• Sonuç bulunamadı

Başlık: Complex factorization of some two-periodic linear recurrence systemsYazar(lar):YILMAZ, Semih; EKIN, A.BulentCilt: 63 Sayı: 2 Sayfa: 129-134 DOI: 10.1501/Commua1_0000000718 Yayın Tarihi: 2014 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: Complex factorization of some two-periodic linear recurrence systemsYazar(lar):YILMAZ, Semih; EKIN, A.BulentCilt: 63 Sayı: 2 Sayfa: 129-134 DOI: 10.1501/Commua1_0000000718 Yayın Tarihi: 2014 PDF"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

IS S N 1 3 0 3 –5 9 9 1

COMPLEX FACTORIZATION OF SOME TWO-PERIODIC LINEAR RECURRENCE SYSTEMS

SEMIH YILMAZ AND A.BULENT EKIN

Abstract. In this paper, we de…ne the generalized two-periodic linear recur-rence systems and …nd the factorizations of this recurrecur-rence systems. We also solve an open problem given in [3] under certain conditions.

1. Introduction

De…nition 1.1. Let a0, a1, b0, b1 are real numbers. The two-periodic second

order linear recurrence system fvng is de…ned by v0:= 0 , v12 R and for n 1

v2n:= a0v2n 1+ b0v2n 2

v2n+1:= a1v2n+ b1v2n 1:

Also, let A := a0a1+ b0+ b1, B := b0b1; and assume A2 4B 6= 0.

Heleman studied two periodic second order linear recurrence systems and called it as ffng in [2]. Curtis and Parry also worked on the same linear recurrence systems

in [3]. If we take v0= 0 , v1= 1 then we get the sequence ffng, so here we study

more general case.

We need the following results of Theorem 6 and Theorem 9 in [1], in the case r = 2.

The generating function of the sequence fvng is

G (x) = v1x + a0v1x

2 b

0v1x3

1 Ax2+ Bx4

and the terms of the sequences fvng satisfy

v2n=

n n

a0v1 (1.1)

Received by the editors: Sep. 16, 2014; Revised: Dec.05, 2014; Accepted: Dec. 08, 2014. 2000 Mathematics Subject Classi…cation. 11B37, 11B39, 11B83, 15A18.

Key words and phrases. Recurrences, Fibonacci and Lucas numbers, Special sequences and polynomials, Periodic Recurrence, Factorization.

c 2 0 1 4 A n ka ra U n ive rsity

(2)

where = A + p A2 4B 2 , = A pA2 4B 2

that is, and are the roots of the polynomial p (z) = z2 Az +B: Since A2 4B 6=

0 thus and are distinct.

We also need to de…ne, the following matrix, for a positive integer n,

T (n) := 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 v1 b0 0 a0 b1 1 a1 b0 1 a0 b1 1 a1 b0 1 a0 . .. . .. ... 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 n n :

It is easily seen by induction that for n 1;

vn= det (T (n)) : (1.2)

2. The Factorization of v2n

We give two lemmas to prove our main results, Theorem 2.3 and Theorem 2.4. Lemma 2.1. Let n 2, then

det (T (2n)) = 0 () a0= 0 or v1= 0 or a0a1+ b0+ b1= 2 p b0b1cos k n where 1 k n 1: Proof. By 1:1 and 1:2 det (T (2n)) = 0 () v2n= n n a0v1= 0 () a0= 0 or v1= 0 or n n = 0 n n = 0 () n = 1 Hence, for some 0 k n 1 we have

n

= e2k i () = e2k in :

(3)

Let

:= 2k i n for some 1 k n 1. Then,

= A + p A2 4B A pA2 4B = e i () A +pA2 4B = ei A pA2 4B : Next, p A2 4Bei +pA2 4B = Aei A: Then, p A2 4B = Ae i 1 ei + 1 = A ei 1 ei + 1 e i + 1 e i + 1 = A ei e i 2 + ei + e i : Now, since

ei = cos ( ) + i sin ( ) and sin ( ) = sin ( ) ; cos ( ) = cos ( ) we have p A2 4B = A e i e i 2 + ei + e i = A i sin ( ) 1 + cos ( ) = Ai tan 2 : Squaring both sides of this equality and after some simpli…cations we have

A = 2pB cos

2 : (2.1)

Now, substituting the values of A; B and in 2.1, we get a0a1+ b0+ b1= 2

p b0b1cos

k n for some 1 k n 1. This is what we wanted prove. Lemma 2.2. Let n 2. The eigenvalues of T (2n) are a0; v1and a0+ a1 2 s a0 a1 2 2 (b0+ b1) + 2 p b0b1cos k n ; 1 k n 1:

Proof. Let g0:= 0, g1:= v1 t and for n 1

g2n:= (a0 t) g2n 1+ b0g2n 2

g2n+1 := (a1 t) g2n+ b1g2n 1:

The eigenvalues of T (2n) are the solutions of det (T (2n) tI2n) = g2n= 0. By

Lemma 2.1, g2n= 0 () a0 t = 0 or g1= v1 t = 0 or (a0 t) (a1 t)+b0+b1= 2 p b0b1cos k n

(4)

for some 1 k n 1: Therefore, the eigenvalues of T (2n) are a0, v1 and the

solutions of the quadratic equation

t2 (a0+ a1) t + a0a1+ b0+ b1= 2

p b0b1cos

k n for some 1 k n 1. Completing the square we have t2 (a0+ a1) t + a0+ a1 2 2 = a0+ a1 2 2 a0a1 b0 b1+ 2 p b0b1cos k n :

Therefore, the eigenvalues of T (2n) are a0, v1 and

a0+ a1 2 s a0 a1 2 2 (b0+ b1) + 2 p b0b1cos k n for some 1 k n 1.

Theorem 2.3. Let fvng be the two-periodic second order linear recurrence system,

and n 2. Then v2n= a0v1 n 1Y k=1 0 @a0+ a1 2 s a0 a1 2 2 (b0+ b1) + 2 p b0b1cos k n 1 A : Proof. The result follows from Lemma 2.2, v2n= det (T (2n)) and the fact that the

determinant of a matrix is the product of the eigenvalues of the matrix.

Theorem 2.4. Let fvng be the two-periodic second order linear recurrence system,

n 2 and b1:= 0. Then

v2n+1= a0a1v1(a0a1+ b0)n 1:

Proof. If we take b1= 0 in De…nition 1, we get v0= 0; v12 R and for n 1

v2n = a0v2n 1+ b0v2n 2 v2n+1 = a1v2n: By Theorem 2.3, we have v2n = a0v1 n 1Y k=1 0 @a0+ a1 2 s a0 a1 2 2 b0 1 A = a0v1 n 1Y k=1 (a0a1+ b0) = a0v1(a0a1+ b0)n 1:

Hence, by the de…nition of fvng, we get the result

(5)

Example 2.5. Let v0= 0; v1= 1 and for n 1

v2n = a0v2n 1+ b0v2n 2

v2n+1 = a1v2n+ b1v2n 1:

Then fvng is added one term to beginning of ffng sequences in [3]. Namely,

fn= vn+1; n 0: Hence f2n+1 = v2n= a0 n 1Y k=1 0 @a0+ a1 2 s a0 a1 2 2 (b0+ b1) + 2 p b0b1cos k n 1 A : Therefore this factorization is the same as Theorem 11 in [3].

They give several open questions for future work. One of this question is a complex factorization of the terms f2n. We have solved in the following way at

condition b1= 0 of this question by Theorem 2.4,

f2n = v2n+1= a0a1v1(a0a1+ b0)n 1:

2.1. Special Cases:

Case 1. The case v0:= 0; v1:= 1; a0 := 1; a1:= 1; b0 := 1; b1:= 1, then fvng

becomes the sequence of Fibonacci numbers. Therefore, we get F2n =

n 1Y

k=1

3 2 cos k

n :

that is the equation 4.1 in [4].

Case 2. The case v0:= 0 ; v1:= 1; a0:= 2; a1:= 2; b0:= 1; b1:= 1, then fvng

becomes the sequence of Pell numbers. Therefore, P2n= 2 n 1Y k=1 6 2 cos k n = 2 n n 1Y k=1 3 cos k n :

Case 3. The case v0:= 0; v1:= 1; a0 := 1; a1:= 1; b0 := 2; b1:= 2, then fvng

becomes the sequence of Jacobsthal numbers. Therefore, J2n=

n 1Y

k=1

5 4 cos k

n :

Case 4. The case v0 := 0; v1 := 1; a0 := 1; a1 := 1; b0 := 1; b1 := 1, then

fvng becomes the sequence of A053602 on [5]. Then fv2ng becomes the sequence of

Fibonacci numbers. Therefore, we get Fn=

n 1Y

k=1

1 2i cos k

n :

(6)

Case 5. The case v0 := 0; v1 := 1; a0 := 3; a1 := 3; b0 := 2; b1 := 2, then

fvng becomes the sequence of Mersenne numbers. Therefore,

M2n= 3 n 1Y k=1 5 4 cos k n = 3J2n: References

[1] Daniel Panario, Murat ¸Sahin, Qiang Wang; A family of Fibonacci-like conditional sequences, INTEGERS Electronic Journal of Combinatorial Number Theory, 13, A78, 2013.

[2] Heleman R. P. Ferguson; The Fibonacci Pseudogroup, Characteristic Polynomials and Eigen-values of Tridiagonal Matrices, Periodic Linear Recurrence Systems and Application to Quan-tum Mechanics, The Fibonacci Quarterly, 16.4 (1978): 435–447.

[3] Curtis Cooper, Richard Parry; Factorizations Of Some Periodic Linear Recurrence Systems, The Eleventh International Conference on Fibonacci Numbers and Their Applications, Ger-many (July 2004).

[4] Nathan D. Cahill, John R. D’Errico, John P. Spence; Complex Factorizations of the Fibonacci and Lucas Numbers, The Fibonacci Quarterly, 41, No.1 (2003), 13-19.

[5] www.oeis.org , The On-Line Encyclopedia of Integer Sequences.

Current address : Ankara University, Faculty of Sciences, Dept. of Mathematics, Ankara, TURKEY

E-mail address : semihyilmaz@ankara.edu.tr, ekin@science.ankara.edu.tr URL: http://communications.science.ankara.edu.tr/index.php?series=A1

Referanslar

Benzer Belgeler

Bu çalışmada, Türkiye Kömür İşletmeleri-Ege Linyitleri İşletmesi Soma linyit açık ocağı Işıklar panosunda belirlenen şev duraysızlık probleminin sahada

Magnetic moments of heavy baryons have been investigated extensively within the framework of different approaches, such as the naive quark model, chiral quark model,

X mağazası sadakat kartına sahip olan müşterilerin, mağazanın sadakat programını algılamaları, mağazaya duydukları güven, ilişkiyi sürdürme istekleri ve mağaza

Bu çerçevede, Türkiye ekonomisinde uygulanan mali politikaların sürdürülebilirlik durumu, yapısal değişiklik ve periyodik davranışlar dikkate alınarak Boswijk ve Franses

Marka değeri, marka ismi ve sembolüyle ilişkili olup sunulanların değerini arttıran ya da azaltan ve marka bağımlılığı, marka farkındalığı, algılanan kalite ve

Online medyada kriz yönetimi, online medya araçlarının markalar tarafından kriz döneminde kullanımı, online medya krizinin etkileri, Türkiye’de ve Dünya’da

Ebedi olmak için fiziksel anlamda kendi varlık sınırlarını aşamayan insanın en büyük trajiği dünyalık hayatın sona erdiği ölümdür. Kendini yarınlara taşıma ve

Haldun Taner’in “Şeytan Tüyü” hikâyesi, Almanya’ya işçi olarak giden gurbetçilerin çektikleri sıkıntılara değinmesi ve mektup tarzında kaleme