• Sonuç bulunamadı

Gold-silver-nanoclusters having cholic acid imprinted nanoshell

N/A
N/A
Protected

Academic year: 2021

Share "Gold-silver-nanoclusters having cholic acid imprinted nanoshell"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatSciVerseScienceDirect

Talanta

j ourna l h o me p a g e : w w w . e l s e v i e r . c o m / l o c a t e / t a l a n t a

Gold–silver-nanoclusters

having

cholic

acid

imprinted

nanoshell

Aytac¸

Gültekin

a

, Arzu

Ersöz

b

, Adil

Denizli

c

, Rıdvan

Say

b,∗

aDepartmentofEnergySystemsEngineering,Karamano˘gluMehmetbeyUniversity,Karaman,Turkey bDepartmentofChemistry,AnadoluUniversity,Eskis¸ehir,Turkey

cDepartmentofChemistry,HacettepeUniversity,Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received26August2011

Receivedinrevisedform16February2012 Accepted23February2012

Available online 3 March 2012

Keywords:

Gold–silver-nanoclusters Molecularlyimprintedpolymers Cholicacid

Photoluminesence

a

b

s

t

r

a

c

t

Molecularimprintedpolymers(MIPs)asarecognitionelementforsensorsareincreasinglyof inter-estandMIP-nanoparticleshavestartedtoappearintheliterature.Inthisstudy,wehaveproposeda novelthiolligand-cappingmethodwithpolymerizablemethacryloylamido-cysteine(MAC)attachedto gold–silver-nanoclustersreminiscentofaself-assembledmonolayerandhavereconstructedsurfaceshell bysynthetichostpolymersbasedonmolecularimprintingmethodforcholicacidrecognition.Inthis method,methacryloylamidohistidine–Pt(II)[MAH–Pt(II)]hasusedasanewmetal-chelatingmonomer viametalcoordination–chelationinteractionsandcholicacid.Nanoshellsensorswithtemplatesgivea cavitythatisselectiveforcholicacid.ThecholicacidcansimultaneouslychelatetoPt(II)metalionand fitintotheshape-selectivecavity.Thus,theinteractionbetweenPt(II)ionandfreecoordinationspheres hasaneffectonthebindingabilityofthegold–silver-nanoclustersnanosensor.Thebindingaffinityof thecholicacidimprintednanoparticleshaveinvestigatedbyusingtheLangmuirandScatchard meth-odsanddeterminedaffinityconstant(Kaffinity)hasfoundtobe2.73×104molL−1and2.13×108molL−1,

respectively.Atthelaststepofthisprocedure,cholicacidlevelinbloodserumandurinewhichbelong toahealthypeopleweredeterminedbythepreparedgold–silver-nanoclusters.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Bileacidsareimportantsteroidalcompoundswhichare syn-thesizedfromcholesterolintheliver,storedinthegallbladder, andreleasedinthesmallintestine forthedigestionoffatsand lipids.Theconcentrationofbileacidsinbodyisrelatedwith hep-atitis,gallstone and otherdiseases in liver.The qualitative and quantitativeanalysisofbileacidshavebothclinicaland pharma-ceuticalsignificance.Medically,itisfeasibletoreducecholesterol contentinbodybyremovingbileacids,especiallyforthe treat-mentofhyperlipidemia[1,2].Itisthusimportanttopreparebile acidsorbentswithhighselectivityforanalysisandpotential medi-calapplications[3].Cholicacidaswellasitsderivativesisthemain componentofbileacids.Severalmethodssuchasliquid chromatog-raphy (LC)with UV detection[4–6], LCcoupledto evaporative lightscatteringdetection(ELSD)[7,8],ultrahigh-performance liq-uidchromatography–massspectrometry(UHPLC)[9],havebeen appliedforbileacidsdetectioninserumbuttheyuselargeand costlyinstrumentsandrequiresophisticated,frequentlywide anal-ysisprocedures.

∗ Correspondingauthorat:FenFakültesi,YunusEmreKampüsü,Anadolu Univer-sitesi,26470Eskis¸ehir,Turkey.Tel.:+902223350580;fax:+903204910.

E-mailaddress:rsay@anadolu.edu.tr(R.Say).

Molecularimprintingisatechnologytocreaterecognitionsites inamacromolecularmatrixusingamoleculartemplate[10].In otherwords,boththeshapeimageof thetarget andalignment ofthefunctionalmoietiestointeractwiththoseinthetarget,are memorizedinthemacromolecularmatrixfortherecognitionor separationofthetargetduringformationofthepolymericmaterials themselves[11].Molecularlyimprintedpolymers(MIPs)areeasyto prepare,stable,inexpensiveandcapableofmolecularrecognition [12].Therefore,MIPscanbeconsideredasartificialaffinitymedia. Molecularrecognition-basedseparationtechniqueshavereceived muchattentioninvariousfieldsbecauseoftheirhighselectivity fortargetmolecules.Threestepsareinvolvedintheion-imprinting process:(i)complexationoftemplate(i.e.,metalions)toa polymer-izableligand,(ii)polymerizationofthiscomplexand(iii)removal oftemplateafterpolymerization[13].

A nanoparticle which historically has included nanopow-der, nanocluster, and nanocrystal is a small particle with at least one dimension less than 100nm. A nanocluster is an amorphous/semicrystallinenanostructure. Thisdistinction is an extension of the term “cluster” which is used in inor-ganic/organometallicchemistrytoindicatesmallmolecularcages of fixed sizes [14]. In last decades, great research efforts have focusedonnanoparticleswithaprospecttotheirpotential appli-cationsinnanoelectronics,sensortechnology, non-linearoptics, catalysts,hydrogenstorageandsolartechnology[15].Becauseof theirlargesurface-to-volumeratio,quantummechanicsizeeffects

0039-9140/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.talanta.2012.02.057

(2)

A.Gültekinetal./Talanta93 (2012) 364–370 365

andcurvature-inducedsurfaceeffectsnanoparticlesexhibitnovel properties,forexamplelowermeltingpoint,higherself-diffusion coefficient,lowereffectiveDebyetemperature,highersolid–solid phasetransitionpressure,decreasedferroelectricphasetransition temperature,aswellaschanged thermophysicalproperties and size-dependentcatalytic activity [16,17]. The interest in study-inggreat withmetallic and bimetallicnanoparticles becauseof boththefundamentalunderstandingandpotentialtechnological applications.Ata fundamental level,information onthe evolu-tionofelectronicstructuresofsmallmetallicparticlesandtheir effectsontheopticalabsorptionspectracontinuetobeamajor goalofresearchonmetalclustersandnanoparticles.Ona practi-callevel,theunusualopticalpropertiesofmetallicnanoparticles areexploitedforavarietyofapplicationsincludingoptical mark-ers for biomolecules, biological sensors, optical filters, surface enhancementinRamanspectroscopyandultrafastnon-linear opti-caldevices[18–20].

In last years, the combination of nanoparticles and MIPs havebeenappliedin selectivesensing detection.Themolecular imprintingnanotechnologiesareexpectedtogreatlyenhancethe molecularaffinityofMIPmaterials,andthusprovideawiderrange of applications approaching to biological receptors. Nanostruc-tured,imprintedmaterialshaveasmalldimensionwithextremely highsurface-to-volumeratio,sothatmostoftemplatemolecules aresituatedatthesurfaceandintheproximityofmaterials sur-face.Inthecaseofnanosizedparticles,mostofimprintedsitesare situatedatthesurfaceorintheproximityofsurface.Therefore,the formsofimprintedmaterialsareexpectedtogreatlyimprovethe bindingcapacity andkineticsandsite accessibilityofimprinted materials.TheMIP nanosphereswith100-nmsizehada higher bindingcapacity,whichwas2.5foldthatofnormalbulkyparticles with5-␮msize.Ontheotherhand,thelow-dimensional nanos-tructureswithimprintedsiteshaveveryregularshapesandsizes, andthetunableflexibilityofshapesandsizes.Theimprinted nano-materialshavealsobetterdispersibilityinanalytesolutionsand thusgreatlyreducetheresistanceofmasstransfer,exhibitingafast bindingkinetics.Theimprintednanomaterialswithwell-defined morphologiescanfeasiblybeeninstalledontothesurfaceofdevices inarequiredformformanyapplicationsinnanosensorsand molec-ulardetection[21].Onlyafewapplicationofnanoclusters/MIPs havebeenreported[22–24].Inthisstudy,wehaveproposedanovel thiol ligand-exchange method using polymerizable methacry-loylamidocysteine (MAC) of gold–silver-nanoclusters to cap by organic layer, reminiscent of a self-assembled monolayer and have reconstructed surface shell by synthetic host polymers basedonmolecularimprinting methodfor cholicacid recogni-tion.Methacryloylamidohistidine–Pt(II)[MAH–Pt(II)],wasusedas anewmetal-chelatingmonomerviametalcoordination–chelation interactionsandcholicacid.Wehavecombinednanoscale materi-alswithMIPconsideringtheabilityofcholicacidtochelateofPt(II) ionofMAHmonomertocreatereminiscentligandexchange(LE) assembledbindingsites,becausethePt(II)primarilyinteractswith thecholicacid[25].Inthisstudy,synthesis,characterizationand efficiencyofthegold–silver-nanoclusterssensorbasedoncholic acidimprintedpolymerhaveinvestigated.Cholicacidlevelinblood serumandurinehasdeterminedusingthisAu–Agnanosensor.

2. Experimental

2.1. Generalmethods

Methacryloylchloride, wassupplied by Aldrichand used as received. Cholic acidand chenodeoxycholic acidwere supplied bySigmaAldrichandethyleneglycoldimethacrylate(EDMA)was obtainedfromFlukaA.G.,distilledunderreducedpressureinthe presenceofhydroquinoneinhibitorandstoredat4◦C untiluse.

Fig.1.(a)MALDI-TOF/MSspectrumofMAH-Pt(II)(2␮LofMAH-Pt(II)solutionwas mixedwith18␮Lofa10mgmL−1solutionofCHCAinacetonitril/0.1%TFA.The

accelerationvoltagewassetto20kVandthedelaytimewas100nsand(b)FTIR spectrumofMAH-Pt(II).

Azobisisobutyronitrile(AIBN) wasalso supplied fromFluka. All otherchemicalswereofreagentgradeandwerepurchasedfrom MerckAG.Allwaterusedintheexperimentswaspurifiedusinga BarnsteadNANOpureultrapurewatersystem.

Photoluminescencespectrawereacquiredby spectrofluorom-eter (Varian Cary Eclipse, Australia). 1H and 13C NMR spectra

were recorded in DMSO-d6 with TMS as theinternal standard

usingBruker500MHzNMRequipment.TheTransmissionEmission Microscopy(TEM)imagesofnanocrystalswereacquiredona FEI-TecnaiTMG2 Sprittransmissionelectronmicroscope(20–120kV).

Samplepreparationwasconsistedofdropcoatingthe nanoclus-tersontocarbon-coatedcoppergridsandairdried.Ramanspectra imageswereobtainedusingaRamanSpectrophotometer(Bruker SenterraDispersiveRamanMicroscope,Germany).Fourier Trans-formInfrared(FTIR)spectraimageswereobtainedusingaFTIR (Spectrum100,PerkinElmer,USA).Forthispurposethedrybeads (about 0.1g) were thoroughlymixed withKBr (0.1g, IRGrade, Merck,Germany),pressedintoapelletandthentheFTIRspectrum wasrecorded.

2.2. Preparationoffunctionalandmetal-chelatemonomers MAC,monomer,wasusedforformingofreminiscentof self-assembled monolayer on thesurface of nanoparticlesand was synthesizedand characterizedaccordingtothepreviously pub-lishedprocedure[26].Histidine-functionalmonomer,MAH,was synthesizedaccordingtothepreviouslypublishedprocedure[27] andcharacterizedwith1HNMR.

DataforMAH:1HNMR(CDCl

3):1.99(t;3H,J=7.08Hz,CH3),

1.42(m;2H,CH2),3.56(t;3H, OCH3),4.82–4.87(m;1H,metil),

5.26(s;1H,vinilH),5.58(s;1H,vinil),6.86(d;1H,J=7.4Hz,NH), 7.82(d;1H,J=8.4Hz,NH),6.86–7.52(m;5H,aromatic).

On the other hand, metal-chelate monomer, MAH–Pt(II), was synthesized according to the our previously published

(3)

Fig.2. Schematicillustrationof cholicacidmolecular imprinting onMACmodifiedAu–Ag nanoclusters (1). Au–Agnanoclusters polymerizedwith AIBN, EDMA MAH–Pt(II)–cholicacid(2).Cholicacidremovedwith12mL(3/1,v/v)of2MNaOH/THF(3).

procedure [28]. MAH–Pt(II) was preorganized using MAH and PtCl2. MAH (0.1mmol) and PtCl2. (0.1mmol) were dissolved

in 5.0mL of aceton–water and the solution was stirred for 6h. MAH–Pt(II)metal-chelate monomerwascharacterizedwith MALDI-TOF/MS(Fig.1a).Theionpeaksat415and443m/z con-firmsthatMAH–Pt–(H2O)2metal-chelatemonomerstructurewas

producedexactly.Thissitutationcanbeexplainedinthe follow-ingway:ifPtisin198isotopeforminMAH–Pt–(H2O)2structure,

the molecularweight of MAH–Pt–(H2O)2 is 457gmol−1. When

CH2 bondis removed,thepeakis observedat 415m/z.Ifthe

192isotopeislocated,themolecularweightis451and2molof H2Oisremoved fromthestructureof MAH–Pt–(H2O)2 and the

peakisobservedat443m/z.ThisindicatesthatMAH–Pthasbeen synthesized.

Furthermore, Pt–N vibration bands at 552 and 441cm−1 in FTIRspectrumshowthatPt(II)wasincorporatedintoMAH struc-ture(Fig.1b).Ligandexchangemonomer,MAH–Pt(II)–cholicacid, was preorganized using MAH–Pt(II) and template, cholic acid. MAH–Pt(II)(0.1mmol)andcholicacid(0.1mmol)weredissolved in5.0mLofethanolandthesolutionwasstirredfor24h.

(4)

A.Gültekinetal./Talanta93 (2012) 364–370 367

2.3. Synthesisofgold–silver-nanoclustersandcholicacid imprintedgold–silver-nanoclusterssensor

The gold–silver-nanoclusters were prepared in a two-phase water/toluene system using a modified Brust method [29,30]. Briefly,nanoclusterswerepreparedbythedropwiseadditionof 0.01MaqueousNaBH4 solutionin anequalvolumeof

ammon-ical aqueous 0.5mM HAuCl4 (pH ca. 7.8) and 1mM MAC in

ethanolundervigorousstirring.0.5mMAgNO3wasaddedto40mL

of Au–MAC nanoclusters dispersion under continuous stirring. Au–Ag–MACnanoclusterswereseparatedandwashedthoroughly several times with water and toluene and dried under nitro-gen,followedbyredispersionindimethylsulfoxide(DMSO).For thesynthesisofAu–Agnanoclustershavingcholicacidimprinted nanoshell,methacryloyl-activatednanoclusters(having␲bondfor polymerization)wereaddedintothereactionmixturecontaining themetal-chelate(MAH–Pt(II)–cholicacid)monomer(0.05mmol) inDMSO, EDMAcrosslinkingmonomer (0.4mmol) and the ini-tiator,AIBN (1mol%) for theradical polymerizationin ethanol. This solutionwas transferred into thedispersion medium and stirredmagneticallyataconstantstirringrateof600rpminaglass polymerizationtube.Thepolymerizationtubewasirradiatedwith UVlightat365nmfor 4h.Afterthepolymerization, cholicacid nanoshellshavingAu–Agnanoclusterswereseparatedfromthe polymerizationmedium.Theresiduals(e.g.,unconvertedmonomer andinitiator)wereremovedbyacleaningprocedure.Theresulting nanocrystalsweretreatedwith12mL(3/1,v/v)of2MNaOH/THF solutionfor24htoremovethetemplates(Fig.2)[3].Nonimprinted (NIP)Au–Agnanoclusterssensor,withoutusingcholicacidas tem-plate,waspreparedinasimilarwayasdescribedaboveandused asareference.

2.4. Evaluationofnanocluster’sluminesence

Thesensingcapabilityandspecificityofthecholicacid mem-oryhavingAu–Agnanoclusters sensor wasfurtherexploredby introducingcholicacidasatemplatemolecule.Cholicacid adsorp-tionstudieswereperformedinabatchsystem.Forthispurpose, cholicacidwasdissolvedin ethanol and 20mg of MIPclusters was placed in cholic acid solution at different concentrations (10−7 to 10−3molL−1)for a period of 5minat room tempera-ture.TheinteractionsbetweencholicacidandMIPparticleswere studied observing fluorescence measurements. The cholic acid imprintedAu–Agnanoclustersshowedahighseparationbetween the excitation and emission wavelengths, simplifying fluores-cencemeasurements,recordedphotoluminescencespectrausing spectrofluorometer. Cholic acid imprinted Au–Ag nanoclusters nanosensorswereexcitedat290nm,andemissionwasrecorded at 580nm. Au–Ag nanoclusters having cholic acid imprinted nanoshellweretestedagainstbloodserumandurine.

3. Resultsanddiscussion

3.1. TEMcharacterizationofnanoshellsensors

Fig.3showsTEMimageofAu–Ag–MIPnanoclusterswithout cholicacidtemplateafter2MNaOH/THFacid(3/1,v/v)treatment. Theshapeofthesenanoclustersisclosetosphericalandaggregated andwithaveragesizeabout30nm.

3.2. Ramancharacterizationofnanoshellsensors

Au–MIPnanoparticleswithcholicacid,andAu–MIP nanoparti-cleswithoutcholicacidtemplatewerecharacterizedwithRaman spectroscopy(Fig.4).InRamanspectrumofAu–MIPnanoparticles withcholicacidhasbandshiftsat1728cm−1becauseofcholicacid

Fig. 3.TEM image of Au–Ag–MIP nanoclusters withoutcholic acid template (120kV×87,000).

itself.Thesebandshavebeenpreviouslyassigned[31].The disap-pearanceofthatpeakindicatestheremovaloftemplatefromthe cholicacidimprintednanoparticles.

3.3. Measurementofbindinginteractionsofmolecularly imprintednanoshellsensorviaphotoluminescence

Thefunctionalmetal-chelatemonomer,[MAH–Pt(II)],was cho-sento interactcholic acid, toform metalchelate and to make metal-complexing polymeric receptors for selective binding of cholicacidandanalogues[25].Metalchelatemonomerandcholic acidmoleculeweremixedthroughpreorganisationandthis preor-ganisationcomplexdefinesthesizeanddirectionofthechemical interactionsofthecholicacidimprintedcavitytopreparesynthetic cholicacidreceptorofAu–Agnanoclusters(Fig.2).

The selective binding ability and detection of cholic acid imprintedAu–Agnanoclusterssensorwerestudiedwith fluores-cencespectroscopy,andtheresultsweregivenin Fig.5.Cholic acidadditioncausedsignificantdecreasesinfluorescenceintensity becausetheyinduced photoluminescenceemissionfromAu–Ag nanoclustersthroughthespecificbindingtotherecognitionsites ofthecrosslinkednanoshellpolymermatrix.

Theanalysisof thequenchingresultshasbeenperformedin termsoftheStern–Volmerequation.Themechanismof quench-ingoffluorescencehasbeenexplainedbythis way.Amodified Stern–Volmer equation is derived togenerate a linear calibra-tion.Underoptimumconditions,thefluorescenceintensityversus cholic acid concentration gave a linear response according to Stern–Volmerequationwitha0.916correlationcoefficient(Fig.6). ThefluorescenceintensityofthecholicacidimprintedAu–Ag nanoclusterscanbequenchedbytheadditionofcholicacid.The quenching fluorescence intensity is proportional tocholic acid

(5)

Fig.4. RamanImagesof(a)Au–Ag–MIPnanoclusterswithcholicacid(unleached);(b)Au–Ag–MIPnanoclusterswithoutcholicacid(leached).

Fig.5.Theeffectofconcentrationofcholicacidonthequenchingofthe fluores-cenceofthecholicacidimprintedAu–Agnanoclusters(sensorspecificity-adsorption isotherm).

concentration.Thedetectionlimit,defined astheconcentration of analyte giving quenching of the fluorescence equivalent to threestandarddeviationoftheblankplusthenetblank quench-ing fluorescence, was 0.05nmolmL−1. The experiments were

Fig.6. Stern–Volmer-typedescriptionofthedata.

performedinreplicatesofthreeandthesampleswereanalyzed inreplicatesofthreeaswell.Intheliterature,thelowest detec-tionlimitshavereportedas38.3nmolmL−1fordeoxycholicacid (DCA)[32],76.4nmolmL−1forursodeoxycholicacid(UDCA)[33], 0.16nmolmL−1 forbileacid[34],5nmolmL−1 forbileacid[35], 4.27nmolmL−1forcholicacid[36].Althoughmanymethodshave lowdetectionlimits,theyareexpensive[37–39].So,thisnewcholic acidnanosensorisrapidandithasbothlowdetectionlimitandvery lowcost.

Au–Ag nanoclusters having cholic acid imprinted nanoshell weretestedagainstbloodserumandurine.Threedifferentblood serumandurinesampleswhichbelongtohealthypersonswere alsoexaminedwithAu–Agnanoclustersandaveragecholicacid levelwasfoundtobe6and2.5respectively.Theamountofcolic acidinthebloodofahealtypersonisabout6␮M[40].Therefore, theresultsobtainedshowedthatthesenanoclusterscanbeused forthedetermination.

Theaffinityconstantsofcholicacidcanbeestimatedfromthe thermodynamicanalysisofthefluorescenceintensityasafunction ofthecholicacidconcentrationbasedonScatchardanalysis[41,42] andLangmuirisotherm[43].

Ifweconsiderabindingequilibriumsuchas: Cholicacid+(Au–Ag)nanocluster

k

cholicacid−(Au–Ag)nanocluster(1)

where,cholicacidand(Au–Ag)nanoclusterrepresentcholicacidin

thesolutionandcholicacidimprintedpolymericnanoshellhaving nanocluster,respectively,andcholicacid(Au–Ag)nanoclusteristhe

cholicacid–nanocrystalboundcomplex.AScatchardrelationship canbeobtainedusingthefollowingequation.

I Co = Imax KD −



I KD



(2) where,KDistheequlibriumdissociationandIisthefluorescence

intensity.AplotofIversusI/Cgaveastraightlineandthe equlib-riumbindingconstants(Ka=1/KD)weregiveninTable1.

(6)

A.Gültekinetal./Talanta93 (2012) 364–370 369

Table1

ComparisonofLangmuirandScatchardanalysisforcholicacidimprintednanoparticle.

Reboundmolecules LangmuirKa(M−1) Imax(a.u.) Scatchard,Ka(M−1) Imax(a.u.)

Cholicacid 2.73×104 221 2.13×108 283

Table2

SelectivityofcholicacidimprintedAu–Agnanosensor.

C(molL−1) Emission(MIP) MIP(molL−1) NIP(molL−1) kMIP kNIP k

Cholicacid 1×10−4 370 1×10−4 1.26×10−6

Chenodeoxycholicacid 1×10−4 414 1.23×10−6 2.3×10−7 81 5.5 14.7

ThevalidityoftheLangmuirisothermcanbetestedby

deter-miningtheaffinityconstantmeasuringthefluorescenceintensities

at equlibrium with different bulk concentrations (5×10−8 to

10−3molL−1)(Fig.5).Langmuirrelationshipcanbeobtainedusing thefollowingequation;

Co I = 1 Imax·b+ Co Imax (3) TheresultsobtainedfromthelinearizedformoftheLangmuir isotherm,byplottingCo/IasafunctionofCo,and theScatchard

analysisfindingsarealsogiveninTable1.Association constant, Ka,andtheapperantmaximumnumberofrecognitionsites,Imax,

valuesforthespecificinteractionbetweenthetemplateimprinted polymerofthenanoparticlesandthetemplate itselfwere com-paredinTable1.AsseenfromTable1,ingeneral,themagnitudeof Ka(2.73×104molL−1,2.13×108molL−1,basedonLangmuirand

Scatchardanalysis,respectively)isduetotheaccessibilityofcholic acidtemplate molecules.Sometemplate cavitiesformedduring imprintingprocesswerestayedinsidethepolymermatrixofthe nanoclusters.

TheKaandImaxvaluesestimatedfromScatchardanalysisare

veryclosetotheLangmuiranalysisdataandcholicacidtemplated sitesofnanocrystalsarehighlyselectivetothecholicacid recog-nitionsites.So,thebasedonScatchardanalysisforthebinding ofcholicacidtoMIPnanosensor,Ka andImaxwerefoundtobe

2.13×108M−1and283,respectively.ThevalueofKasuggeststhat

affinityofthebindingsitesisverystrong.

3.4. Recognitionselectivityofcholicacidimprintednanoshell sensor

Molecularimprintingprocesswithcholicacidgivesacavitythat isselectiveforcholicacidanditsanalogues.Cholicacidimprinted nanocrystalsweretreatedwithchenodeoxycholicacidwhichhas verysimilarmolecularstructurewithcholicacidinordertocheck whetherthenanoshellhasanyeffectonrecognitionprocess.The obtainedresultsindicatedthatMIPnanosensorhas92timesgreater selectivityforcholicacidthanthatofchenodeoxycholicacid.The investigationoffluorescenceintensityofNIPdidnotshowa signif-icantchangeinfluorescenceintensity.Theselectivitycoefficient, k,ofcholicacidandchenodeoxycholicacidwasfoundtobe81 forMIPparticlesand5.5forNIPparticlesandrelativeselectivity coefficient,k,wasdeterminedas14.7.Asseenthat,MIPsensoris 14.7timesselectivewithrespecttoNIPsensor(Table2).Obtained resultsclearlyindicatedthatthechangeoffluorescenceintensityis duetospecificbindingbetweencholicacidandcholicacidmemory siteshavingnanoparticles.

ThecholicacidcansimultaneouslychelatetoPt(II)metalion andfitintotheshape-selectivecavity.So,thisinteractionbetween Pt(II) ion and free coordination spheres has an effect on the bindingability oftheAu–Agnanoclusters. Experimentalresults showed that shape-selective cavity formation was occured for cholicacid.

4. Conclusion

Wehavedevelopedanovelchemicalpreparationmethodfor methacryloyl based self-assembledmonolayer and to make up imprintingpolymervialigandexchangeofcholicacidonAu–Ag nanoclusters. The cholic acidimprinted MAH–Pt(II)–cholic acid copolymerofAu–Agnanoshellisexpectedtobindcholicacid.The resultsshowedthatthechangeinfluorescencecouldbeattributed tothehighcomplexationgeometricshapeaffinity(orcholicacid memory)betweencholicacidmoleculesandcholicacidcavities occuredontheAu–Agnanoshells.In conclusion,thecholicacid imprintednanoshellsensorhasbeengainingwidespread recog-nitionasasensorforcholicacidbecausetheimprintingmethods createananoenvironmentbasedonshapeofcavitymemorial,size andpositionsoffunctionalgroupsthatrecognizestheimprinted molecule,cholicacid,basedonligand-exchangeimprinting meth-ods. Nanoshell sensor having cholic acid templates responses tocholic acid and its analogues through fluorescenceintensity decrease.Thefluorescenceintensitycorrelatestotheamountof cholic acid analogues bounded to the nanoshellhaving Au–Ag nanoclustersinthecasesofincubatingthecholicacidimprinted nanoclusterssensorwiththecholicacidaqueoussolution.The flu-orescenceintensitydecreasedwithincreaseconcentrationofcholic acid.

References

[1]W.H.Mandeville,D.IGoldberg,Curr.Pharm.Des.3(1997)15–28.

[2]W.H.Mandeville,W.Braulin,P.Dhal,A.Guo,C.Huval,K.Miller,Mater.Res.Soc. Symp.Proc.550(1999)3–15.

[3]Y.Wang,J.Zhang,X.X.Zhu,A.Yu,Polymer48(2007)5565–5571. [4]B.L.Lee,A.L.New,C.N.Ong,J.Chromatogr.B704(1997)35–42.

[5]J.M.You,Y.W.Shi,Y.F.Ming,Z.Y.Yu,Y.J.Yi,J.Y.Liu,Chromatographia60(2004) 527–535.

[6] M.Nobilis,M.Pour,J.Kunes,J.Kopecky,J.Kvetina,Z.Svoboda,K.Sladkova,J. Vortel,J.Pharm.Biomed.Anal.24(2001)937–946.

[7]A.Criado,S.Cardenas,M.Gallego,M.Valcarcel,J.Chromatogr.B792(2003) 299–305.

[8]A.Roda,C.Cerre,P.Simoni,C.Polimeni,C.Vaccari,A.Pistillo,J.LipidRes.33 (1992)1393–1402.

[9]K.Bentayeb,R.Batlle,C.Sánchez,C.Nerín,C.Domeno,J.Chromatogr.B869 (2008)1–8.

[10]O.Ramstrom,K.Mosbach,Curr.Opin.Chem.Biol.3(1999)759–764. [11]S.Striegler,J.Chromatogr.B:Biomed.Sci.Appl.804(2004)183–195. [12]M.Odabas¸i,R.Say,A.Denizli,Mater.Sci.Eng.C27(2007)90–99. [13]H.Yavuz,R.Say,A.Denizli,Mater.Sci.Eng.C25(2005)521–528.

[14]B.DFahlman,MaterialsChemistry,vol.1,Springer,MountPleasant,MI,2007, pp.282–283.

[15]J.P.Borra,J.Phys.D:Appl.Phys.39(2006)R19–R54. [16]F.E.Kruis,H.Fissan,A.Peled,J.AerosolSci.29(1998)511–535.

[17]N.S.Tabrizi,M.Ullmann,V.A.Vons,U.Lafont,A.Schmidt-Ott,J.Nanopart.Res. 11(2009)315–332.

[18]V.Abdelsayed,K.M.Saoud,M.S.El-Shall,J.Nanopart.Res.8(2006)519–531. [19]L.M.Liz-Marzan,P.V.Kamat,NanoscaleMater.(2003).

[20]A.S.Edelstein,R.C.Cammarata(Eds.),InstituteofPhysics,1996,pp.347–373. [21]G.Guan,B.Liu,Z.Wang,Z.Zhang,Sensors8(2008)8291–8320.

[22]A.Gültekin,S.E.Diltemiz,A.Ersöz,N.Y.Sarıözlü,A.Denizli,R.Say,Talanta78 (2009)1332–1338.

[23] A.B.Kharitonov,A.N.Shipway,I.Willner,Anal.Chem.71(1999)5441–5443. [24] J.Matsui,K.Akamatsu,S.Nishiguchi,D.Miyoshi,H.Nawafune,K.Tamaki,N.

(7)

[25]I.Lampronti,N.Bianchi,C.Zuccato,A.Medici,P.Bergamini,R.Gambari,Bioorg. Med.Chem.14(2006)5204–5210.

[26]S.E.Diltemiz,R.Say,S.Büyüktiryaki,D.Hür,A.Denizli,A.Ersöz,Talanta75 (2008)890–896.

[27]R.Say,B.Garipcan,S.Emir,S.Patır,A.Denizli,ColloidsSurf.A:Physicochem. Eng.Aspects196(2002)199–207.

[28]S.E. Diltemiz,A. Denizli, A.Ersöz, R. Say, Sensors Actuat. B 133 (2008) 484–488.

[29]M.Brust,D.Bethell,C.J.Kiely,D.J.Schiffen,Langmuir14(1998)5425–5429. [30] J.Sharma,N.K.Chaki,A.B.Mandele,R.Pasricha,K.Vijayamohanan,J.Colloid

InterfaceSci.272(2004)145–152.

[31] E.Lamcharfi,C.C.Solal,M.Parquet,C.Lutton,J.Dupre,C.Meyer,Eur.Biophys. J.25(1997)285–291.

[32] V.G.Rodriguez,E.Silvia,G.C.Lucangioli,F.Otero,C.N.Carducci,J.Pharm. Biomed.Anal.23(2000)375.

[33] M.G.Quaglia,A.Farina,E.Bossù,C.D’Aquila,A.Doldo,J.Pharm.Biomed.Anal. 16(1997)281.

[34]Y.S.Li,W.P.Liu,X.F.Gao,D.D.Chen,W.G.Li,Biosen.Bioelectron.24(2008) 538–544.

[35]L.Ye,S.Liu,M.Wang,Y.Shao,M.Ding,J.Chromatogr.B860(2007)10–17. [36]X.Rana,Q.Liang,G.Luoa,Q.Liu,Y.Pan,B.Wang,C.Pang,J.Chromatogr.B842

(2006)22–27.

[37]M.Scherer,C.Gnewuch,G.Schmitz,G.Liebisch,J.Chromatogr.B877(2009) 3920–3925.

[38] S.J.J.Tsai,Y.S.Zhong,J.F.Weng,H.H.Huang,P.Y.Hsieh,J.Chromatogr.A1218 (2011)524.

[39] X.Xiang,Y.Han,M.Neuvonen,J.Laitila,P.J.Neuvonen,M.Niemi,J.Chromatogr. B878(2010)51–60.

[40] T.Murai,R.Mahara,T.Kurosawa,A.Kimurab,M.Tohmaa,J.Chromatogr.B691 (1997)13–22.

[41] P.Y.Tsoi,J.Yang,Y.T.Sun,S.F.Sui,M.S.Yang,Langmuir16(2000)6590–6596. [42]M.Yang,P.Y.Tsoi,C.W.Li,J.Zhao,SensorsActuat.B115(2006)428–433. [43] B.Persson,K.Stenhag,P.Nilsson,A.Larsson,M.Uhlen,P.A.Nygren,Anal.

Şekil

Fig. 2. Schematic illustration of cholic acid molecular imprinting on MAC modified Au–Ag nanoclusters (1)
Fig. 3 shows TEM image of Au–Ag–MIP nanoclusters without cholic acid template after 2 M NaOH/THF acid (3/1, v/v) treatment
Fig. 4. Raman Images of (a) Au–Ag–MIP nanoclusters with cholic acid (unleached); (b) Au–Ag–MIP nanoclusters without cholic acid (leached).

Referanslar

Benzer Belgeler

Benim de katıldığım ve konuşmamın sonunda bu şiiri okuduğum “şiir ve çeviri” konulu söyleşinin yapıldığı kahveyi, gerçekten de o ağustos sıcağına

The vibration data captured and used for determination and validation is composed from four different defects states of the REB -outer raceway defect, inner raceway defect,

Oxidative stress parameters such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) activities, and total GSH

The dependence of grain size, solvent volume, temperature and time on the extraction and decomposition of ascorbic acid (AA) in rosehip was studied.. Dried rosehip

Our aim in this experimental study is to determine the effectiveness of the hyaluronic acid/carboxy- methylcellulose membrane in preventing adhesion formation and to

1 Kaminski, kitap üzerine bir söyleşisinde, hukuki açıdan gündelik hayatı detaylarına kadar belirleyen, dini devletle özdeşleştiren rejimlerin, halklarını dinî

Bu kısımda, özellikle Baudrillard’ın Türkçede yayımlanmış kitaplarının teker teker özeti yapılmış ve kaynakçada yer almasına rağmen düşünürün Türkçeye