• Sonuç bulunamadı

f−Lacunary Statistical Convergence and Strong f− Lacunary Summability of Order α

N/A
N/A
Protected

Academic year: 2021

Share "f−Lacunary Statistical Convergence and Strong f− Lacunary Summability of Order α"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

https://doi.org/10.2298/FIL1813513S University of Niˇs, Serbia

Available at: http://www.pmf.ni.ac.rs/filomat

f −Lacunary Statistical Convergence and Strong

f − Lacunary Summability of Order

α

Hacer S¸eng ¨ula, Mikail Etb

aFaculty of Education; Harran University; Osmanbey Campus 63190; S¸anlıurfa; TURKEY bDepartment of Mathematics; Fırat University 23119; Elazıˇg ; TURKEY

Abstract.The main object of this article is to introduce the concepts of f −lacunary statistical convergence of orderα and strong f −lacunary summability of order α of sequences of real numbers and give some inclusion relations between these spaces.

1. Introduction

In 1951, Steinhaus [33] and Fast [18] introduced the concept of statistical convergence and later in 1959, Schoenberg [32] reintroduced independently. Bhardwaj and Dhawan [3], Caserta et al. [4], Connor [5], C¸ akallı [10], C¸ ınar et al. [11], C¸ olak [12], Et et al. ([14], [16]), Fridy [20], Is¸ık [24], Salat [31], Di Maio and Koˇcinac [13] and many authors investigated some arguments related to this notion.

A modulus f is a function from [0, ∞) to [0, ∞) such that i) f (x)= 0 if and only if x = 0,

ii) f (x+ y) ≤ f (x) + f (y) for x, y ≥ 0, iii) f is increasing,

iv) f is continuous from the right at 0.

It follows that f must be continuous in everywhere on [0, ∞). A modulus may be unbounded or bounded.

Aizpuru et al. [1] defined f −density of a subset E ⊂ N for any unbounded modulus f by df(E)= lim

n→∞

f(|{k ≤ n : k ∈ E}|)

f(n) , if the limit exists

and defined f −statistical convergence for any unbounded modulus f by df({k ∈ N : |xk−`| ≥ ε}) = 0 i.e. lim n→∞ 1 f(n)f(|{k ≤ n : |xk−`| ≥ ε}|) = 0,

2010 Mathematics Subject Classification. 40A05, 40C05, 46A45

Keywords. Modulus function, statistical convergence, lacunary sequence Received: 26 December 2017; Revised: 08 Marh 2018; Accepted: 29 March 2018 Communicated by Ivana Djolovi´c

(2)

and we write it as Sf− lim x

k= ` or xk→`



Sf . Every f−statistically convergent sequence is statistically

convergent, but a statistically convergent sequence does not need to be f −statistically convergent for every unbounded modulus f .

By a lacunary sequence we mean an increasing integer sequenceθ = (kr) such that hr= (kr−kr−1) → ∞

as r → ∞.

In [21], Fridy and Orhan introduced the concept of lacunary statistically convergence in the sense that a sequence (xk) of real numbers is called lacunary statistically convergent to a real number`, if

lim

r→∞

1 hr

|{k ∈ Ir: |xk−`| ≥ ε}| = 0 for every positive real numberε.

Throughout this paper the intervals determined byθ will be denoted by Ir = (kr−1, kr] and the ratiokkr

r−1

will be abbreviated by qr. Lacunary sequence spaces were studied in ([6], [7], [8], [9], [17], [19], [21], [23],

[25], [29], [35], [36]).

First of all, the notion of a modulus was given by Nakano [27]. Maddox [26] used a modulus function to construct some sequence spaces. Afterwards different sequence spaces defined by modulus have been studied by Altın and Et [2], Et et al. [15], Is¸ık [24], Gaur and Mursaleen [22], Nuray and Savas¸ [28], Pehlivan and Fisher [30], S¸eng ¨ul [34] and everybody else.

2. Main Results

In this section we will introduce the concepts of f −lacunary statistically convergent sequences of order α and strongly f −lacunary summable sequences of order α of real numbers, where f is an unbounded modulus and give some inclusion relations between these concepts.

Definition 2.1. Let f be an unbounded modulus,θ = (kr) be a lacunary sequence andα be a real number such that

0 < α ≤ 1. We say that the sequence x = (xk) is f −lacunary statistically convergent of orderα, if there is a real

number` such that lim

r→∞

1 f(hr)α

f(|{k ∈ Ir: |xk−`| ≥ ε}|) = 0,

where Ir = (kr−1, kr] and f (hr)αdenotes theαth power of f (hr), that is f (hr)α= ( f (h1)α, f (h2)α, ..., f (hr)α, ...).

This space will be denoted by Sθf,α. In this case, we write Sθf,α− lim xk= ` or xk→`

 Sθf,α .

Definition 2.2. Let f be a modulus function, p= pk be a sequence of strictly positive real numbers andα be a

real number such that 0< α ≤ 1. We say that the sequence x = (xk) is strongly wαθ, f, p −summable to ` (a real

number) such that wαθ, f, p =        x= (xk) : lim r→∞ 1 hαr X k∈Ir  f (|xk−`|)pk = 0, for some `        .

In the present case, we denote wαθ, f, p − lim x

k= `.

Definition 2.3. Let f be an unbounded modulus, p= pk be a sequence of strictly positive real numbers andα be

a real number such that 0< α ≤ 1. We say that the sequence x = (xk) is strongly wθf,α p −summable to` (a real

number) such that wθf,α p=        x= (xk) : lim r→∞ 1 f(hr)α X k∈Ir  f (|xk−`|)pk = 0, for some `        .

In the present case, we write wθf,α p − lim xk= `. In case of pk= p for all k ∈ N we write w f,α

θ p instead of w f,α θ p.

(3)

Definition 2.4. Let f be an unbounded modulus, p= pk be a sequence of strictly positive real numbers andα be

a real number such that 0< α ≤ 1. We say that the sequence x = (xk) is strongly wαθ, f p −summable to` (a real

number) such that

θ, f p=        x= (xk) : lim r→∞ 1 f(hr)α X k∈Ir |xk−`|pk = 0, for some `        .

In the present case, we write wαθ, f p − lim xk= `. In case of pk= p for all k ∈ N we write wαθ, fp instead of wαθ, f p.

The proof of each of the following results is fairly straightforward, so we choose to state these results without proof, where we shall assume that the sequence p = pk is bounded and 0< h = infkpk ≤pk ≤

supkpk= H < ∞.

Theorem 2.5. Let f be an unbounded modulus. The classes of sequences wθf,α p and Sθf,αare linear spaces. Theorem 2.6. The space wθf,α p is paranormed by

1(x)= sup r        1 f(hr)α X k∈Ir  f (|xk|)pk        1 M

where 0< α ≤ 1 and M = max (1, H) .

Proposition 2.7. ([30]) Let f be a modulus and0< δ < 1. Then for each kuk ≥ δ, we have f (kuk) ≤ 2 f (1) δ−1kuk. Theorem 2.8. Let f be an unbounded modulus, α be a real number such that 0 < α ≤ 1 and p > 1. If limu→∞inf f(u)u > 0, then wθf,αp= wαθ, fp.

Proof. Let p> 1 be a positive real number and x ∈ wθf,αp. If limu→∞inf f(u)

u > 0 then there exists a number

c> 0 such that f (u) > cu for u > 0. Clearly 1 f(hr)α X k∈Ir  f (|xk−`|)p≥ 1 f(hr)α X k∈Ir [c |xk−`|]p= cp f(hr)α X k∈Ir |xk−`|p, and therefore wθf,αp ⊂ wαθ, fp. Now let x ∈ wαθ, fp. Then we have

1 f(hr)α

X

k∈Ir

|xk−`|p→ 0 as r → ∞.

Let 0< δ < 1. We can write 1 f(hr)α X k∈Ir |xk−`|p ≥ 1 f(hr)α X k∈Ir |xk−`|≥δ |xk−`|p ≥ 1 f(hr)α X k∈Ir |xk−`|≥δ " f (|xk−`|) 2 f (1)δ−1 #p ≥ 1 f(hr)α δp 2pf(1)p X k∈Ir  f (|xk−`|)p

(4)

by Proposition 2.7. Therefore x ∈ wθf,αp. If limu→∞inf

f(u)

u = 0, the equality w f,α

θ p= wαθ, fp can not be hold as shown the following example:

Let f (x)= 2√x and define a sequence x= (xk) by

xk= ( √ hr, if k = kr 0, otherwise. r= 1, 2, .... For` = 0, α = 4 5 and p= 6 5, we have 1 f(hr)α X k∈Ir  f (|xk|)p=  2h14 r 65  2 √ hr 45 → 0 as r → ∞ hence x ∈ wθf,αp, but 1 f(hr)α X k∈Ir |xk|p= √ hr 65  2 √ hr 45 → ∞ as r → ∞ and so x < wαθ, fp.

Maddox [26] showed that the existence of an unbounded modulus f for which there is a positive constant c such that f xy ≥ c f (x) f y, for all x ≥ 0, y ≥ 0.

Theorem 2.9. Let f be an unbounded modulus,α be a real number such that 0 < α ≤ 1 and pk= 1 for all k ∈ N. If

limu→∞ f(u)α

uα > 0, then wα

θ, f, p ⊂ Sf,α

θ .

Proof. Let x ∈ wαθ, f, p and lim

u→∞ f(u) α uα > 0. For ε > 0, we have 1 hαr X k∈Ir f(|xk−`|) ≥ 1 hαr f        X k∈Ir |xk−`|        ≥ 1 hαr f             X k∈Ir |xk−`|≥ε |xk−`|             ≥ 1 hαr f(|{k ∈ Ir: |xk−`| ≥ ε}| ε) ≥ c hαr f(|{k ∈ Ir: |xk−`| ≥ ε}|) f (ε) = c hαr f(|{k ∈ Ir: |xk−`| ≥ ε}|) f(hr)α f(hr)α f(ε) . Therefore, wαθ, f, p − lim x k= ` implies Sθf,α− lim xk= `.

Theorem 2.10. Letα1, α2be two real numbers such that 0< α1 ≤α2 ≤ 1, f be an unbounded modulus function

and letθ = (kr) be a lacunary sequence, then we have w f,α1

θ p ⊂ S f,α2

(5)

Proof. Let x ∈ wf,α1

θ p andε > 0 be given and P1,

P

2 denote the sums over k ∈ Ir, |xk−`| ≥ ε and k ∈ Ir,

|xk−`| < ε respectively. Since f (hr)α1 f(h

r)α2for each r, we may write

1 f(hr)α1 X k∈Ir  f (|xk−`|)pk = 1 f(hr)α1 hX 1 f (|xk −`|)pk+X 2 f (|xk −`|)pki ≥ 1 f(hr)α2 hX 1 f (|xk −`|)pk+X 2 f (|xk −`|)pki ≥ 1 f(hr)α2 hX 1 f (ε) pki ≥ 1 H. f (hr)α2 h fX 1[ε] pki ≥ 1 H. f (hr)α2 h fX 1min([ε] h, [ε]H)i ≥ 1 H. f (hr)α2 f|{k ∈ Ir: |xk−`| ≥ ε}| hmin([ε]h, [ε]H)i ≥ c H. f (hr)α2 f(|{k ∈ Ir: |xk−`| ≥ ε}|) f h min([ε]h, [ε]H)i . Hence x ∈ Sf,α2 θ .

Theorem 2.11. Let θ = (kr) be a lacunary sequence and α be a fixed real number such that 0 < α ≤ 1. If

lim infrqr> 1 and limu→∞ f(u)α

uα > 0, then S

f,α⊂Sf,α

θ .

Proof. Suppose first that lim infrqr> 1; then there exists a λ > 0 such that qr≥ 1+ λ for sufficiently large r,

which implies that hr kr ≥ λ 1+ λ=⇒ hr kr !α ≥  λ 1+ λ α .

If Sf,α− lim xk= `, then for every ε > 0 and for sufficiently large r, we have

1 f(kr)α f(|{k ≤ kr: |xk−`| ≥ ε}|) ≥ 1 f(kr)α f(|{k ∈ Ir: |xk−`| ≥ ε}|) = f(hr)α f(kr)α 1 f(hr)α f(|{k ∈ Ir: |xk−`| ≥ ε}|) = f(hr)α hαr kαr f(kr)α hαr kαr f(|{k ∈ Ir: |xk−`| ≥ ε}|) f(hr)α ≥ f(hr) α hαr kαr f(kr)α  λ 1+ λ α f(|{k ∈ Ir: |xk−`| ≥ ε}|) f(hr)α . This proves the sufficiency.

Theorem 2.12. Let f be an unbounded modulus and0< α ≤ 1. If (xk) ∈ Sf∩Sθf,α, then Sf− lim xk= Sθf,α− lim xk

such that f (x)− f y  = f  x−y  , for x ≥ 0, y ≥ 0.

Proof. Suppose Sf − lim x

k= `1, S f,α

θ − lim xk= `2and`1, `2. Let 0 < ε < |`1`2|

2 . Then for ε > 0 we have

lim

n→∞

f(|{k ≤ n : |xk−`1| ≥ε}|)

(6)

and lim r→∞ f(|{k ∈ Ir: |xk−`2| ≥ε}|) f(hr)α = 0. On the other hand we can write

f(|{k ≤ n : |`1−`2| ≥ 2ε}|) f(n) ≤ f(|{k ≤ n : |xk−`1| ≥ε}|) f(n) + f(|{k ≤ n : |xk−`2| ≥ε}|) f(n) .

Taking limit as n → ∞ , we get 1 ≤ 0+ lim n→∞ f(|{k ≤ n : |xk−`2| ≥ε}|) f(n) ≤ 1, and so lim n→∞ f(|{k ≤ n : |xk−`2| ≥ε}|) f(n) = 1.

We consider the subsequence 1 f(km)f(|{k ≤ km: |xk −`2| ≥ε}|) of sequence 1 f(n)f(|{k ≤ n : |xk−`2| ≥ε}|) . Then 1 f(km)f(|{k ≤ km: |xk −`2| ≥ε}|) = 1 f(km)f ( k ∈ m S r=1Ir: |xk −`2| ≥ε ) ! = 1 f(km)f m P r=1 |{k ∈ Ir: |xk−`2| ≥ε}| ! ≤ 1 f(km) m P r=1f(|{k ∈ Ir: |xk −`2| ≥ε}|) = 1 f(km) m P r=1f(hr) α 1 f(hr)αf(|{k ∈ Ir: |xk −`2| ≥ε}|) (1) and m P r=1f(hr) α= f (h 1)α+ f (h2)α+ ... + f (hm)α = f (k1−k0)α+ f (k2−k1)α+ ... + f (km−km−1)α = f (|k1−k0|)α+ f (|k2−k1|)α+ ... + f (|km−km−1|)α = f (k1) − f (k0) α + f (k2) − f (k1) α + ... + f (km) − f (km−1) α ≤ f (k1) − f (k0) + f (k2) − f (k1) + ... + f (km) − f (km−1) = f (k1) − f (k0)+ f (k2) − f (k1)+ ... + f (km) − f (km−1) = f (km). (2) Using (2) in (1), we have 1 f(km) f(|{k ≤ km: |xk−`2| ≥ε}|) ≤ m P r=1f(hr) α m P r=1f(hr) α 1 f(hr)α f(|{k ∈ Ir: |xk−`2| ≥ε}|)

(7)

so 1 f(km)

f(|{k ≤ km: |xk−`2| ≥ε}|) → 0,

but this is a contradiction to lim

n→∞

f(|{k ≤ n : |xk−`2| ≥ε}|)

f(n) = 1.

As a result,`1= `2.

Now as a result of Theorem 2.12 we have the following Corollary 2.13.

Corollary 2.13. Letθ = (kr) andθ0= (sr) be two lacunary sequences and 0< α ≤ 1. If (xk) ∈ Sf ∩

 Sθf,α∩Sf,α θ0 , then Sθf,α− lim xk= S f,α θ0 − lim xk.

Theorem 2.14. Let f be an unbounded modulus. Iflim pk> 0, then wθf,α p − lim xk= ` uniquely.

Proof. Let lim pk= s > 0. Assume that w f,α θ p − lim xk= `1and w f,α θ p − lim xk= `2. Then lim r 1 f(hr)α X k∈Ir  f (|xk−`1|)pk = 0, and lim r 1 f(hr)α X k∈Ir  f (|xk−`2|)pk = 0. By definition of f, we have 1 f(hr)α X k∈Ir  f (|`1−`2|)pk ≤ D f(hr)α        X k∈Ir  f (|xk−`1|)pk+ X k∈Ir  f (|xk−`2|)pk        = D f(hr)α X k∈Ir  f (|xk−`1|)pk + D f(hr)α X k∈Ir  f (|xk−`2|)pk

where supkpk= H and D = max

 1, 2H−1 . Hence lim r 1 f(hr)α X k∈Ir  f (|`1−`2|)pk = 0.

Since limk→∞pk= s we have `1−`2 = 0. Thus the limit is unique.

Theorem 2.15. Letθ = (kr) andθ0= (sr) be two lacunary sequences such that Ir⊂Jrfor all r ∈ N and α1, α2two

real numbers such that 0< α1≤α2≤ 1. If

lim

r→∞inf

f(hr)α1

f(`r)α2

> 0 (3)

where Ir= (kr−1, kr], hr= kr−kr−1and Jr= (sr−1, sr],`r= sr−sr−1, then w f,α2

θ0 p ⊂ w

f,α1

(8)

Proof. Let x ∈ wf,α2 θ0 p . We can write 1 f(`r)α2 X k∈Jr  f (|xk−`|)pk = 1 f(`r)α2 X k∈Jr−Ir  f (|xk−`|)pk+ 1 f(`r)α2 X k∈Ir  f (|xk−`|)pk ≥ 1 f(`r)α2 X k∈Ir  f (|xk−`|)pk ≥ f(hr) α1 f(`r)α2 1 f(hr)α1 X k∈Ir  f (|xk−`|)pk. Thus if x ∈ wf,α2 θ0 p , then x ∈ wf,α1 θ p .

From Theorem 2.15 we have the following results.

Corollary 2.16. Letθ = (kr) andθ0= (sr) be two lacunary sequences such that Ir⊂ Jrfor all r ∈ N and α1, α2two

real numbers such that 0< α1≤α2≤ 1. If (3) holds then

(i) wθf,α0 p ⊂ w f,α θ p, if α1= α2= α, (ii) wθf0 p ⊂ w f,α1 θ p , if α 2= 1, (iii) wθf0 p ⊂ w f θ p, if α1= α2= 1. References

[1] A. Aizpuru, M. C. List´an-Garc´ıa and F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math. 37(4) (2014) 525–530.

[2] Y. Altın and M. Et, Generalized difference sequence spaces defined by a modulus function in a locally convex space, Soochow J. Math. 31(2) (2005) 233–243.

[3] V. K. Bhardwaj and S. Dhawan, Density by moduli and lacunary statistical convergence, Abstr. Appl. Anal. 2016, Art. ID 9365037, 11 pp.

[4] A. Caserta, G. Di Maio and L. D. R. Koˇcinac, Statistical convergence in function spaces, Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.

[5] J. S. Connor, The statistical and strong p−Cesaro convergence of sequences, Analysis 8 (1988) 47–63.

[6] H. C¸ akallı, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. 26(2) (1995) 113–119.

[7] H. C¸ akallı, C. G. Aras and A. S ¨onmez, Lacunary statistical ward continuity, AIP Conf. Proc. 1676, 020042 (2015); http://dx.doi.org/10.1063/1.4930468.

[8] H. C¸ akallı and H. Kaplan, A variation on lacunary statistical quasi Cauchy sequences, Commun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat. 66(2) (2017) 71–79.

[9] H. C¸ akallı and H. Kaplan, A study on Nθ-quasi-Cauchy sequences, Abstr. Appl. Anal. 2013 (2013), Article ID 836970, 4 pages. [10] H. C¸ akallı, A study on statistical convergence, Funct. Anal. Approx. Comput. 1(2) (2009) 19–24.

[11] M. C¸ ınar, M. Karakas¸ and M. Et, On pointwise and uniform statistical convergence of orderα for sequences of functions, Fixed Point Theory And Applications, Article Number: 33, 2013.

[12] R. C¸ olak, Statistical convergence of orderα, Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, 2010: 121–129.

[13] G. Di Maio and L. D. R. Koˇcinac, Statistical convergence in topology, Topology Appl. 156 (2008) 28–45.

[14] M. Et, M. C¸ ınar and M. Karakas¸, Onλ−statistical convergence of order α of sequences of functions, J. Inequal. Appl. 2013, Article ID 204 (2013).

[15] M. Et, Y. Altın and H. Altınok, On some generalized difference sequence spaces defined by a modulus function, Filomat 17 (2003) 23–33.

[16] M. Et, A. Alotaibi and S. A. Mohiuddine, On (∆m, I) statistical convergence of order α, Scientific World Journal, Article Number:

535419, 2014.

[17] M. Et and H. S¸eng ¨ul, Some Cesaro-type summability spaces of orderα and lacunary statistical convergence of order α, Filomat 28(8) (2014) 1593–1602.

[18] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.

[19] A. R. Freedman, J. J. Sember and M. Raphael, Some Ces`aro-type summability spaces, Proc. London Math. Soc. (3) 37(3) (1978) 508–520.

[20] J. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.

[21] J. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993) 43–51.

[22] A. K. Gaur and M. Mursaleen, Difference sequence spaces defined by a sequence of moduli, Demonstratio Math. 31(2) (1998) 275–278.

(9)

[23] M. Is¸ık and K. E. Et, On lacunary statistical convergence of orderα in probability, AIP Conference Proceedings 1676, 020045 (2015); doi: http://dx.doi.org/10.1063/1.4930471.

[24] M. Is¸ık, Generalized vector-valued sequence spaces defined by modulus functions, J. Inequal. Appl. 2010, Art. ID 457892, 7 pp. [25] H. Kaplan and H. C¸ akallı, Variations on strong lacunary quasi-Cauchy sequences, J. Nonlinear Sci. Appl. 9(6) (2016) 4371–4380. [26] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc. 100 (1986) 161–166.

[27] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (1951) 508–512.

[28] F. Nuray and E. Savas¸, Some new sequence spaces defined by a modulus function, Indian J. Pure Appl. Math. 24(11) (1993) 657–663.

[29] S. Pehlivan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolin. 36(1) (1995) 69–76.

[30] S. Pehlivan and B. Fisher, Some sequence spaces defined by a modulus, Math. Slovaca 45(3) (1995) 275–280. [31] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139–150.

[32] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361–375. [33] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73–74.

[34] H. S¸eng ¨ul, Some Ces`aro-type summability spaces defined by a modulus function of order α, β, Commun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat. 66(2) (2017) 80–90.

[35] H. S¸eng ¨ul and M. Et, On lacunary statistical convergence of orderα, Acta Math. Sci. Ser. B Engl. Ed. 34(2) (2014) 473–482. [36] S¸. Yıldız, Lacunary statistical delta 2 quasi Cauchy sequences, Sakarya University Journal of Science 21(6) (2017) 1408–1412.

Referanslar

Benzer Belgeler

In [3], Nanda studied sequences of fuzzy numbers and showed that the set of all convergent sequences of fuzzy numbers forms a complete metric space. Nuray [4] proved the

introduced the concept of lacunary statistical convergence, lacunary statistically bounded and lacunary statistically Cauchy in the framework of locally solid Riesz spaces.. Quite

In 2003, Patterson extend these concepts by presenting an asymptotically statistical equivalent analog of these definitions and natural regularity conditions for nonnegative

However, Mursaleen [] defined the concept of λ-statistical convergence as a new method and found its relation to statistical convergence, (C, )-summability and strong (V

On September 2004 a specimen was captured in Antalya Bay (Bilecenoglu et al., 2006); in November 2004 another specimen was reported from Jaffa along the Israeli coast (Golani and

Destekleyici ve ılımlı bir atmosferin oluşturulmasının ve üst yönetim ile çalışanlar arasında desteğin sağlanmasının güçlendirme, yaratıcılık, iş tatmini gibi

Bunun için, öncelikle BirGün, Cumhuriyet, Hürriyet, Yeniçağ ve Yeni Şafak gazetelerinin manşet sayfalarında konu ile ilgili çıkan haberler taranmıştır.. Bu

Öne sürülen birinci varsayıma göre, iş ilanlarında halkla ilişkiler mesleği kurumlar tarafından tek yönlü olarak sunulmakta ve çok yönlü olan meslek, bir ya da