• Sonuç bulunamadı

On ı-asymptotically lacunary statistical equivalent sequences

N/A
N/A
Protected

Academic year: 2023

Share "On ı-asymptotically lacunary statistical equivalent sequences"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

www.math.science.cmu.ac.th/thaijournal

On Asymptotically Lacunary Statistical Equivalent Sequences

F. Patterson and E. Sava¸s

Abstract : This paper presents the following definition which is a natural combi- nation of the definition for asymptotically equivalent, statistically limit and lacu- nary sequences. Let θ be a lacunary sequence; the two nonnegative sequences [x]

and [y] are said to be asymptotically lacunary statistical equivalent of multiple L provided that for every ² > 0

limr

1 hr

¯¯

¯¯

½ k ∈ Ir:

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯ = 0

(denoted by x S∼ y) and simply asymptotically lacunary statistical equivalent ifLθ L = 1. In addition, we shall also present asymptotically equivalent analogs of Fridy’s and Orhan’s theorems in [3].

Keywords : Pringsheim Limit Point; P-convergent.

2000 Mathematics Subject Classification : 40A99, 40A05.

1 Introduction

In 1993, Marouf presented definitions for asymptotically equivalent sequences and asymptotic regular matrices. In 2003, Patterson extend these concepts by presenting an asymptotically statistical equivalent analog of these definitions and natural regularity conditions for nonnegative summability matrices. This paper extend the definitions presented in [5] to lacunary sequences. In addition to these definition, natural inclusion theorems shall also be presented.

2 Definitions and Notations

Definition 2.1 (Marouf, [4]) Two nonnegative sequences [x], and [y] are said to be asymptotically equivalent if

limk

xk

yk = 1 (denoted by x∼y).

(2)

Definition 2.2 (Fridy, [2]) The sequence [x] has statistic limit L, denoted by st − lim s = L provided that for every ² > 0,

limn

1 n

n

the number of k ≤ n : |xk− L| ≥ ² o

= 0.

The next definition is natural combination of definition (2.1) and(2.2).

Definition 2.3 (Patterson, [5]) Two nonnegative sequence [x] and [y] are said to be asymptotically statistical equivalent of multiple L provided that for every

² > 0,

limn

1 n

½

the number of k < n :

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≥ ²

¾

= 0

(denoted by xS∼ y), and simply asymptotically statistical equivalent if L = 1.L Following these results we introduce two new notions asymptotically lacunary statistical equivalent of multiple L and strong asymptotically lacunary equivalent of Multiple L.

By a lacunary θ = (kr); r = 0, 1, 2, ... where k0= 0, we shall mean an increas- ing sequence of non-negative integers with kr− kr−1 as r → ∞. The intervals determined by θ will be denoted by Ir= (kr−1, kr] and hr= kr− kr−1. The ratio

kr

kr−1 will be denoted by qr.

Definition 2.4 Let θ be a lacunary sequence; the two nonnegative sequences [x]

and [y] are said to be asymptotically lacunary statistical equivalent of multiple L provided that for every ² > 0

limr

1 hr

¯¯

¯¯

½ k ∈ Ir:

¯¯

¯¯xk

yk

− L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯ = 0

(denoted by xS∼ y) and simply asymptotically lacunary statistical equivalent ifLθ L = 1. Furthermore, let SθL denote the set of x and y such that xS∼ y.θL

Definition 2.5 Let θ be a lacunary sequence; two number sequences [x] and [y]

are strong asymptotically lacunary equivalent of multiple L provided that limr

1 hr

X

k∈Ir

¯¯

¯¯xk

yk − L

¯¯

¯¯ = 0,

(denoted by xN∼ y) and strong simply asymptotically lacunary equivalent if L = 1.θL In addition, let NθLdenote the set of x and y such that xN∼ y.θL

(3)

3 Main Results

Theorem 3.1 Let θ = {kr} be a lacunary sequence then 1. (a) If xN∼ y then xθL S∼ yLθ

(b) NθL is a proper subset of SθL 2. If x ∈ l and xS∼ y then xθL N∼ yθL 3. SθL∩ l= NθL∩ l

where l denote the set of bounded sequences.

Proof. Part (1a): If ² > 0 and xN

L

∼ y thenθ

X

k∈Ir

¯¯

¯¯xk yk − L

¯¯

¯¯ ≥

X

k∈Ir&

¯¯

¯xkyk−L

¯¯

¯≥²

¯¯

¯¯xk yk − L

¯¯

¯¯

≥ ²

¯¯

¯¯

½ k ∈ Ir:

¯¯

¯¯xk

yk

− L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯ .

Therefore xS∼ y.θL

Part (1b): NθL⊂ SθL, let [x] be define as follows xk to be 1, 2, . . . , [√

hr] at the first [

hr] integers in Ir and zero otherwise. yk = 1 for all k. These two satisfies the following xS∼ y but the following fails xθ0 N∼ y.θL

Part (2): Suppose [x] and [y] are in land xS

L

∼ y. Then we can assume thatθ

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≤ M for all k.

Given ² > 0 1

hr

X

k∈Ir

¯¯

¯¯xk

yk − L

¯¯

¯¯ = 1 hr

X

k∈Ir&

¯¯

¯xkyk−L

¯¯

¯≥²

¯¯

¯¯xk

yk − L

¯¯

¯¯ + 1 hr

X

k∈Ir&

¯¯

¯xkyk−L

¯¯

¯<²

¯¯

¯¯xk

yk − L

¯¯

¯¯

M

hr

¯¯

¯¯

½ k ∈ Ir:

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯ + ².

Therefore xN

L

∼ y.θ

Part (3): follows from (1) and (2). ¤

Theorem 3.2 Let θ = {kr} be a lacunary sequence with lim inf qr> 1, then xS∼ y implies xL S∼ y.θL

(4)

Proof. Suppose first that lim inf qr > 1, then there exists a δ > 0 such that qr≥ 1 + δ for sufficiently large r, which implies

hr

kr

δ

1 + δ.

If xS∼ y, then for every ε > 0 and for sufficiently large r, we haveL

1 kr

¯¯

¯¯

½

k ≤ kr:

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯ ≥ 1 kr

¯¯

¯¯

½ k ∈ Ir:

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯

δ

1 + δ 1 hr

¯¯

¯¯

½ k ∈ Ir:

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯ ;

this completes the proof. ¤

Theorem 3.3 Let θ = {kr} be a lacunary sequence with suprqr< ∞, then

xS∼ y implies xLθ S∼ y.L

Proof. If suprqr< ∞, then there exists B > 0 such that qr< B for all r ≥ 1.

Let xS∼ y, and ε > 0. There exists R > 0 such that for every j ≥ RθL Aj = 1

hj

¯¯

¯¯

½ k ∈ Ij:

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯ < ².

We can also find K > 0 such that Aj < K for all j = 1, 2, . . .. Now let n be any integer with kr−1< n < kr, where r > R. Then

1 n

¯¯

¯¯

½ k ≤ n :

¯¯

¯¯xk

yk

− L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯ ≤ 1 kr−1

¯¯

¯¯

½

k ≤ kr:

¯¯

¯¯xk

yk

− L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯

= 1

kr−1

½¯¯

¯¯

½ k ∈ I1:

¯¯

¯¯xk

yk

− L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯

¾

+ 1

kr−1

½¯¯

¯¯

½ k ∈ I2:

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯

¾

+ · · · + 1 kr−1

½¯¯

¯¯

½ k ∈ Ir:

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯

¾

= k1

kr−1k1

¯¯

¯¯

½ k ∈ I1:

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯

+ k2− k1

kr−1(k2− k1)

¯¯

¯¯

½ k ∈ I2:

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯

(5)

+ · · · + kR− kR−1

kr−1(kR− kR−1)

¯¯

¯¯

½

k ∈ IR:

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯

+ · · · + kr− kr−1

kr−1(kr− kr−1)

¯¯

¯¯

½ k ∈ Ir:

¯¯

¯¯xk

yk − L

¯¯

¯¯ ≥ ²

¾¯¯

¯¯

= k1

kr−1

A1+k2− k1

kr−1

A2+ · · · +kR− kR−1

kr−1

AR +kR+1− kR

kr−1 AR+1+ · · · + kr− kr−1

kr−1 Ar

½ sup

j≥1Aj

¾ kR

kr−1 +

½ sup

j≥RAj

¾kr− kR

kr−1

≤ K kR

kr−1 + ²B.

This completes the proof. ¤

Theorem 3.4 Let θ = {kr} be a lacunary sequence with 1 < infrqr≤ suprqr<

∞, then

xS∼ y = xL S∼ y.θL

Proof. The result clearly follows from Theorem 3.2 and 3.3. ¤

References

[1] J. A. Fridy, Minimal rates of summability, Canad. J. Math., 30(4)(1978) 808–

816.

[2] J. A. Fridy, On statistical convergence, Analysis, 5(1985), 301–313.

[3] J. A. Fridy and C. Orhan, Lacunary statistical convergent, Pacific J. Math., 160(1)(1993), 43–51.

[4] M. Marouf, Asymptotic equivalence and summability, Internat. J. Math. Math.

Sci., 16(4)(1993), 755–762.

[5] R. F. Patterson, On asymptotically statistically equivalent sequences, Demon- stratio Math., 36(1)(2003), 149–153.

(Received 12 March 2006) F. Patterson

Department of Mathematics and Statistics University of North Florida

Florida 32224, U.S.A.

e-mail : rpatters@unf.edu

(6)

E. Sava¸s

Department of Mathematics Education Faculty

Y¨uz¨unc¨u Yıl University Van-Turkey.

e-mail : ekremsavas@yahoo.com

Referanslar

Benzer Belgeler

Toplam 30 maddeye sahip olan öğretmenlerin eğitim programı tasarım yaklaşımı tercih ölçeği ilköğretim ve lise öğretmen- lerine uygulanmış ve yapılan açımlayıcı

Bu çalışmada küme dizileri için kuvvetli asimptotik ℐ-invaryant denklik,

Akreditif lehdarı, akreditif koşullarına uygun olarak poliçe düzenler ve ibraz eder, akreditif şartlarına uymuşsa görevli banka kendisine verilen görev

Girişim ve Kontrol Grubunun Son Framingham Risk Puanı ve Risk Yüzdesine Göre Dağılımı

Serbest Ağırlık Çalışma Grubu ile Smith Machine Çalışma Grubu bench press hareketi kuvvet ölçümü ön test ve son test değerleri arasındaki fark sonuçlarına bakacak olursak,

Beklenti düzeyini incelediğimizde empati özelliklerinde yaş, cinsiyet, eğitim durumu, gelir, geliş sıklığı ve geliş vasıtasının yetenek boyutlarında beklenti düzeyi

Kalp ekstraselüler matriksindeki farklılaşma neticesinde elde edilen immünfloresan analizlerin verilerini doğrulamak ve matriks içinde standart besiyeri ve kardiyomiyojenik

Öne sürülen birinci varsayıma göre, iş ilanlarında halkla ilişkiler mesleği kurumlar tarafından tek yönlü olarak sunulmakta ve çok yönlü olan meslek, bir ya da