• Sonuç bulunamadı

Effect of some plant species on fatty acid composition and mineral contents of Ferulago, Prangos, Ferula, and Marrubium seed and oils

N/A
N/A
Protected

Academic year: 2021

Share "Effect of some plant species on fatty acid composition and mineral contents of Ferulago, Prangos, Ferula, and Marrubium seed and oils"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)
(2)

J Food Process Preserv. 2019;43:e13939. wileyonlinelibrary.com/journal/jfpp  

|

  1 of 9 https://doi.org/10.1111/jfpp.13939

© 2019 Wiley Periodicals, Inc.

1 | INTRODUCTION

Many plants grown in the temperate areas of Europe, Asia, and Africa belong to Apiaceae and Lamiaceae families (Pimenov and Leonov, 1993). Most of the plant seeds contain the glyceride oils and at the same time they are also good sources of essential oils and nutrients (Güzelsoy et al., 2017; Zlatonov and Antova, 2004). The composition of vegetable oils plays an important part in their chemistry (Ayerza, 1995; Domokos & Peredi, 1993). Prangos ssp. is a perennial herb

and distributed in Eastern Europe to Middle East and Central Asia (Davis, 1972). The genus Ferulago is distributed in Europe, Asia, and Africa (Akalın & Pimenov, 2004; Erdemoğlu, Akalın, Akgöç, Çıkrıkçı, & Bilsel, 2008; Kandemir & Hedge, 2007; Özhatay and Akalın, 2000; Pimenov and Leonov, 1993). Ferulago species have sedative, tonic, digestive, carminative, and aphrodisiac properties (Akalın & Özhatay, 2000; Baytop, 1994).

In the recent years, investigations of the content and compo-sition of the essential oils have been carried out in different studies

Received: 22 December 2018 

|

  Revised: 22 February 2019 

|

  Accepted: 9 March 2019

DOI: 10.1111/jfpp.13939 O R I G I N A L A R T I C L E

Effect of some plant species on fatty acid composition and

mineral contents of Ferulago, Prangos, Ferula, and Marrubium

seed and oils

Kashif Ghafoor

1

 | Süleyman Doğu

2

 | Isam A. Mohamed Ahmed

1

 |

Gbemisola J. Fadimu

1

 | Ümit Geçgel

3

 | Fahad Al Juhaimi

1

 |

Elfadıl E. Babiker

1

 | Mehmet Musa Özcan

4

1Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia 2Ahmet Keleşoğlu Faculty of Education, Department of Science, Necmettin Erbakan University, Konya, Turkey 3Faculty of Agriculture, Department of Food Engineering, University of Namık Kemal, Tekirdağ, Turkey 4Faculty of Agriculture, Department of Food Engineering, University of Selcuk, Konya, Turkey Correspondence Kashif Ghafoor, Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia. Email: kghafoor@ksu.edu.sa Mehmet Musa Özcan, Faculty of Agriculture, Department of Food Engineering, University of Selcuk, Konya 42079, Turkey. Email: mozcan@selcuk.edu.tr Funding information King Saud University, Grant/Award Number: RG-1439-016

Abstract

The oil contents of seeds were between 4.92% (Ferulago aucheri) and 16.47% (Ferula parva). The highest oleic acid contents were detected in Ferulago syraea (67.15%), Ferulago pauciradiata (67.15%), Ferulago pachyloba (68.82%), Ferulago syriaca (66.16%), Prangos uechtritzii (60.37%), Ferula tingitana (77.26%), and Ferula szowitsiana (58.81%) seed oils. Oleic acid contents of Ferulago spp. (except F. aucheri) oils were found higher than those of other plant seed oils used in experiment (except F. tingitana). The behenic acid content (75.38%) of F. aucheri were significantly higher than other sam-ples. The K contents of plants ranged between 2,888.41 mg/kg (F. aucheri Boiss.) and 21,601.26 mg/kg (Ferula lycia Boiss.); Ca contents of plants ranged between 5,041.86 (Marrubium catariifolium Desr.) and 39,858.36 mg/kg (F. tingitana L.). In addition, the P contents of plants remained between 299.25 (M. catariifolium Desr.) and 4,674.64 mg/ kg (Marrubium trachyticum Boiss.). The protein contents of plant seeds ranged be-tween 1.75 (F. aucheri Boiss.) and 5.40% (M. trachyticum Boiss.).

Practical applications

Plant seed oils have been used for centuries by rural communities in foods, medi-cines, cosmetics, and fuel. They have been observed to carry excellent nutritional, nutraceutical, and pharmaceutical values. They are provided with good quantities of different nutrients and important fatty acids. The study will help to understand the differences in fatty acid and mineral composition of different plants from Apiaceae and Lamiaceae families.

(3)

2 of 9 

|

     GHAFOOR etAl. (Amiri, 2007; Baser, Demirci, & Duman, 2001; Başer, Ermin, Adiguzel,

& Aytac, 1996;2007; Razavi, 2012; Razavi, Imanzadeh, & Davari, 2010; Rustaiyan, Yari, Masoudi, & Aghjani, 1999; Sefidkon, Khajavi, & Maleckpour, 1998) however, the information about the other compo-sitional attributes of these oils is scanty. The significance of the oils from these plant seeds makes it important to study the compositional characteristics. The nutritional properties of different plant species demonstrate the importance of agricultural biodiversity in nutrition. It has been observed that the wild edible plants can contribute consider-ably to fulfill the dietary requirements in human nutrition. Hence, the aim of current study was to determine the oil content, fatty acid com-position, protein and mineral contents in seeds of Ferulago, Prangos, Marrubium, and Ferula ssp.

2 | MATERIAL AND METHODS

2.1 | Material

The aerial parts of plant samples (Table 1) at full maturation stage were collected in Turkey at an elevation of 1,217 m in August 2015. The samples were dried under shade and seeds were separated from plant parts.

2.2 | Extraction of oil

The oil was extracted from about 10 g of ground seed in a Soxhlet apparatus. Petroleum ether was used as solvent. After extraction, solvent was evaporated by rotary evaporator at 50°C. Then the oil was kept at −18°C for analysis.

2.3 | Determination of fatty acids

The oil sample (50–100 mg) was converted to fatty acid methyl es-ters (FAMEs) and a sample of 1 µl from FAMEs was injected into a gas chromatography system (HP 6890) (Hışıl, 1998). GC conditions included changing the oven temperature from 175°C (7 min) to 250°C (15 min) at a rate of 5°C/min. Injector and detector temper-atures were set at 250 and 250°C, respectively. The nitrogen was used as carrier gas at a flow rate of 1.51 ml/min and split ratio was set at 1/50 µl/min.

2.4 | Determination of mineral contents

About 0.5 g sample (dried at 70ºC) was digested using 5 ml of 65% HNO3 and 2 ml of 35% H2O2 in a closed microwave

(MARS 5 CEM Corporation, USA) system at 200ºC. After diges-tion, mineral contents were determined by inductively coupled plasma optical emission spectroscopy (ICP‐AES; (Varian‐Vista, Australia) using standard solutions of known concentrations and both sample and standard solutions were analyzed concurrently (Skujins, 1998).

2.5 | Statistical analyses

A statistical software JMP version 9.0 (SAS Inst. Inc., Cary, N.C. U.S.A) was used to perform analysis of variance. The results are mean ± SD (MSTAT C) of independent seed samples (Püskülcü & İkiz, 1989).

3 | RESULTS AND DISCUSSION

The oil contents of seed samples ranged between 4.92% (Ferulago aucheri) and 16.47% (Ferula parva) (Table 2). Generally, oil con-tents of Ferulago paucirodiata, Ferulago pachyloba, Ferulago syriaca, Marrubium rotunolifolium, Marrubium trachyticum, Ferula elaeochytris, Ferula lycia, and Ferula szowitsiana seeds ranged between 10.11% and 14.59% (Table 2). The seeds of Silybum marianum contain between 25% and 30% oil, and are rich in unsaturated fatty acids (Hasanloo, Bahmanei, Sepehrifar, & Kalantari, 2008). Erdemoğlu et al. (2008) reported that Ferulago trachycarpa seeds collected from two loca-tions (Balıkesir and Konya, respectively) contained 7.3% and 9.1% oils. Zlatonov and Antova (2004) reported that the oil content of seven species seeds from Labiatae were ranged between 8.7% and 28.6%. The oil contents of the studied seeds belonging to different species showed qualitative differences.Matthaus, Vosmann, Pham, and Aitzetmüller (2003) reported that the oil contents of seeds ranged between 0.2/100 g for Mangifera indica and 75.7g/100 g for Calophyllum inophyllum, where as only nine seeds contained more than 40% oil. Phlomis fruticosa and Marrubium vulgare seeds con-tained 12.5% and 32.1% oil, 13.0% and 12.0% laballenic acids, re-spectively (Aitzetmüller, Tsevegsüren, & Vosmann, 1997).

Fatty acid compositions of seed samples were investigated by GC method and results are presented in Table 2. The higher percent-ages of oleic acid was detected in Ferulago syraea (67.15%), Ferulago pauciradiata (67.15%), F. pachyloba (68.82%), F. syriaca (66.16%), Prangos uechtritzii (60.37%), Ferula tingitana (77.26%), and F. szow‐ itsiana (58.81%). In addition, the higher linoleic acids were found in Marrubium vulcanicum (42.0%), Marrubium persicum (40.30%), Marrubium catariifolium (54.75%), M. trachyticum (53.38%), and F. lycia (44.15%). The oleic acid contents of oils ranged between 3.53% (F. aucheri) and 77.26% (F. tingitana), linoleic acid contents ranged from 4.0% (M. rotunolifolium) to 54.75% (M. catoriifolium). Palmitic acid contents of samples were found between 0.96% (Ferulago aspar‐ agifolia) and 17.52% (Prangos ferulacea). Generally, oleic acid contents of Ferulago spp. (except F.aucheri) oils were found higher than those of other plant seed oils used in experiment (except F.tingitana). The behenic acid content (75.38%) of F. aucheri were found much more than other samples. The stearic acid contents of samples ranged from 0.26% (F. syraea) to 15.86% (P. ferulacea). Also, stearic acid con-tent of Prangos meliocarpoides oil had been determined as 15.27%. Hasanloo et al., (2008) reported that S. marianum oil contained 8.25% palmitic, 6.67% stearic, 31.58% oleic, 45.36% linoleic, 0.87%

(4)

T A B LE 1  Pla nt s u se d in e xp er im en t Fa mil y Spec ies Lo ca tio n A ltit ud e H er ba rium no Api ac ea e 1‐ Pra ng os f er ul ac ea (L .) L in dl . C 4 Ko ny a: T aş ke nt , H ad im ‐T aş ke n ro ad , T aş ke nt e 2 km k al a, s lo pe s, 1 7. 06 .2 01 4. 1, 55 0 m S. D oğ u 28 41 Api ac ea e 2‐ Pra ng os m el io ca rp oi de s B oi ss . v ar . m el io ca rp oi de s C 4 K ar am an : K ar am an -M ut ro ad 8 . k m , r oa d s id e, 1 8. 06 .2 01 4. 1, 05 0 m S. D oğ u 28 50 Api ac ea e 3‐ Pra ng os u ec ht rit zi i B oi ss . & H au ss kn . C 4 Ko ny a: T aş ke nt , T aş ek en ‐B al cı la r r oa d cr os s, s lo pe s, 1 7. 06 . 2 01 4. 1, 55 0 m S. D oğ u & Y . B ağ cı 2 84 3 Api ac ea e 4‐ Pra ng os h ey ni ae H . D um an & M . F . W at so n C 4 K on ya : H ad im , K or ua la n v ill ag e r ou nd , s lo pe s, 1 7. 06 .2 01 4. 1, 50 0 m S. D oğ u 28 42 Api ac ea e 5‐F er ul a s zow its ia na D C . C 4 K ar am an : K ar am an ‐A yr an cı ro ad 2 2. k m , r oa d si de , 1 8. 06 .2 01 4. 1, 05 0 m , S. D oğ u 2, 85 1 Api ac ea e 6‐ Fe ru la lyc ia Bo is s. C 4 K on ya : K on ya -H ad im R oa d, E gi st e l oc at io n, s lo pe s, 1 7. 06 .2 01 4. 10 50 m S. D oğ u 28 44 Api ac ea e 7‐ Fe ru la e la eo ch yt ris Ko ro vi n C 4 N iğ de : U lu kı şl a, U lu kı şl a‐ Po za nt ı r oa d, A lih oc a vi lla ge ro ad c ro ss , s lo pe s, 2 1. 06 .2 01 4. 1, 05 0 m S. D oğ u 2, 85 3 Api ac ea e 8‐ Fer ul a t ing ita na L. C 4 A nt al ya : M an av ga t, A nt ik S id e, A nt ik c ity in si de , s te p, 2 7. 06 .2 01 4. 10 m S. D oğ u 28 80 Api ac ea e 9‐ Fe ru la p ar va Fr ey n & B or nm . C 4 K ar am an : K ar am an -M ut r oa d 8 . k m , r oa d s id e, 1 5. 08 .2 01 4. 1, 05 0 m S. D oğ u 2, 89 8 Api ac ea e 10 ‐F er ul ag o a sp ara gi fo lia Bo is s. C 4 K ar am an : B uc ak ış la , r oc k pa rt s, 2 0. 07 .2 01 4. 1, 05 0 m S. D oğ u 28 90 Api ac ea e 11 ‐F er ul ag o a uc her i Bo is s. C 4 K ar am an : S ar ıv el ile r, C iv an de re v ill ag e, fo re st ry , 1 5. 08 .2 01 4. 1, 65 0 m S. D oğ u 28 99 Api ac ea e 12 ‐F er ul ag o p au ci ra di at a B oi ss . & H eld r. C 4 Ko ny a: K on ya ‐B oz kı r r oa d, D in ek sa ra y‐ D in ek v ill ag es , 2 0. 07 .2 01 4. 1, 05 0 m S. D oğ u 28 91 Api ac ea e 13 ‐F er ul ag o s yr ia ca Bo is s. C 4 M er si n: T ar su s, U la ş vi lla ge , M ez ar lık ro un d, s lo pe s, 1 1. 07 .2 01 4. 55 0 m S. D oğ u 28 88 Api ac ea e 14 ‐F er ul ag o pac hy loba (F en zl ) B oi ss . C 4 N iğ de : U lu kı şl a, U lu kı şl a‐ Po za nt ı r oa d, A lih oc a vi lla ge ri ng , s lo pe s, 1 5. 08 .2 01 4. 1, 10 0 m S. D oğ u 2, 90 0 La m iac eae 15 ‐M ar rub ium b our ga ei B oi ss . S ub sp bou rg ae i C 2 B urd ur : D irm ilc ros s, ro ck y, 2 1. 09 .20 14. 1, 80 0 m S. D oğ u 29 07 La m iac eae 16 ‐M ar rub ium b our ga ei B oi ss . S ub sp car ic um P . H . D av is C 2 D en iz li: A cı pa ya m , B oz da ğ, 2 2. 09 .2 01 4. 1,9 50 m S. D oğ u 29 10 La m iac eae 17 ‐M ar rub ium v ul can ic um Hu b. -M or . B9 A ğr ı:P at no s, P at no sc iv ar ı, vo lc an ic ro ck s, 1 4. 09 .2 01 4. 1,70 0 m S. D oğ u 29 05 La m iac eae 18 ‐M ar rub ium p er eg rin um L. B1 B al ık es ir: B ur ha ni ye ‐Ç or uk v ill ag e ro ad 1 5. k m , 3 0. 09 .2 01 4 25 m S. D oğ u 29 16 La m iac eae 19 ‐M ar rub ium ro tund ifo lium Bo is s. C 2 D en iz li: H on az , H on az da ğı , 2 2. 09 .2 01 4. 18 50 m S. D oğ u 2, 91 1 La m iac eae 20 ‐M ar rub ium c at ar iif ol ium D es f. A 9 K ar s: Ç ıld ır, Ç ıld ır la ke s id e, 1 5. 09 .2 01 4 2, 010 m S. D oğ u 29 06 La m iac eae 21 ‐M ar rub ium tr ac hy tic um Bo is s. B 4 A nk ar a: K ız ılc ıh am am , K ız ılc ıh am am ‐B ol u ro ad 2 0. k m , r oc ky p la ce s, 2 7. 09 .2 01 4. 1, 02 5 m S. D oğ u 29 12

(5)

4 of 9 

|

     GHAFOOR etAl. T A B LE 2  O il c on te nt s, s at ur at ed a nd u ns at ur at ed f at ty a ci d p ro fil es o f s ev er al p la nt s ee d s am pl es ( % ) Sa m ple n o. 1 2 3 4 5 6 7 8 9 10 11 O il c onte nt (% ) 4. 92 ± 0 .4 5 a  8. 68 ± 0 .9 8 10 .1 1 ± 1.1 7 10 .1 3 ± 1.1 3 11 .6 9 ± 1. 21 7. 46 ± 0 .8 7 13 .9 5 ± 1. 54 6. 59 ± 1 .2 3 8. 69 ± 1 .2 1 5. 94 ± 0 .6 7 5. 12 ± 0 .7 1 Fa tt y ac id s (% ) C14 :0 1. 25 0.0 6 0.0 8 0. 21 2.7 2 0.9 8 1. 07 2. 42 0. 17 0. 49 2.0 0 C16 :0 3.9 1 4. 02 4.7 3 5. 87 6.9 3 0.9 6 7. 71 17. 52 6. 83 8. 28 4.1 6 C1 8: 0 0. 54 1. 04 1. 27 0.9 8 1.4 3 3. 89 4.1 6 2. 20 1. 42 2.4 4 3. 39 C 20:0 2.0 6 0. 30 0. 31 0. 29 0. 27 0. 85 nd 7. 14 0. 22 0. 63 0. 51 C 22: 0 75 .3 8 6. 20 6. 36 0. 90 6. 50 19 .1 2 nd 3. 11 0.1 8 1. 09 10.0 0 C 24 :0 1. 39 0.1 6 0. 19 0. 28 0.4 0 1. 19 3. 02 13 .8 7 0. 58 1. 26 18.8 7 C1 6:1 – a  0. 29 0.4 3 0.4 6 – – 0.7 8 1.9 8 0.1 5 0.4 8 1. 00 C1 8:1 (n −9) 3. 53 67. 15 66 .9 1 68.8 2 66 .1 6 29 .9 2 36 .3 9 9. 78 60 .3 7 48 .55 21 .1 9 C 20 :1 1. 05 0. 19 0. 17 0. 19 – 0. 37 1. 08 – 0.4 0 1. 60 0.9 2 C 22 :1 0. 87 0. 19 0. 14 0.1 5 0.1 0 0. 26 1. 56 1. 36 0. 28 1. 35 1. 21 C 24 :1 (n −9) – 0.1 2 0.1 5 0.1 5 – 1. 61 1. 31 1. 19 0.1 8 0. 85 1. 00 C1 8: 2 ( n− 6) 6.4 4 20 .02 18 .0 9 19 .4 4 14 .9 9 36 .5 0 24 .0 3 21 .2 2 28 .52 30 .76 33 .1 3 C1 8: 3 ( n−3 ) 3. 58 0. 26 0. 34 1.1 3 0. 49 3. 19 15 .27 15 .8 6 0.7 0 2. 22 0.7 0 U nd ef in ed fa tt y a ci ds – – 0. 82 1.1 3 – 1.1 5 1. 63 2. 34 – – 1.9 2 To ta l 10 0.0 0 10 0.0 0 99 .99 10 0.0 0 99 .99 99 .99 99 .99 99 .99 10 0.0 0 10 0.0 0 10 0.0 0 ∑ SF A 84 .53 11 .7 8 12 .9 4 8. 53 18 .2 5 26 .9 9 15 .9 6 46 .26 9. 40 14 .19 38 .9 3 ∑ MU FA 5. 45 67. 94 67. 80 69 .7 7 66 .26 32 .1 6 41 .6 2 14 .3 1 61 .3 8 52 .8 3 25 .3 2 ∑ PU FA 10.0 2 20 .2 8 18 .4 3 20 .57 15 .4 8 39 .6 9 39 .7 8 37. 08 29 .2 2 32 .9 8 33 .8 3 ∑ U FA 15 .47 88 .22 86 .23 90. 34 81 .74 71 .8 5 81 .4 0 51 .3 9 90. 60 85 .81 59 .1 5 P/ S 0. 11 1.7 2 1. 42 2. 41 0. 84 1. 47 2. 49 0. 80 3.1 0 2. 32 0. 86 n6/ n3 1.7 9 77. 00 53 .2 0 17. 20 30 .59 11 .4 4 1. 60 1. 33 40 .74 13 .8 5 47. 32 Sa m ple n o. 12 13 14 15 16 17 18 19 20 21 O il c onte nt (% ) 6. 85 ± 1 .1 3 a  8. 46 ± 1 .2 7 5. 82 ± 0 .5 6 14 .5 9 ± 2. 13 6. 08 ± 0 .3 4 10 .6 6 ± 1. 43 16 .4 7 ± 2. 48 11 .8 1 ± 1. 17 12 .2 4 ± 1. 23 13 .3 9 ± 1. 56 Fa tt y ac id s (% ) C14 :0 1.1 0 1.1 2 – a  – 0.0 1 0.0 2 0. 27 0. 50 0.1 2 0. 28 C16 :0 10 .52 11 .9 9 4.9 5 6.0 0 4. 25 3.9 3 5. 86 6. 71 6. 59 3.7 0 C1 7: 0 0. 60 0. 63 – – – – – 0. 58 0. 50 – C1 8: 0 9. 50 10 .4 4 2. 85 2. 50 1. 85 1.9 7 1. 82 1. 89 1. 52 2. 80 C 20:0 0. 75 0. 68 0. 88 0. 80 0. 20 0. 23 0. 34 0. 35 0. 27 0.4 4 C 22: 0 1. 00 1. 03 21 .5 0 22 .4 6 0. 52 0. 55 0. 36 5.9 1 7. 24 4. 21 (Co nt in ue s)

(6)

Sa m ple n o. 12 13 14 15 16 17 18 19 20 21 C 24 :0 – – 22 .3 5 23 .0 0 16 .8 5 17. 83 5. 23 0. 23 4. 00 1. 24 C1 6:1 0. 50 0. 55 – – 0.0 5 0.0 3 0. 51 0. 33 0.4 4 0.1 8 C1 8:1 (n −9) 29 .8 5 29 .5 9 37. 30 35 .62 20 .14 20 .7 2 48 .69 48 .0 0 30 .87 58.8 1 C 20 :1 – – 1. 62 1. 55 0. 57 0. 54 -0. 37 0.1 5 0. 14 C 22 :1 0. 35 0. 41 1.9 0 1. 82 0.0 5 0.0 4 0.4 4 0.1 0 0. 14 0. 33 C 24 :1 (n −9) – – – – 0.1 0 0.0 8 0. 67 0.1 6 0.1 6 0.1 3 C1 8: 2 ( n− 6) 42 .0 0 40. 30 4. 5 4. 00 54 .75 53 .3 8 31 .3 5 30. 80 44 .1 5 24 .4 2 C1 8: 3 ( n−3 ) 0. 50 0. 47 2.1 5 2. 25 0. 65 0. 68 0.9 1 0.4 8 1. 26 1. 36 U nd ef in ed fa tt y a ci ds 3. 32 2.7 9 – – – – 3. 55 3. 58 2. 59 1.9 5 To ta l 99 .99 10 0.0 0 10 0.0 0 10 0.0 0 99 .99 10 0.0 0 10 0.0 0 99 .99 10 0.0 0 99 .99 ∑ SF A 23 .47 25 .8 9 52 .5 3 54 .76 23 .6 8 24 .5 3 13 .8 8 16 .17 20 .24 12 .67 ∑ MU FA 30 .7 0 30 .55 40 .82 38 .9 9 20 .9 1 21 .41 50 .31 48 .9 6 31 .76 59 .59 ∑ PU FA 42 .5 0 40 .7 7 6. 65 6. 25 55 .4 0 54. 06 32 .26 31 .2 8 45 .41 25 .7 8 ∑ U FA 73 .2 0 71 .3 2 47 .47 45 .24 76 .3 1 75 .47 82 .57 80 .24 77. 17 85 .3 7 P/ S 1. 81 1. 57 0.1 2 0. 11 2. 33 2. 20 2. 32 1.9 3 2. 24 2.0 3 n6/ n3 84. 00 85 .74 2.0 9 1.7 7 84 .23 84 .23 34 .4 5 64 .1 6 35 .0 3 17. 95 N ote . M U FA , m on ou ns at ur at ed fa tt y ac id s; n d, n on ‐d et ec te d; P /S , ∑P U FA /∑ SF A ; P U FA , p ol yu ns at ur at ed fa tt y ac id s; S FA , s at ur at ed fa tt y ac id s; U FA , u ns at ur at ed fa tt y ac id s. *M ea n ± SD . T A B LE 2  (Co nti nue d)

(7)

6 of 9 

|

     GHAFOOR etAl. T A B LE 3  M in er al a nd p ro te in c on te nt s o f p la nt s u se d i n e xp er im en t ( m g/ kg ) Sa m ple n o. Ma cr o el eme nt s M ic ro e lem en ts Pr ot ei n ( % ) P K Ca Mg S Fe Zn Mn B Cu Mo 1 M ea n 1,1 16 .7 2 16 ,2 80 .3 4 22 ,70 3. 83 2, 69 4. 58 3, 941 .6 8 15 6.9 6 42 .8 8 21 9. 62 11 5. 46 12 .5 0 1. 71 19 .4 2 SD 24 .2 1 a  14 7. 97 814 .8 4 74 .5 4 12 6.9 8 7. 93 0. 62 5. 69 2. 84 0.0 6 0. 26 0.4 0 2 M ea n 3, 71 8. 63 18 ,2 54 .54 7, 30 4. 20 2, 825 .36 2, 53 5.9 5 75 .8 8 40. 90 47. 84 57. 48 82 .41 1. 20 17. 90 SD 14 6. 20 69 8. 28 15 7. 46 42 .0 9 85 .4 8 0. 28 0. 54 0. 21 0.9 3 1.9 1 0.0 5 0. 55 3 M ea n 2, 58 4. 23 16 ,5 19 .4 1 11 ,2 50 .3 5 3,0 75 .77 2, 29 6. 50 111 .1 6 22 .3 4 39 .0 5 56 .01 14 .3 8 1. 02 17. 74 SD 91 .3 8 36 4. 85 21 0.0 0 88 .0 9 49 .6 2 2.9 5 1. 05 1. 57 0. 65 1.1 5 0.0 1 0. 41 4 M ea n 4,3 35 .5 1 17 ,3 47 .6 0 16 ,3 71 .4 2 3, 95 3.1 8 3, 225 .3 7 11 7. 66 30 .51 27. 24 81 .6 0 12 .0 8 1.7 0 19 .7 6 SD 50 .86 57 0. 66 83 5. 69 27. 69 43 .17 4. 23 0.9 5 1. 21 2. 61 0. 60 0.1 2 0. 64 5 M ea n 3, 06 4.9 7 21 ,4 06 .9 0 14, 24 1. 70 2, 551 .2 1 2, 73 7. 26 13 0. 75 45 .1 9 23 .9 1 73 .1 6 17. 52 2. 30 25 .4 6 SD 68 .9 3 391 .8 2 16 6. 21 97. 67 66 .87 4. 26 0.4 0 0. 30 0. 32 1. 23 0.1 0 0. 58 6 M ea n 2, 75 5. 61 21 ,6 01 .26 14, 51 1. 61 4, 04 8. 33 2, 81 7. 36 84 .9 1 31 .8 4 46 .89 88 .1 2 18 .1 5 1. 29 18 .5 7 SD 11 8. 20 75 5. 76 45 6.9 2 10 2. 47 12 2. 40 5. 31 0.7 3 1. 85 2. 26 0. 88 0. 14 0. 32 7 M ea n 2, 12 6. 32 11 ,1 07. 42 5, 72 1.9 1 176 8. 18 163 3. 23 91 .61 21 .67 22 .47 42 .1 2 84 .07 0. 82 26 .24 SD 11 2. 95 43 9. 32 72 .9 7 43 .2 1 46. 84 2.9 4 0. 89 0. 54 1.4 6 8. 35 0.1 2 0. 24 8 M ea n 551 .0 6 12 ,1 54 .3 0 39, 85 8. 36 2, 971 .5 4 5, 32 1. 35 56 .7 7 24 .3 7 4.4 6 61 .4 2 92 .59 0. 64 14 .7 8 SD 31 .5 7 66 4. 58 57 8. 19 33 .9 3 24 3. 22 1.9 8 1.1 2 0. 31 1. 28 1. 26 0.0 9 0. 34 9 M ea n 4, 36 5.1 3 11 ,41 6. 19 6, 48 7. 19 2, 20 9. 90 176 0. 77 65 .4 0 22 .9 1 20 .3 0 42 .5 8 89 .2 0 1. 05 26 .0 8 SD 80 7. 35 92 8.8 7 30 2.7 3 13 4. 31 10 9. 48 5. 11 1. 74 2.1 0 1.1 2 7. 39 0. 11 0. 32 10 M ea n 4, 34 8. 08 18 ,3 45 .25 6, 93 0. 66 2, 14 4. 25 17 50 .1 3 82 .9 7 25 .9 5 25 .5 6 45 .87 15 .8 3 0.7 8 18 .07 SD 39 .3 4 324 .5 0 23 6. 87 12 .57 5. 53 3.9 4 0.1 8 1. 28 0. 87 0.1 6 0.0 3 0. 27 11 M ea n 61 0. 43 2, 888 .4 1 11 ,0 42 .2 8 16 38 .0 4 71 6. 41 23 3. 83 13 .9 1 63. 26 38 .74 12 .0 9 0.9 3 10.0 9 SD 124 .5 2 20 0. 29 724 .6 2 36 .31 33. 09 1.7 3 0. 56 2.7 2 0. 85 0. 37 0.0 5 0.4 0 12 M ea n 1, 46 7. 03 13 ,52 3. 49 16 ,7 54 .8 3 2, 75 3. 78 176 5. 93 35 6. 48 41 .0 2 17 3. 96 54. 68 10.0 4 1. 27 23 .5 8 SD 263. 22 40 9. 74 72 9. 82 11 0. 29 80 .75 21 .55 2. 28 13 .3 2 2.0 8 0. 50 0.0 9 0. 35 13 M ea n 1, 27 7. 10 10 ,4 42 .3 1 15 ,2 01 .7 0 2, 438 .2 1 1, 45 9. 86 22 7. 49 15 .5 4 50 .3 9 50 .33 14 .5 6 0. 87 16 .8 9 SD 46 .7 3 34 9. 98 763. 49 87. 48 66 .52 2. 83 0.9 5 1. 01 1. 33 1. 26 0. 11 0. 52 14 M ea n 51 1. 79 4, 79 2.9 0 10 ,9 15 .7 2 18 68 .1 3 763. 53 32 8. 60 13 .2 2 53 .4 4 43 .25 9. 73 0.7 2 18 .0 1 SD 61 .8 8 36 0. 39 1, 17 3. 50 73 .8 2 18 .6 3 5.4 0 1. 11 1. 51 1. 84 0. 38 0.1 0 0. 29 15 M ea n 95 8. 65 5, 03 3. 01 12, 038 .1 9 2, 25 7. 01 1, 20 7. 49 35 8. 47 22 .4 6 50 .8 4 40 .4 4 12 .6 6 0. 86 23 .3 0 SD 87. 03 25 0. 60 152 6, 95 51 .9 1 76 .74 6.7 9 1.1 8 1. 67 0.9 6 1. 00 0.0 3 0. 32 16 M ea n 19 46 .0 5 8, 31 7. 05 11 ,09 3. 42 2, 438 .6 8 1, 24 3. 99 22 0.4 4 24 .0 6 39 .1 1 57, 71 17. 30 2. 29 21 .2 3 SD 30 9. 58 80 0. 87 20 49 .8 4 13 2.1 5 68 .29 15 .8 0 1.7 9 1. 11 2, 21 1.1 5 0.1 8 0. 21 (Cont in ue s)

(8)

linolenic, 4.11% arachidic, and 2.6% behenic acids. Erdemoğlu et al. (2008) reported that F. trachycarpa seed oils collected from Balıkesir and Konya provinces contained 4.1% and 3.5% palmitoleic, 68.1% and 73.6% oleic, and 23.0% and 18.0% linoleic acids, respectively. The monaunsatured fatty acid contents of samples were between 5.45% (F. aucheri) and 77.66% (F. tingitana) whereas the polyunsat-urated fatty acid (PUFA) contents of seed oils ranged from 6.25% (Marrubium bourgaei) to 55.40% (Marrubium catoriifolium). The PUFA content of M. trachyticum was 54.06%. Linoleic and linolenic acids are not naturally produced in the body, and these essential fatty acids must be obtained through food consumption. Results pre-sented here showed partial differences and these differences in quantity and quality of seed oils can be probably due to the effects of temperature, light, soil type, and plant nutrition (Ayerza, 1995).

Mineral and protein contents showed differences depending on plant varieties (Table 3). The K contents of plants ranged between 2,888.41 mg/kg (F. aucheri Boiss.) and 21,601.26 mg/kg (F. lycia Boiss.), Ca contents of plants ranged between 5,041.86 (M. catariifolium Desr.) and 39,858.36 mg/kg (F. tingitana L.). In addition, the P contents of plants were ranged between 299.25 (M. catariifolium Desr.) and 4,674.64 mg/ kg (M. trachyticum Boiss.). Among them, the Fe content was higher than thatof other micro element levels. Fe contents of plant samples were found between 25.77 (M. catariifolium Desr.) and 358.47 mg/kg (F. pachyloba (Fenzl) Boiss.). In addition, the Mo contents of plants ranged between 0.57 mg/kg (M. catariifolium Desr.) and 2.30 mg/kg (F. szowitsi‐ ana DC.), Cu contents of plants ranged between 7.61 mg/kg (M. catariifo‐ lium Desr.) and 92.59 mg/kg (F. tingitana L.). Generally, mineral contents of M. catariifolium were found lower compared with results of other samples. Protein contents of plants ranged between 10.09% (F. aucheri Boiss.) and 29.95% (M. catariifolium Desr). Generally, F. szowitsiana DC, F. elaeochytris, F. parva Freyn & Bornm. F. pauciradiata Boiss. & Heldr. M. bourgaei Boiss. Subsp bourgaei, Marrubium peregrinum L., Marrubium rotundifolium Boiss., M. catariifolium Desr. Plant seeds were richer in pro-tein compared to other plants used in experiment. In previous study, edible parts of Ornithogalum umbellatum L., Capsella bursapastoris (L.) Medik., Polygonum cognatum Meissn., Smilax excels L., Beta maritime L., Glebionis coronaria (L.) Spach, Syn: Smyrnium olusatrum L., Cichorium in‐ tybus L., Dioscorea communis (L.) Caddick & Wilkin, Tragopogon porrifo‐ lius Subsp. Longirostris (Sch. Bip.) Greuter, Eremurus spectabilis M. Bieb., and Chondrilla juncea L. contained 0.53%, 2.66%, 2.06%, 3.93%, 2.42%, 1.58%, 0.66%, 0.53%, 1.38%, 0.15%, 0.12%, and 3.22% protein, respec-tively (Güzelsoy et al., 2017). Pathak, Vajpai, and Vajpai (2012) reported that the seeds of Butea monosperma and Ocimum gratissimum contained 24.25% and 20.03% protein, respectively. Datura metel seeds contained 20.73% crude protein (Rai, Bachheti, & Joshi, 2013). Results showed dif-ferences when compared to the values presented in the literature and these differences can be plant genus and its parts.

4 | CONCLUSION

Consequently, these seed oils showed differences in fatty acids compositions, and were found as rich sources of unsaturated fatty

Sa m ple n o. Ma cr o el eme nt s M ic ro e lem en ts Pr ot ei n ( % ) P K Ca Mg S Fe Zn Mn B Cu Mo 17 M ea n 16 51 .4 7 3, 23 3. 86 15 ,4 84. 00 2, 45 3. 82 99 6. 47 249 .49 40 .7 3 52 .7 7 50 .85 57. 33 0,9 6 19 .2 4 SD 95 .6 8 260 .8 0 68 8. 61 114 .2 6 32 .9 5 22 .2 1 2. 59 1. 49 0.7 3 2. 49 0, 09 0. 20 18 M ea n 2, 20 4. 89 17 ,3 97. 41 9, 24 4. 06 19 58 .4 0 2, 214 .7 0 72 .3 7 34 .74 16 .2 2 47. 85 17. 66 0. 81 23 .9 7 SD 95 .2 6 1, 12 9. 62 46 8. 59 56 .9 3 33 .9 4 2. 32 0.7 0 0. 64 0. 51 1. 17 0. 14 0. 76 19 M ea n 2, 56 6. 32 14 ,323 .8 8 9, 01 7. 12 3, 04 5. 42 20 60 .1 6 82 .3 4 25 .7 6 48.8 7 58 .47 14 .1 2 1.1 8 23 .9 2 SD 49 9. 19 20 30 .8 6 524 .1 6 71 .11 13. 06 1.9 2 0. 27 1. 84 1. 34 0.9 5 0. 14 0. 55 20 M ea n 3, 00 9. 13 17, 52 3. 83 10 ,3 26 .2 0 20 64. 83 20 19 .9 5 55 .47 27. 61 20 .42 45 .5 3 60 .9 8 1. 05 29 .9 5 SD 17 3. 13 17 83 .0 2 68 4. 65 38 .9 9 60 .8 8 1. 03 1. 04 0. 81 0. 49 7. 29 0.1 2 0.4 3 21 M ea n 29 9. 25 3, 92 8.8 7 5, 041 .8 6 71 3. 09 651 .3 6 25 .7 7 5. 59 1.7 0 29 .1 8 7. 61 0. 57 18.8 5 SD 39 .2 1 871 .0 1 43 0. 86 12 .7 3 38 .74 1. 19 0.0 7 0.1 0 0. 67 0.1 6 0.1 2 0. 25 *M ea n ± SD . T A B LE 3  (Co nti nue d)

(9)

8 of 9 

|

     GHAFOOR etAl. acids. The information about their oil content and fatty acid

com-positions are of great interest. Our results showed that the wild plant seeds are rich in oil contents, protein contents, fatty acid compositions, and mineral contents. The study also suggest that the oleic and linoleic acid were observed as dominant fatty acids. The oil obtained from these seeds can be used in cosmetic and food industry. It was observed that the oil quality in plant seeds was remarkably different depending upon various growth stages of plant, genus differences, genetic factors, and environmental conditions.

ACKNOWLEDGMENTS

The authors would like to sincerely appreciate the Deanship of Scientific Research at King Saud University for funding this Research group No (RG 1439‐016).

CONFLIC T OF INTEREST

The authors have declared no conflicts of interest for this article.

ORCID

Kashif Ghafoor https://orcid.org/0000-0003-1240-5358

Süleyman Doğu https://orcid.org/0000-0002-5352-9288

Isam A. Mohamed Ahmed https://orcid.org/0000-0002-6578-0795

Gbemisola J. Fadimu https://orcid.org/0000-0003-4736-5106

Ümit Geçgel https://orcid.org/0000-0002-7092-5899

Fahad Al Juhaimi https://orcid.org/0000-0001-5617-6476

Elfadıl E. Babiker https://orcid.org/0000-0001-6220-084X

Mehmet Musa Özcan https://orcid.org/0000-0002-5024-9512

REFERENCES

Aitzetmüller, K., Tsevegsüren, N., &Vosmann, K. (1997). A new allenic fatty acid in Phlomis (Lamiaceae) seed oil. Fett/Lipid, 99, 74–78. https://doi.org/10.1002/lipi.19970990304

Akalın, E., & Özhatay, N. (2000). Ferulago species in Western Turkey.

Proceeding of the Second Balkan Botanical Congress, Istanbul, 1,

77–86.

Akalın, E., & Pimenov, M. G. (2004). Ferulago trojana (Umbelliferae), a new species from Western Turkey. Botanical Journal of the Linnean Society,

146, 499–504. https://doi.org/10.1111/j.1095-8339.2004.00308.x

Amiri, H. (2007). Essential oil variation of Prangos ferulacea Lindl. in different stages of plant growth. Iranian Journal of Medicinal and

Aromatic Plants, 23, 55–60.

Ayerza, R. (1995). Oil content and fatty acid composition of Chia (Salvia

hispanica L.) from five Northwestern locations in Argentina. Journal of the American Oil Chemists’ Society, 72, 1079–1081. https://doi.

org/10.1007/BF02660727

Baser, K. H. C., Demirci, B., & Duman, H. (2001). Composition of the essential oil of Ferulago asparagifolia Boiss. from Turkey. Journal of

Essential Oil Research, 13, 134–135. https://doi.org/10.1080/10412

905.2001.9699638

Baser, K. H. C., Ermin, N., Adiguzel, N., & Aytac, Z. (1996). Composition of the essential oil of Prangos ferulacea (L.) Lindl. Journal of Essential

Oil Research, 8, 297–298. https://doi.org/10.1080/10412905.1996.9

700617

Baytop, T. (1994). A dictionary of vernacular names of wild plants of Turkey, publication of the Turkish language society, No: 578, Türk Tarih Kurumu Basımevi, Ankara. p. 192.

Davis, P. H. (1972). Flora of Turkey and the East Aegean Islands (Vol. 4). Edinburgh, Scotland: Edinburgh University Press.

Domokos, J., &Peredi, J. (1993) Studies on the seed oils of basil (Ocimumbasilicum L.) and summer savory (Saturejahortensis L.).

Acta Horticulturae, 344, 312–314. https://doi.org/10.17660/

ActaHortic.1993.344.35

Erdemoğlu, N., Akalın, E., Akgöç, M., Çıkrıkçı, S., & Bilsel, G. (2008). Comparison of the seed oils of Ferulago trachycarpa Boiss. Different localities with respect to fatty acids. Records of Natural Products, 2, 13–18.

Ghasempour, R. H., Shirinpour, E., & Heidri, H. (2007). Analysis by gas chromatography-mass spectrometry of essential oil from seeds and aerial parts of Ferulago angulata (Schlecht.) Boiss gathered in Nevakoh and Shahoo, Zagross Mountain, West of Iran. Pakistan

Journal of Biological Sciences, 10, 814–817.

Güzelsoy, N. A., Uçurum, O., Tokat, E., Tan, A., Tuğrul, S., & Özbek, K. (2017). Nutritional properties of some wild edible plant species in Turkey. Anadolu, 27, 39–45.

Hasanloo, T., Bahmanei, M., Sepehrifar, R., & Kalantari, F. (2008). Determination of tocopherols and fatty acids in seed of

Silybummarianum (L.) Gaerth. Journal of Medicinal Plants, 7,

69–76.

Hişil, Y. (1998). Instrumental analysis techniques (Eng Fac Publ 55). Bornova, İzmir: Ege Üniversity (in Turkish).

Kandemir, A., & Hedge, I. C. (2007). An anomalous new Ferulago (Apiaceae) from Eastern Turkey. Willdenowia, 37, 273–276. https:// doi.org/10.3372/wi.37.37115

Matthaus, B., Vosmann, K., Pham, L. Q., & Aitzetmüller, K. (2003). FA and tocopherol composition of Vietnamese oil seeds. Journal of

the American Oil Chemists’ Society, 80, 1013–1020. https://doi.

org/10.1007/s11746-003-0813-y

Özhatay, N., & Akalın, E. (2000). A new Ferulago W. Koch (Umbelliferae) from NW Turkey. Botanical Journal of Linnean Society, 133, 535–542. https://doi.org/10.1111/j.1095-8339.2000.tb01595.x

Pathak, A., Vajpai, K., & Vajpai, S. K. (2012). Phytochemical investigation of plant seeds of Chhattisgarh: Amino acid composition of seeds of

Butea monosperma and Ocimum gratissium. Biomedical & Pharmacology Journal, 5(1), 45–49.

Pimenov, M. G., & Leonov, M. V. (1993). The genera of the Umbelliferae:

A nomenclator. London: Kew and Botanical Garden of Moscow

University, Russia.

Püskülcü, H., & İkiz, F. (1989). Introduction to statistic. İzmir, Turkey: Bilgehan Press (in Turkish).

Rai, I., Bachheti, R. K., & Joshi, A. (2013). Chemical composition, min-eral and nutritional value of Daturametel seed. International Journal of

Pharmacy and Biological Sciences, 4(4), 429–436.

Razavi, S. M. (2012). Chemical composition and some Allelopathic as-pects of essential oils of (Prangosferulacea L.) Lindl at different stages of growth. Journal of Agricultural Science and Technology, 14, 349–356.

Razavi, S. M., Imanzadeh, G. H., & Davari, M. (2010). Coumarins from

Zosima absinthifolia seeds, with allelopathic Effects. EurAsian Journal of Biosciences, 4, 17–22. https://doi.org/10.5053/ejobios.2010.4.0.3

Rustaiyan, A., Yari, M., Masoudi, S., & Aghjani, Z. (1999). Chemical constituents of the essential oil of Ferulago contracta Boiss. et Hausskn., a species endemic to Iran. Journal of Essential Oil

Research, 11, 609–610. https://doi.org/10.1080/10412905.1999.

(10)

Sefidkon, F., Khajavi, M. S., & Maleckpour, B. (1998). Analysis of the oil of

Prangos ferulacea (L) Lindl. Journal of Essential Oil Research, 10, 81–82.

https://doi.org/10.1080/10412905.1998.9700845

Skujins, S. (1998). Handbook for ICP‐AES (Varıan‐Vista). A short guide to

vista series ICP‐AES operation. VarianInt. AGşZug. Version 1.0 (p. 29).

Switzerland.

Zlatanov, M. D., & Antova, G. A. (2004). Composition of biologically ac-tive lipids of Lamiaceae seed oils. Grasas y Aceites, 55, 143–147.

How to cite this article: Ghafoor K, Doğu S, Mohamed

Ahmed IA., et al. Effect of some plant species on fatty acid composition and mineral contents of Ferulago, Prangos, Ferula, and Marrubium seed and oils. J Food Process Preserv.

Şekil

TABLE 1 Plants used in experiment FamilySpeciesLocationAltitudeHerbarium no Apiaceae1‐Prangos ferulacea (L.) Lindl.C4	Konya:	Taşkent,	Hadim‐Taşken	road,	Taşkente	2	km	kala,	slopes,	17.06.2014.1,550 mS.	Doğu	2841 Apiaceae2‐Prangos meliocarpoides Boiss
TABLE 2 Oil contents, saturated and unsaturated fatty acid profiles of several plant seed samples (%) Sample no.1234567891011 Oil content (%)4.92 ± 0.45a 8.68 ± 0.9810.11 ± 1.1710.13 ± 1.1311.69 ± 1.217.46 ± 0.8713.95 ± 1.546.59 ± 1.238.69 ± 1.215.94 ± 0.6
TABLE 3 Mineral and protein contents of plants used in experiment (mg/kg) Sample no.

Referanslar

Benzer Belgeler

Letter to the Editor on “Low-Dose Aspirin is Adequate for Venous Thromboembolism Prevention Following Total Joint Arthroplasty: A Systemic Review ”.. This letter is in reference to

Katılımcıların kolostrum yağ asit verileri ile anne yaşı, gebelik öncesi BKİ, gebelik sayısı, bebek doğum ağırlığı, bebek doğum boyu ve bebek doğum baş

Bu çalışmada, İstanbul ve Şanlıurfa’da satılan Urfa peynirlerinin gıda kaynaklı intoksikasyon etmeni bir patojen olan koagülaz pozitif Staphylococcus aureus

Linezolidin doku penetrasyonunun son derece iyi oluşundan dolayı; tedavisi oldukça zor olan, bakteriyemik veya bakteriyemik olmayan endokarditte, santral sistem

kendine bıraktıktan sonra sigara içiciliğine yeniden başlamamak için yardım isteyen 8 kadın, 17 erkekten oluşan toplam 25 sigara içicisinin bir yıllık takip

The ectrodactyly-ectodermal dysplasia cleft lip / palate (EEC) syndrome is a rare autosomal dominant genetic syndrome characterized by various degrees of ectrodactyly and

Sonuç olarak, Demodex canis kökenli komplike olmuş atipik dermatitis olgularında kombine tedavi uygulamala- rının ve tedavi süresinin uzun tutulması gerektiği, 3 günlük

Ü retim periyodu nun diger aşama larında genel ca n lı, StaphylOCoccus-M ierococcus ve La e- tobadllus mik roorganizma say ıları bak ımından.. g ruplar a rasında ö nemli bir