• Sonuç bulunamadı

Pell, Pell-Lucas ve Modified Pell Dizilerinin Terimlerinin Çarpımları İçin Bazı Toplam Formülleri

N/A
N/A
Protected

Academic year: 2021

Share "Pell, Pell-Lucas ve Modified Pell Dizilerinin Terimlerinin Çarpımları İçin Bazı Toplam Formülleri"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

151

SOME SUMS FORMULAE FOR PRODUCTS OF TERMS OF PELL,

PELL-LUCAS AND MODIFIED PELL SEQUENCES

Serpil HALICI

Sakarya Üni., Sciences and Arts Faculty, Dept. of Math., Esentepe Campus, Sakarya. shalici@ssakarya.edu.tr

Özet

Pell, Pell-Lucas ve Modified Pell dizilerinin terimleri için bazı toplam formüllerini elde ettik. Ayrıca, bu toplamların bu dizilerin terimlerine göre yazılabileceğini de gösterdik.

Abstract

We derive some sums formulae for certain products of terms of the Pell , Pell-Lucas and modified Pell sequences. Also, we

show that these sums can be rewritten in terms of these sequences.

Keywords : Pell Sequences, Binet Formulae, Recurrence Relations

.

AMS Subject Classification: 11B37, 11B39.

1. INTRODUCTION

The Fibonacci and Lucas sequences can be considered as interesting classes of numbers. Applications of the Fibonacci and Lucas numbers provide a wide area to researchers. Also, Pell numbers and Pell identities have been the subject of many studies, see for instance [1, 2, 3]. For , the Pell { }, Pell-Lucas { } and modified Pell sequences { } are given by the following recurrence relations:

, ,

, ,

, .

The Binet formulae for these sequences are

, ,

,

where and are the roots of the characteristic equation for these sequences. For

{ } { }, { } { }, { } { }

can be written. Horadam in [1, 2] gave some identities concerning with these numbers. Some of them are

(2)

152 where and are the Pell and Pell-Lucas numbers, respectively. Also, in [3] authors gave some equations involving the Pell numbers as

,

.

The purpose of this paper is to derive some relationships among these numbers and obtain closed formulas for their sums. By Binet formulas for these sequences, we easily get the following equations;

( ) , , ( ) , , ( ) ( ( ) ) ( ( ) ) ( ( ) ), ( ( ) ) , ( ), ( ), ( ( ) ) , ( ( ) ), ( ( ) ) , ( ) , ( ) , ( ) , ( ) , , ( ) .

2. SOME SUMS FORMULAE FOR PELL, PELL-LUCAS AND MODIFIED PELL SEQUENCES

Now, we will give the following sums formulas by using the equations given in the section one.

Proposition 1. If and are the Pell and Pell-Lucas numbers, respectively, then we have

∑ .

Proof. If we write the sum ∑ ( ) in the following form,

∑ ( ) ( ) ( ) ( ) ,

then, we can write

∑ ( ) ,

∑ ( ) [ ( )

( ) ] ,

∑ ( ) ( ) .

On the other hand, we can write

∑ ( ) ∑ ( ) ∑

∑ ( ) , ∑ ( )

(3)

153 ( ) ∑ ( )

By the certain arrangements, we get ∑

Thus, the proof of the proposition is completed. QED.

Corollary 1. Let and are the Pell and Modified Pell numbers, respectively. Then, for all positive integers ∑ ∑ ( ) ∑ ( ) ∑ ( )

Proposition 2. If , are the Pell and Pell-Lucas numbers, then we have

( ) ; if is even.

( ); if is odd.

Proof. Using the equation (

( ) ) ,

we can write the following equations; ( )

( )

( )

( ( ) )

Then, we obtain that

( )

where { .

Notice that there are two different cases according to the choose of . That is, is an odd integer number such that , then ∑ ( ) ∑ ( ∑ ∑ ) ∑ ( ) ∑ ( )

(4)

154 can be obtained. And then, we consider is an even integer number such that . Thus,

∑ ( ),

∑ (∑ ∑ ),

∑ (

),

( ).

Thus, the proof is completed. QED.

Moreover, we can get some sums for Modified Pell numbers;

If is a even number, then we can write ∑

( )

If is a odd number, then we can write ∑ ( ).

Proposition 3. If is the Pell-Lucas number, then

we have

( )

Proof. For we write the following equation; ∑

.

Taking in the last equation and using the identity we can get ∑ ( ) ( ) ( ) ( ) Here, if we use ( ) , then we have

( )

On the other hand, we know that ∑ ( )

If we equal the right sides of the last two equations, then we have

( )

Thus, the proof is completed. So, the next corollary can be given without proof.

Corollary 2. If is the modified Pell number, then we have

( ) ( )

REFERENCES

[1] Horadam, A. F., Applications of Modified Pell Numbers

(5)

155

[2] Horadam, A. F., Pell Identities, The Fibonacci Quart., 9(3), (1971), 245-252.

[3] Melham, R., Sums Involving Fibonacci and Pell

Numbers, Portugaliae Math., 56(3), (1999), 309-317.

[4] Vajda, S., Fibonacci and Lucas numbers and the Golden

section: Theory and Applications, Ellies Horwood Ltd., (1989).

[5] T. Koshy, Fibonacci and Lucas Numbers with

Referanslar

Benzer Belgeler

Lagrange Teoremi: Bir α irrasyonel sayısının sonsuz sürekli kesre açılımının periyodik olması için gerekli ve yeterli şart α ’nın kuadratik irrasyonel sayı olmasıdır

 2015 yılı Haziran sayısı “Bilimsel İletişim Özel Sayısı” olarak yayımlandı,  2015 yılı Aralık sayısı “Düşünce Özgürlüğü Özel Sayısı” olarak yayımlandı,

Amaç, kapsam ve yöntemin açıkça ortaya konulduğu yazı bilimsel açıdan akıcı bir anlatım biçimine sahip olup metin sonunda kaynakçada ciddi hatalar

For cultured endothelial cells, E2 (1-100 nM), but not 17alpha-estradiol, inhibited the level of strain- induced ET-1 gene expression and also peptide secretion.. This

For this purpose, the model monomer, N-phenyl-2,5-di(thiophen-2-yl)-1H-pyrrol-1-amine, was synthesized and the optical, electrochemical and electrochromic properties of its

HBDÖP ilişkin sınıf öğretmenleri görüşlerinin sınıf seviyesine göre değişkenine göre farklılaşıp farklılaşmadığı incelendiğinde; kazanım, etkinlik ve tema

Bu amaca yönelik olarak performansa dayalı tasarım ve değerlendirme yöntemleri, performans hedefi ile taşıyıcı elemanlar ve taşıyıcı olmayan elemanların performans

2008 yılı kazı çalışmalarında açılan ST 2 açması içerisinde, açma içi buluntusu olup herhangi bir mezar ile ilişkilendirilemeyen bir adet beyaz boyalı