The channelheightwasmeasuredas100␮musingStylusProfilometer (KLATencor,P6SurfaceProfiler).

Formoldingprocess,PDMSmixturewaspreparedbymixing siliconeelastomerandcuringagent(DowCorning,Sylgard184)in 10:1(w/w)ratio.Followingdegassingofthemixture,PDMSwas cross-linkedat100◦Cfor4h.Aftercuring,inlet/outletholeswere punchedusingabiopsypunch.Finally,microchannelswerebonded totheglassslideswithpassivatedcoplanarelectrodesusing oxy-genplasma.ThebondingbetweenPDMSmicrochannelsandSiO2

passivationlayerwascompletedusingaplasmacleaner(Nanoplas, DSB6000)at50W,30◦Cfor1min.Inordertoenhancethebonding, thedeviceswerebakedat100◦Cfor12himmediatelyafterplasma activatedbonding.

2.2. Measurementsetup

Microdropletswereformed usingtheT-junction microchan-nelgeometryanda pressurepump(Elveflow).Siliconeoilwith 50mPasviscosity(Ultrakim) wasusedasthecontinuousphase. ThedispersedphasewascomposedofethanolandDIwater.

(3)

Fig.1.Schematicofthemicrofluidicdevice.Theinsetsshowthe(a)dropletgenerationregionandmixingregion,(b)detectionregion.

Fig.2.Photographofthefabricatedmicrofluidicdevice.Channelswerefilledwithdyesolutionsforclarity.

Thedielectric permittivity contrast betweencontinuous and dispersed phase is the basis of capacitive content detection of microdroplets.Across-sectionofthedetectionregionisshownin

Fig.3.Thedielectricpermittivitydifferencebetweensiliconeoil (εr=2.5)andmicrodroplet(εrethanol=24<εr<εrwater=80)causes

anincreasein thecapacitancesignalamplitude.Thesignalwas measuredusingacapacitive-to-digitalconverterintegratedcircuit (AnalogDevices,AD7746)whichprovidesalow-cost,portableand scalablesolutionasopposedtobench-topmeasurementsystems suchasLCRanalyzers.Full-scalelinearcapacitancemeasurement rangeof AD7746is±4pFwitha precisionof4fF. AD7746 per-formsthemeasurement usinganexcitationsignalataconstant frequencyof32kHz.Theexcitationvoltagecanbedigitallytuned byusingtheexcitationset-upregister.Inordertoprevent impre-cisionofthesignalduetoelectricalwiringandkeepthesignalin

Fig.3.Schematicofthecross-sectionofthedetectionregion.

thehigh-accuracylinearmeasurementrange,internaloffset capac-itorwastunedforself-calibrationduringtheteststart-upcycle. AD7746hastwomeasurementmodesbutduringthisstudy,only single-endedmodewasused.Theread-outdataratewaskept con-stantat50Hztohaveenoughsamplingrateandlowmeasurement noise.Thediscussiononselectingtheread-outdataratecanbe seeninSupplementaryMaterial.AD7746wascommunicatedwith LabViewusinga USB-poweredmicrocontroller(Arduino Duemi-lanoveATmega328).Thismicrocontrollerwasusedfordisplaying real-timecapacitancesignalthroughaLabViewinterface.

During theelectrical measurements,droplets wereobserved usinganinvertedcompoundmicroscopeinordertomaintainthe dropletsizeassimilaraspossiblebetweendifferentruns.

2.3. Experimentalprocedure

ThedevicethatisshowninFig.2wasusedforthedielectric contentmeasurementofdroplets.EthanolandDIwaterwere sepa-ratelydrivenfromaqueoussolutioninletsusingapressurepumpin ordertochangethedielectriccontentofthedroplets.Bluedyewas addedtoDIwaterinordertodistinguishtheseparatingboundary betweenDIwaterandethanol(Fig.4).Duringthemeasurements, thestreamlineseparatingtheDIwater(withbluedye)andethanol wasobserved.ThepositionoftheseparatingboundarybetweenDI waterandethanolisusedtodeterminethemixingratio.In addi-tion,thebluecolorcontentofthedropletsinthedetectionregion wasobservedtoformtheaqueousdropletsofpredetermined con-centrations.

For droplet contentdetection,coplanar electrodesthat have awidthof200␮mandagapof50␮mwereused.Experiments

(4)

Fig.4. CapacitancesignalforvariedDIethanolmixtures(a)onlyDI,(b)25%ethanol,(c)50%ethanol,(d)75%ethanol,(e)onlyethanol.Eachpeakcorrespondstoasingle

dropletinthesensingregion.Theplotsshowthedatafor17s.

wereperformedatfivedifferentconcentrationsofethanolDIwater mixtures(0%, 25%,50%,75%,100% (v/v)ethanol concentration). Thereal-timecapacitancesignalwasdisplayedthroughthe Lab-Viewinterfaceandrecordedwhendropletenterstothedetection region.Then,signalamplitudeforeachdropletismeasuredfrom therecorded data. For each experiment snapshot imageswere captured at the Y-junction region and the detection region as showninFig.4.Theflowrateswerefinetunedinordertohave dropletsofsimilarsizeandspeed.Inthisstudy,plug-likedroplets whoselengthislargerthanthespacingbetweenelectrodeswere

formed.Thisensuredthatdropletscompletelyoccupythesensing domain.

Forverificationoftheresultsandtodeterminetheresolution ofthesystem,sevendifferentsolutionsofethanolandDIwater mixtures werepreparedoff thedevicewithethanol concentra-tionsof0%,5%,10%,25%,50%,75%and100%(v/v).Thesesolutions werefedintooneofthedispersedphaseinletswhilekeepingthe otherinletplugged. Dropletsofthesesolutions weregenerated separatelyandcapacitivedropletcontentmeasurementswere per-formedasexplainedabove.Theseresultsformthecalibrationplot

(5)

Fig.5. SolutiondependentcapacitancesignalamplitudesobtainedfromFig.4.Error

barsdenoteonestandarddeviationacross50dropletpeaks.

thatshowsdependenceofcapacitancesignalamplitudeonethanol concentrationasshowninFig.6.

This calibration plot was also verified by recording capaci-tancesignalamplitudeusingahighendbench-topsemiconductor parameteranalyzer(Keithley4200).Thesamepre-mixedsolutions weredispensedontocoplanarelectrodesaslargedroplets(50␮l) usingamicropipette.Thedispensedvolumewashighenoughto completelyfillthesensingdomainof200␮mwidthand 50␮m spacingelectrodes.TheresultscanbeseeninSupplementary Mate-rial.

3. Resultsanddiscussion

3.1. Dropletdielectriccontentmeasurement

Fig. 4 summarizes the capacitive droplet content detection experiments.AsseeninFig.4,DIdroplets (0%ethanol)(εr=80)

causedthehighestcapacitancechangewithanaverageof275fF, whereasethanoldroplets(100%ethanol)(εr=24)causedthelowest

capacitancechangewithanaverageof55fF.DecreaseinDIwater pressurecausedashifttowardsleftatseparatingboundaryatthe Y-junction.Therefore,dropletswithhigherethanolcontentledto smallercapacitancesignal.

ForthefivecasesdemonstratedinFig.4,thecapacitance sig-nalswereanalyzed.Fig.5demonstratestherelationshipbetween ethanolconcentrationofdropletsandaveragecapacitancesignal amplitudestakenover50droplets.Increasingethanol concentra-tioncausesasteadydecreaseinthedetectedsignal.

Fig.6showsthecalibrationplotobtainedbyusingpre-mixed solutions.Thisplotconfirmsthatincreaseinethanolconcentration causeslineardecreaseincapacitivesignalamplitude.DIethanol mixtureswerepreparedinpredeterminedratioswithethanol con-centrationsof0%,5%,10%,25%,50%,75%and100%(v/v).Foreach ethanolconcentration,capacitivesignalamplitudewasaveraged over50droplets.

AsseenfromFig.5 andFig.6,thepeakamplitudedecreases withincreasingethanolconcentration.Thestandarddeviationis higherwhenmixingisperformedontherun(Fig.5)asopposed topre-mixedsolutions(Fig.6).Thisismainlyduetothefactthat thepressure fluctuationsduringdropletbreak-upprocessaffect theupstreampressuresandcausefluctuationinrelativeflowrates ofethanolandDIwater.WhentheresultsinFig.5areanalyzed,it canbeseenthatthelargeststandarddeviationisobtainedfor75% ethanolconcentration.Itwasobservedthatgenerating monodis-persedropletsatthisconcentrationisverychallenging.Asethanol concentrationofdropletswasincreased,thedropletformationat

Fig.6. Calibrationplotobtainedbypre-mixedsolutions.Errorbarsdenoteone

standarddeviationacross50dropletpeaks.

theT-junctionswitchedfromsqueezingregimetodrippingregime (showninSupplementaryMaterial).Indrippingregime,thedroplet break-uppointisafunctionoftheethanolandDIwaterratio. Dur-ingtheformationof75%ethanolconcentrationdroplets,wehave observedhighervariationinthebreak-uppoint.Thisleadstohigher variationindropletsize,causingthehigheststandarddeviationin

Fig.5.It isalsoimportanttonotethatethanolchangesthe sur-facepropertiesofthePDMSmicrofluidicdevicesovertime,which causespartialdropletwetting.Afterafewhoursofcontinuous run-ning,wehaveobservedsomedropletpinningonthesidewallsof channelsasseeninFig.4d.

Inarecentstudy,thissensorwasusedtomeasuredropletsize andspeed[19].Wehaveshownthatanychangeindropletsizeand speedaffectsthecapacitancesignalamplitude.Increasingdroplet sizeordecreasingdropletspeedleadstohighercapacitancesignal amplitude.Therefore,thevariationinFig.5andFig.6ispartially duetothevariationindropletsizeandspeed.Duringallofthe mea-surements,thepressuresystemwasadjustedtoformdropletsof approximately450␮minlength.Themonodispersityofdroplets wasmeasuredas5–10%fromtherecordedimagesofdroplets.It wasalsoobservedthatmonodispersitywashigherforthedroplets thatweregeneratedusingthepre-mixedsolutions.Thisexplains thesmallerstandarddeviations observedin Fig.6compared to

Fig.5.Otherthanthemeasurementsat75%ethanolconcentration, allthemeasurementsfollowalineartrendlineinboth measure-ments.Itisalsoimportanttonotethatthe5%changeinthedroplet ethanolcontentcanberesolved,whichcorrespondstoadielectric constantunitresolutionoflessthan3.

Thelineardecreaseof capacitancesignaldue tothe increas-ing ethanol concentration was verified using a semiconductor parameteranalyzer.Duringtheseverificationmeasurements50␮l dropletswerepreciselypipettedontothe375nmSiO2passivated

electrodesusing thepre-mixedDIwater ethanol solutions.The resultantplotcanbefoundasSupplementaryMaterialtogether withthephotographofthefabricateddevice.Sincethesensing domainis completely covered withthesolutions, thevariation duetochangingdropletsizewaseliminated.Weobservedalinear responsewithR2=0.99.Thesemeasurementsareinperfect

agree-mentwiththetheoreticalpredictionsthatthecapacitancesignal amplitudelinearlydecreaseswithincreasingethanol concentra-tions. The signalamplitudefor DIsample (εr=80)was1054fF,

whereasitwas276fF forethanolsample(εr=24).Theseresults

ensuredthatthevariationandnonlinearityinthemicrofluidic sys-temisduetothevariationindropletgenerationdynamics.The changingcontentofdispersedphaseaffectstheviscosityaswellas

(6)

Fig.7. PDMSandtoluenethinnedPDMSthickness.PDMSthickness(pink,square)

for5min.spinningtimeandPDMS:toluene1:3(w/w)thickness(blue,diamond)

for2min.spinningtime(Forinterpretationofthecolorinformationinthisfigure

legend,thereaderisreferredtothewebversionofthearticle.).

thewettingconditions,whichinturnaltersdropletformationat theT-junction.

Inordertoperformhighsensitivitydropletcontent measure-ments,itiscriticaltominimizethebaselinenoiselevels.Accuracy ofAD7746dependsontheshieldingofthesystemandelectrodes aswellasthemeasurement read-outrate.Theread-outrateof AD7746canbevariedbetween10Hzand90Hz. Wehave char-acterizedthebaselinenoiselevelforDIwaterdropletsmeasured atdifferentdatarates.TheplotsaregivenasSupplementary Mate-rial.Wehaveobservedthatlowdataratesdecreasebaselinenoise levels,howeverthesamplingrateatthesevalues(10Hz)isnot suf-ficienttosamplethedroplets.At10Hzsamplingrate,dropletspass overthesensingregioninapproximately500ms,whichyieldsonly fourorfivedatapointsforeachdroplet.Thisleadstovariationin thecapacitancesignalamplitude.Therefore,wehaveincreasedthe dataread-outrateofAD7746,untilwehaveobserveduniform sig-nalforidenticalDIdroplets.Wehavesetourdatarateas50Hz.The baselinenoiselevelatthisspeedwas15fF.Itisworthmentioning thatthedatarateforthesensorshouldbetailoreddependingon theflowrateofthedroplets.

3.2. Signalenhancementthroughthinnerpassivationlayer

Formicrofluidicsystemsthatcontaincapacitivedetectionusing coplanarelectrodes,havingapassivationlayerisimportantto pre-ventcross-contaminationbetweensamples.Sincethethicknessof thepassivationlayerdeterminesthedistanceofthe microchan-nelfromtheelectrodes(Fig.3),itiscriticaltokeepthethickness aslowas possibletoimprove thesignalamplitude.In orderto comparedifferentpassivationlayertypesinterms ofthickness, uniformityand quality, we used PDMS, toluene-thinned PDMS andSiO2.WehavestudiedtheeffectofspinspeedforPDMSand

toluene-thinnedPDMStoobtainthinnerpassivationlayers. Thick-nessof PDMSdepends onspin speed, duration,mixing ratioof siliconeelastomerandcuringagent,ambientconditions (tempera-ture,humidity),timebetweenPDMSpreparationandspincoating. AsitcanbeseenfromFig.7,fora5minspinningtime,increasing spinspeedexponentiallydecreasesPDMSpassivationlayer thick-ness.

Itshouldbenotedthatinordertogetconsistentcoating thick-nessesformultipledevices,careshouldbetakenfortheduration

Therefore, weuseda thin filmdepositiontechnique, PECVD,in ordertoachieveuniformityandnanometerscalethickness.

WecoatedthecoplanarelectrodeswithtwodifferentSiO2

pas-sivation layerthicknesses and measuredthe capacitancesignal amplitudesforDIdropletsusingthesameY-junctionchannel.For 180nm thickSiO2 passivationlayer,weachieved514fF

capaci-tancesignalamplitude,whereaswegot275fFcapacitancesignal amplitudefor 360nmthick SiO2 passivationlayeras shown in

Fig.4a. These resultsprovea 10-foldcapacitance signal ampli-tudeenhancementfor DIdropletsascompared toourprevious studywhere toluene-thinnedPDMS passivationlayerwasused andthecapacitancesignalwasmeasuredas26fF[19].Wehave also confirmedthe effect of passivation layerthickness onthe signal level by measuring the capacitance change signal using PDMScoatedelectrodes.WecancontrolthethicknessofPDMS in a wide range as shown in Fig. 7. We have increased the thickness of PDMS passivation layer by successive spin coat-ing steps in between each measurement. We have observed thatthesignalamplitudedecreasessignificantlywithincreasing passivationlayerthickness(Fig. S3inSupplementaryMaterial). Therefore,forapplicationsrequiringhighsensitivity,itis impor-tanttominimizethethicknessofthepassivationlayer,preferably using thin film deposition techniques to maximize the signal amplitude.

3.3. Outlook

AsrecentlydiscussedindetailbyHolgerBecker, commercial-izationoflab-on-a-chipdevicesarefacingseveralhurdles[21].As themicrofluidiccommunity,itisanadditionalassignmentforusto considerthemanufacturabilityandscalabilityofthetechnologies wedeveloptoovercomethesehurdles.Thisstudytakesastepin thatdirectionbyutilizingverylowcostelectronicsforhigh sensi-tivitymeasurementofdropletcontent(ArduinoNano$20,AD7746 $4).Dropletcontentdetectionisrequiredformostofthedroplet basedbiochemicalassays.Inadditiontothedropletdielectric con-tentmeasurement,thissystemcanbeusedforveryprecisedroplet sizeandspeeddetectionaswellasdropletcounting.Monitoring metabolicactivityof cellsencapsulatedindropletsusing copla-narelectrodeswillbeaninterestingapplicationofthissystem[5]. Anotherpotentialapplicationofthissystemisdielectricindexingof dropletsasanalternativetochemicalindexingthatisaccomplished byencodedparticlesorlabeledbeads[22].

4. Conclusions

Inthis study,wehave demonstratedhighsensitivity capaci-tivedropletcontentdetectionusingascalableandcost-effective method.We showedthatthereisa linearrelationshipbetween

(7)

thedecreaseindielectricpermittivityofdropletcontentandthe capacitivesignal.Weverifiedtheseresultsbyusinga semiconduc-torparameteranalyzer.Inordertogobeyondtheroutineusesof capacitivesensorsasdropletdetectionsensors,itwasrequiredto increasethesystemsensitivitysothatdropletcontent measure-mentswerealsopossible.Wehavedemonstratedthatsensitivity canbeimprovedbyminimizingthethicknessofthepassivation layer. We showed that using commercially available, low-cost electricalcomponents,dropletcontentcanbedetectedinrobust, preciseandscalablemannerathighsensitivity.Thepresented sys-temisanalternativeforbulkyandcostlybench-topanalyzers.

Acknowledgment

TheauthorsacknowledgesupportfromEuropeanUnionFP7 MarieCurieCareerIntegrationGrant(no.322019)andState Plan-ningOrganizationofTurkeyfor thesupportofUNAM–National NanotechnologyResearchCenter.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.snb.2015.01.018.

References

[1]M.R.deSaintVincent,S.Cassagnere,J.Plantard,J.P.Delville,Real-timedroplet caliperfordigitalmicrofluidics,Microfluid.Nanofluid.13(2012)261–271.

[2]Y.Zhao,Z.G.Xu,M.Parhizkar,J.Fang,X.G.Wang,T.Lin,Magneticliquidmarbles, theirmanipulationandapplicationinopticalprobing,Microfluid.Nanofluid.13 (2012)555–564.

[3]J.Schemberg,A.Grodrian,R.Romer,G.Gastrock,K.Lemke,Onlineoptical detec-tionoffoodcontaminantsinmicrodroplets,Eng.LifeSci.9(2009)391–397.

[4]U.Resch-Genger,M.Grabolle,S.Cavaliere-Jaricot,R.Nitschke,T.Nann, Quan-tumdotsversusorganicdyesasfluorescentlabels,NatureMethods5(2008) 763–775.

[5]H.N.Joensson,M.Uhlén,H.A.Svahn,Dropletsizebasedseparationby deter-ministiclateraldisplacement—separatingdropletsbycell-inducedshrinking, LabChip11(2011)1305–1310.

[6]N.Srivastava,M.A.Burns,Electronicdropsensinginmicrofluidicdevices: auto-matedoperationofananoliterviscometer,LabChip6(2006)744–751.

[7]M.C.Cole,P.J.A.Kenis,Multiplexedelectricalsensorarraysinmicrofluidic networks,Sens.ActuatorsB-Chem.136(2009)350–358.

[8]C.X.Luo,X.J.Yang,O.Fu,M.H.Sun,Q.Ouyang,Y.Chen,etal.,Picoliter-volume aqueousdropletsinoil:Electrochemicaldetectionandyeastcell electropora-tion,Electrophoresis27(2006)1977–1983.

[9]B.P.Cahill,R.Land,T.Nacke,M.Min,D.Beckmann,Contactlesssensingofthe conductivityofaqueousdropletsinsegmentedflow,Sens.ActuatorsB-Chem. 159(2011)286–293.

[10]M.Demori,V.Ferrari,P.Poesio,D.Strazza,Amicrofluidiccapacitancesensorfor fluiddiscriminationandcharacterization,Sens.ActuatorsA-Phys.172(2011) 212–219.

[11]H.Ren,R.B.Fair,M.G.Pollack,Automatedon-chipdropletdispensingwith volumecontrolbyelectro-wettingactuationandcapacitancemetering,Sens. ActuatorsB-Chem.98(2004)319–327.

[12]J.Z.Chen,A.A.Darhuber,S.M.Troian,S.Wagner,Capacitivesensingofdroplets formicrofluidicdevicesbasedonthermocapillaryactuation,LabChip4(2004) 473–480.

[13]X.Z.Niu,M.Y.Zhang,S.L.Peng,W.J.Wen,P.Sheng,Real-timedetection,control, andsortingofmicrofluidicdroplets,Biomicrofluidics1(2007).

[14]E.Ghafar-Zadeh,M.Sawan,D.Therriault,A0.18-mumCMOScapacitivesensor lab-on-chip,Sens.ActuatorsA-Phys.141(2008)454–462.

[15]M.F.Abdullah,P.Leow,M.A.Razak,F.C.Harun,On–chipdropletssensingusing capacitivetechnique,J.Teknologi61(2013).

[16]J.Li,Y.X.Wang,E.K.Dong,H.S.Chen,USB-drivenmicrofluidicchipsonprinted circuitboards,LabChip14(2014)860–864.

[17]T.Thorsen,R.W.Roberts,F.H.Arnold,S.R.Quake,Dynamicpatternformation inavesicle-generatingmicrofluidicdevice,Phys.Rev.Lett.86(2001)4163.

[18]P.Garstecki,M.J.Fuerstman,H.A.Stone,G.M.Whitesides,Formationofdroplets andbubblesinamicrofluidicT-junction-scalingandmechanismofbreak-up, LabChip6(2006)437–446.

[19]C.Elbuken, T.Glawdel,D. Chan,C.L.Ren,Detectionofmicrodroplet size and speed usingcapacitive sensors, Sens. Actuators A-Phys. 171 (2011) 55–62.

[20]D.C.Duffy,J.C.McDonald,O.J.A.Schueller,G.M.Whitesides,Rapid prototyp-ingofmicrofluidicsystemsinpoly(dimethylsiloxane),Anal.Chem.70(1998) 4974–4984.

[21]H.Becker,Chips,money,industry,educationandthekillerapplication,LabChip 9(2009)1659–1660.

[22]K.Braeckmans,S.C.DeSmedt,M.Leblans,R.Pauwels,J.Demeester,Encoding microcarriers:presentandfuturetechnologies,Nat.Rev.DrugDiscov.1(2002) 447–456.

Biographies

PelinKubraIsgorreceivedherB.Sc.degreeinElectricalandElectronicsEngineering

fromKocUniversity,Turkeyin2012.ShepursuesherM.Sc.degreeinDepartment

ofMaterialsScienceandNanotechnologyatNationalNanotechnologyResearch

Center–UNAMatBilkentUniversity,Ankara,Turkey.Herresearchinterestsinclude

microdroplet-basedmicrofluidicsystemsandlab-on-a-chipdevices.

MerveMarcalireceivedherB.Sc.degreeinBiomedicalEngineeringfromBaskent

University,Turkeyin2013.In2012,sheworkedasasummerresearcheratJade

UniversityofAppliedScienceinGermanyandatKocUniversity.Shepursuesher

M.ScdegreeinDepartmentofMaterialsScienceandNanotechnologyatNational

NanotechnologyResearchCenter–UNAMatBilkentUniversity,Ankara,Turkey.

MertKeserreceivedhisB.Sc.degreeinBiomedicalEngineeringfromBaskent

Uni-versity,Turkeyin2013.In2012,heworkedasasummerresearcheratKocUniversity

aboutmicrodropletdetection.Duringsummerof2013,heworkedatNational

Nano-technologyResearchCenter–UNAMasavisitingresearcher.

CaglarElbukenreceivedhisB.Sc.degreeinElectricalandElectronicsEngineering

fromBilkentUniversity,Turkeyin2004andhisPh.D.degreeinMechanicaland

MechatronicsEngineeringfromUniversityofWaterloo,Canadain2008.Heworked

asapostdoctoralassociateattheWaterlooMicrofluidicsLaboratoryfortwoyears

beforejoiningtoAbbottPoint-of-CareasaseniorR&Dscientist.Later,hejoinedKoc

Universityasaresearchassistantprofessor.Since2012,heisworkingatBilkent

University,NationalNanotechnologyResearchCenterasanassistantprofessor.His

researchinterestsincludelab-on-a-chipdevices,microdroplet-basedmicrofluidic

Şekil

Fig. 1. Schematic of the microfluidic device. The insets show the (a) droplet generation region and mixing region, (b) detection region.
Fig. 4. Capacitance signal for varied DI ethanol mixtures (a) only DI, (b) 25% ethanol, (c) 50% ethanol, (d) 75% ethanol, (e) only ethanol
Fig. 5. Solution dependent capacitance signal amplitudes obtained from Fig. 4. Error bars denote one standard deviation across 50 droplet peaks.
Fig. 7. PDMS and toluene thinned PDMS thickness. PDMS thickness (pink, square) for 5 min

Referanslar

Benzer Belgeler

It was shown that source memory performance is better for faces with negative be- havioral descriptions than faces that match positive and neutral behavior descriptions (Bell

When Said (1979) asserts “the Orient is Orientalized”, the East and the Eastern subject is produced within this discourse, because it is the West that have the competence in

According to the major contributor of noise in lasers during amplification and oscillation is the transfer of noise of the pump lasers, the main aim of this paper is introduing a

Asymptomatic patients displaying a type 1 Brugada ECG (either spontaneously or after sodium channel blockade) should undergo EPS if a family history of sudden cardiac

Ob bjje ec cttiivve e:: We aimed to investigate the value of N-terminal pro-Brain Natriuretic Peptide (NT-proBNP) in combination with tissue Dopp- ler imaging (TDI) to predict

We certify that we have read the thesis submitted by Güliz Bozkurt titled “The Effects of Using Diaries as a means of Improving Students’ Writing, Vocabulary and Reflective

But now that power has largely passed into the hands of the people at large through democratic forms of government, the danger is that the majority denies liberty to

Indeed, three main mechanisms have been described so far by which neutrophils can contribute to thrombo- inflammation in either inflammatory or neoplastic conditions: ( 1 ) by