• Sonuç bulunamadı

A histological atlas of the tissues and organs of neotenic and metamorphosed axolotl

N/A
N/A
Protected

Academic year: 2021

Share "A histological atlas of the tissues and organs of neotenic and metamorphosed axolotl"

Copied!
14
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ActaHistochemica118(2016)746–759

ContentslistsavailableatScienceDirect

Acta

Histochemica

j ou rn a l h o m e p a g e :w w w . e l s e v i e r . d e / a c t h i s

A

histological

atlas

of

the

tissues

and

organs

of

neotenic

and

metamorphosed

axolotl

Turan

Demircan

(PhD)

a,d,∗

,

Ays¸

e

Elif ˙Ilhan

d

,

Nilüfer

Aytürk

b,d

,

Berna

Yıldırım

d

,

Gürkan

Öztürk

c,d

, ˙Ilknur

Keskin

(PhD)

(MD)

b,d,∗

aDepartmentofMedicalBiology,InternationalSchoolofMedicine, ˙IstanbulMedipolUniversity,Istanbul,Turkey bDepartmentofHistologyandEmbryology,SchoolofMedicine,IstanbulMedipolUniversity,Istanbul,Turkey cDepartmentofPhysiology,InternationalSchoolofMedicine, ˙IstanbulMedipolUniversity,Istanbul,Turkey dRegenerativeandRestorativeMedicineResearchCenter,REMER,IstanbulMedipolUniversity,Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19April2016

Receivedinrevisedform7June2016 Accepted11July2016 Keywords: Axolotl Neoteny Metamorphosis Histologicalmap Thyroidhormones

a

b

s

t

r

a

c

t

Axolotl(AmbystomaMexicanum)hasbeenemergingasapromisingmodelinstemcellandregeneration researchesduetoitsexceptionalregenerativecapacity.Althoughitrepresentslifelonglastingneoteny, inductiontometamorphosiswiththyroidhormones(THs)treatmentadvancestheutilizationofAxolotl invariousstudies.Ithasbeenreportedthatamphibiansundergoanatomicalandhistological remod-elingduringmetamorphosisandthistransformationiscrucialforadaptationtoterrestrialconditions. However,thereisnocomprehensivehistologicalinvestigationregardingthemorphologicalalterations ofAxolotlorgansandtissuesthroughoutthemetamorphosis.Here,werevealthehistologicaldifferences orresemblancesbetweentheneotenicandmetamorphicaxolotltissues.Inordertoexaminestructural featuresandcellularorganizationofAxolotlorgans,weperformedHematoxylin&Eosin,Luxol-Fastblue, Masson’strichrome,Alcianblue,OrceinandWeigart’sstaining.Stainedsamplesfrombrain,gallbladder, heart,intestine,liver,lung,muscle,skin,spleen,stomach,tail,tongueandvesselwereanalyzedunderthe lightmicroscope.Ourfindingscontributetothevalidationofthelinkbetweennewlyacquiredfunctions andstructuralchangesoftissuesandorgansasobservedintail,skin,gallbladderandspleen.Webelieve thatthisdescriptiveworkprovidesnewinsightsforabetterhistologicalunderstandingofbothneotenic andmetamorphicAxolotltissues.

©2016ElsevierGmbH.Allrightsreserved.

1. Introduction

Metamorphosistermis usedtodefinetheinnate process of

amphibiantransitionfromlarvalstagetoadultform(Shi,2000).

Thistransformationprovidesanexcellentmodelsystemto

under-stand vertebrate organogenesis and remodeling of the organs.

During and following this transformation, commonly observed

phenotypicalchangesareanatomicalandhistological

reconstitu-tionoftheorgansaswellasappendagestofunctionproperlyin

terrestriallifeconditions.Regression,disappearingand/or

remod-elingoftheexistingorgansaswellasformationofneworgansare

theobservedadjustmentsofmetamorphosis(reviewedin(Brown

andCai,2007)).Forthedescriptionofchangesatorganand

sys-∗ Correspondingauthorsat:RegenerativeandRestorativeMedicineResearch Cen-ter,REMER,IstanbulMedipolUniversity,Istanbul,Turkey.

E-mailaddresses:tdemircan@medipol.edu.tr(T.Demircan), ilknurkeskin@medipol.edu.tr(˙I.Keskin).

temlevel,Xenopusleavisisthewidelyusedorganismamongthe

amphibians(BurggrenandWarburton,2007;Colomboetal.,2015).

Previous studieshave demonstrated thatfrom tadpoleto adult

frogtransformation,mostoftheorgansundergoremodelingsuch

asskin(Yoshizato,1996),lung(DoddandDodd,1976)andliver (Atkinsonetal.,1998).Theexternalgillsofthetadpoles,whichare

theprimarysiteforrespirationinaquaticenvironment,disappear

attheendofthemetamorphosis(Ishizuya-Okaetal.,2010).Bone

marrow,functionallimbsandglandsinskinandstomacharethe

examplesofnewlyformedcells,tissuesandstructureswith

meta-morphosis.Timingandrateofthiscomplexprocessisregulatedby

hormonalactivityandseveralexternalfactorssuchastemperature

(Hayesetal.,1993),densityofpopulation(SemlitschandCaldwell,

1982),threatofpredatorpresenceandfoodlevels(Kupferbergetal.,

1994).Intermsofhormonalregulation,thisremodelingcascade

startswithproductionandsecretionofthyroidhormones(THs).It

hasbeenfoundthat,THslevelsinamphibiansarelowatearlylarval

stageandpeakatmetamorphicclimax(MondouandKaltenbach,

1979).

http://dx.doi.org/10.1016/j.acthis.2016.07.006 0065-1281/©2016ElsevierGmbH.Allrightsreserved.

(2)

SecretionofTHstobloodispursuedbyuptakingintothecells.Once

THlocateswithinacell,itbindstoitsreceptorscalledasthyroid

hormonereceptors(TRs)whichareasubclassofnuclear

recep-torfamilyproteins(Huangetal.,2010).Inmostofthevertebrates

therearetwoparalogousofthisgene;TRaandTRb(Escrivaetal.,

2002;ParisandLaudet,2008).IntheabsenceofTH,thesereceptors

aresuppressedbycorepressorproteinsandthereforetargetgenes

cannotbetranscribed.WhereasbindingofTHtoTRsbringsabout

theconformationalchangeoftheTRs,andreleasingofcorepressor

enhancesbindingofTRstohormoneresponseelements(HREs)on

DNAbyinteractingwithretinoidXreceptor(RXR)(Klieweretal.,

1992).BindingtoDNAtriggerstherecruitmentofcoactivator

pro-teins,andhence,expressionofthetargetgenesinthepresence

ofTHisachieved(Buchholzetal.,2006).Expressionofthegenes

withTHisessentialforremodelingoftheorgansduring

metamor-phosisofamphibians,andaccordingtomicroarraystudiesalarge

numberofgenesaredifferentiallyexpressedwiththeincreasedTH

activity(Dasetal.,2006;Yenetal.,2003).AlthoughTRsandRXR

proteinsarehighlyconservedamongthevertebrates,THinduced

geneexpressionprofileremarkablydiffersbetweentheanimals

(Bertrand etal.,2004).Inspiteofpresenceofconserved

coacti-vator,corepressorandnuclearreceptorsbetweentheamphibians

andmammals(FurlowandNeff,2006)limitedoverlapin

physio-logicalresponsetoTHbetweentheseanimalsindicatesspecialized

functionofTHinamphibians.

Unlikethefrogs, Axolotlrepresentslarvalcharacters beyond

thelarvalstage,throughoutitslife.InadequateconversionofT4to

T3,presenceofinactiveformofT3(3,3,5-triiodothyronine)and

expressionoflimitednumberofTRscontributeforlifelong

last-ingneotenyofAxolotl(Galton,1992).AdministrationofT4orT3

eitherbyinjectionorimmersionissufficienttotriggerthe

meta-morphosis(Jacobsetal.,1988;PageandVoss,2009).Weightloss,

diminishmentanddisappearanceoftailfinandgillsandmolting

arethemorphologicalsignsformetamorphosis(Rosenkildeand

Ussing,1996).Availabilityofinductiontometamorphosisoffers

theopportunitytoutilizethemetamorphosedAxolotlasa

com-plementarysystemtoNeotenicones,sinceitisanaccomplished

modelorganismtostudyregeneration(CootsandSeifert,2015;

McCuskerandGardiner,2011;Vincentetal.,2015),scarlesswound

healing(Denisetal., 2013;Seifertetal., 2012), cancer(Menger

et al.,2010; Smithet al., 2000) and stemcells (RodrigoAlbors etal.,2015;Zielinsetal.,2016).Particularly,remarkable

regen-erationcapacityofthismodelholdsagreatpromisetounderstand

themolecularbasisofregenerationandrestorationconsideringits

successinfunctionalregenerationoftheinternalorgans(

Cosden-Deckeretal.,2012),centralnervoussystem(Amamotoetal.,2016; Madenetal.,2013;Zammitetal.,1993)andextremities(Kragletal., 2009;Satohetal.,2015)followingthedamageoramputation.

Con-sideringtheevolutionaryproximitybetweentheamphibiansand

mammals,employmentofAxolotlasamodelsystemallows

trans-lationofacquiredmessagestoMammalianseffectively.Although

numberofresearchesonAxolotlhasbeenexpanded,toourbest

knowledge,thereisnoextensivestudytogenerateahistological

mapofitsorgans.Here,inthisstudyweprovideahistologicalatlas

ofAxolotltissuesandorgansforbothpreandpost-metamorphic

stages.Allisolatedtissuesandorganswerehistologicallyanalyzed

useinfurtherstudies.Itiswellknownthathistological

documen-tationoftissuesandorgansistremendouslyusefultofollowupthe

effectsofanytreatmentsattissueandorganlevel.Therefore,we

certainlybelievethatthisreferencemapwillbeverybeneficialand

bewidelyusedinAxolotlresearches.

2. Materialsmethods

2.1. Ethicalstatement

Animalcareandexperimentalprocedureswereapprovedbythe

AnimalResearchEthicsCommitteeoftheIstanbulMedipol

Uni-versity(authorizationnumber38828770-E.2302)andtheresearch

was performed in accordance with the European Community

guidelinesforethicalanimalcareanduseoflaboratoryanimals.

2.2. Animalhandlingandinductionofmetamorphosis

Axolotls (Ambystoma mexicanum) were obtained from the

AmbystomaGeneticStockCenter(AGSC)andbredinanimalcare

facilityof IstanbulMedipol University.Adult animals,14–16cm

in length, were used in all experiments. Animals were

main-tained in individual aquarias at ∼20◦C in Holtfreter’s solution

beforesampling.Metamorphosiswasinducedbyusingl-thyroxine

(Sigma-Aldrich, T2376) as described below: (Page and Voss,

2009). T4 solution with a final concentration of 50nM was

prepared by mixing l-thyroxine stock solution with modified

Holtfreter’s solution. Axolotls were transferred into containers

(oneAxolotl/container)having50nMT4solution.T4containing

mediumwaschangedeverythirddayandanimalswereobserved

formorphological changes.After∼2–3weeks ofT4

administra-tion,weightloss,disappearanceofthefinanddecreaseinthegills

sizewereapparent.Administrationofthehormonewas

contin-uedforanother3weeksuntilfullymetamorphosedAxolotlswere

obtained.BothneotenicandmetamorphicAxolotlsweresacrificed

in0.02%benzocaine(Sigma-Aldrich,E1501)andorganswere

iso-latedimmediatelyafterthesacrifice.

2.3. Histologicalanalysis

Isolatedorgans(brain,gallbladder,heart,intestine,liver,lung,

spleen,stomachandtongue),skinandtailwerefixedin10%neutral

bufferedformalin(NBF)for48h.Followingtheremovaloffixative

bywashingthesampleswithtapwaterfor1h,theorganswere

incubatedinascendingalcoholseries(70%,90%and100%ethanol)

for 1hat 60◦C. Incubation in 100% ethanol wasrepeated two

moretimes.Then,sampleswereincubatedintoluenefor30minat

roomtemperaturetwice.Asanextstep,sampleswereembedded

toparaffin.Microtome wasusedtosectiontheparaffin

embed-dedorgansin4␮mthicktissuesections.Then,thesectionswere

deparafinizedbyincubationintoluene(30minat60◦),

descend-ingalcoholseries(100%,96%and70%;1minatRT)anddistilled

water(1minatRT).Paraffinsectionsofallorganswerestainedwith

HematoxylinandEosin(Bio-OpticaMayer’sHematoxylinandEosin

(3)

748 T.Demircanetal./ActaHistochemica118(2016)746–759

Fig.1.Axolotlskinhistology.

MicroscopicexaminationofneotenicAxolotl’sskin.

A(10X)andd(10X)(hematoxylinandeosinstaining,bar=100␮m)E:Epithelium,M:Musculus,CT:ConnectiveTissue bande(10x)(massontrichromestaining,bar=100␮m)blackarrow:collagenfibers.

c(20x)andf(40x)(weigertstaining,bar=100␮m)blacktriangle:elasticfibers,circlesand*:mucousgland,quadrangleframe:Leydigcells.

histologicalstructures.Specifictissuesinorganswere

character-izedbyLuxolFastBlue(KIT,LuxolFastBlueKluverveBarrera,Bio

Optica,04-200812),Masson’sTrichrome(KIT,MassonTrichrome

withanilineblue,BioOptica,04-010802),AlcianBlue(KIT,Alcian

BlueAcidMucopolusaccharidesstaining,Bio-Optica,04-160802),

Weigert(KIT,WEIGERT-VANGIESONforelasticfibersand

connec-tivum,BioOptica,04-053812)andOrcein(KIT,OrceinforElastic

Fibers, Bio Optica, 04-055802) byfollowing themanufacturer’s

suggestedprotocol.Bio-mountsolutionwasusedtocovertheall

stainedsampleswithcover-slide.Theimagingwasperformedby

usingtheNIKON DS-Fi2-U3 DigitalCameraand ImageAnalysis

SoftwareSystem.

3. Results

Theprocessofamphibianmetamorphosisischaracterizedby

plenteousmorphological and biochemicaltransitions which are

mainlyresponsibleforadaptingthenewterrestrialenvironment.

Inthisdistinctivephaseoftheirlifemostorgansandextremities

suchasspleen,liver,skinandtailareremodeledsothattheaquatic

organismaccustomstobeaterrestrial.Tissuesandorgansare

clas-sifiedintotwo groupsbasedonthemajororminorremodeling

events.

3.1. Majorremodelingevents

3.1.1. Skin

Skinsamples were obtainedfrom the backskin of the

ani-mals. Histological examination of the skin presents two main

layers;epidermisanddermis.Thicknessoftheselayersoftheskin

isdependenttoandanindicatorofregionalvariation.Neotenic

axolotlepidermisiscalledpseudo-stratifiedepitheliumand

con-tainsepithelialandLeydigcells(Fig.1a–c).Secretingglandsformed

byinvaginationofepidermallayerthroughdermis(Fig.S1a).The

dermisis constructedby irregularloose connectivetissue.

Fur-thermore,collagenfibersandatraceoffibroblastsareobserved

indermis(Fig.1b,c,S1b).

Noticeabledifferencesinskinorganizationofmetamorphosed

Axolotlareobserved(Fig.1d).Asasignofadaptationtoterrestrial

lifeconditions,theepidermisisformedofkeratinizedstratified

squamousepithelium(Fig.1d–f)liketheotherterrestrial

(4)

Fig.2. Axolotltailhistology.

Remodellingoftailduringmetamorphosis.MorphologicalalterationsbetweentheneotenicAxolotl’stail(a–c)andmetamorphicAxolotl’tail(d–f)areshownontaken sections.

a(4x,bar=1000␮m)andd(10X,bar=100␮m)(hematoxylinandeosinstaining)E:Epithelium,M:Musculus,CT:ConnectiveTissue,blackcircleandSc:spinalcord, not:notochord,

*:mucousandgranularglands,pca:perichordalcartilage

b(4x,bar=1000␮m)ande(10x,bar=100␮m)(massontrichromestaining)E:Epithelium,M:Musculus,CT:ConnectiveTissue,blackcircle:spinalcord,not:notochord,*: mucousandgranularglands,

c(4x,bar=1000␮m)andf(10x,bar=100␮m)(Luxolfastbluestaining)E:Epithelium,M:Musculus,CT:ConnectiveTissue,blackcircleandSc:spinalcord,not:notochord, pca:perichordalcartilage,crd:chordoidcells/tissue.

epidermiswithoutskinappendages(hair,sebaceousglands,sweat

glands)isobserved.ItisnotedthatLeydigcellsdisappearedand

theepidermiscontainedawell-definedstratumspinosum,

gran-ulosumandcorneum(Fig.S1c,d).Dermalpapillaisnotobserved.

Mucousglandsarefoundathighnumbers(Fig.1d–f).Alignmentof

collagenfibersinthedermisisobservedmorecloselyandintensely

(Fig.S1d)thantheneotenicskinsample.Especiallytheallocation

ofelasticfibersisrecognizedaroundthemucus-producingglands

(Fig.1f).

3.1.2. Tail

NeotenicAxolotls’tailhaspseudo-stratifiedepitheliumwhich

includes epithelial and Leydig cells similar to skin epithelium

(Fig.2a).Beneaththeepithelium,inconnectivetissue,thereare

skeletalmusclesshapedassignificantfascicules(Fig.2a,b)

encom-passedbyakindofconnectivetissuecalledperimysium(Fig.2a,b).

Inthemiddleofthetailsection,notochordisnoticed(Fig.2a–c)and

thechordoidcells/tissueinthecenterofthenotochord[structures

aredescribedin(Jonassonetal.,2012;Schnappetal.,2005)].

Chon-drocytescanbedetectedincartilagetissue(Fig.2c).Moreover,the

spinalcordisalsomarkedintailsectionasexpected(Fig.2c).

Asaresultofmacroscopicalteration,finisdisappearedafter

metamorphosis.Basedonlightmicrocopyresults,themain

adap-tation in tail epithelium is conversion to keratinized stratified

squamous epithelium(Fig.2d, e).Presenceofmucous glandsis

recognizedunderneaththeepithelium(Fig.2e).Spinalcord,

noto-chord,andatthecenterofnotochordthechordoidcells/tissueare

observedinmetamorphicAxolotlstailsectionwhichresemblesthe

neotenictailsamplesection(Fig.2f).

3.1.3. Spleen

InneotenicAxolotlsspleenweobservedintensivecellregionsas

awhitepulp–probablyincludeslymphocytes–whichareplaced

aroundthecentralvein(Fig.3b)asdescribed elsewhere(Lopez

etal.,2014).Redpulpsarealsonoticedwhichconsistsofredblood

(5)

750 T.Demircanetal./ActaHistochemica118(2016)746–759

Fig.3.Axolotlspleenhistology.

Microscopyofneotenic(aandb),andmetamorphicAxolotl’sspleen(candd).

Histologicalsliceswerestainedwithhematoxylinandeosinandpresenceofbloodcells(a)redandwhitepulpsinneotenicspleenwasnoticed(b). a(10x,bar=100␮m)andc(4X,bar=1000␮m)(hematoxylinandeosinstaining)C:Cortex,blackarrow:bloodcells,T:Trabecula.

b(20x)andd(20x)(hematoxylinandeosinstaining,bar=100␮m)blackarrow:bloodcells,RP:Redpulp,WP:Whitepulp.(Forinterpretationofthereferencestocolourin thisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

coulddetectbloodcellsandtrabeculastructure(Fig.3c,d).

How-ever,we couldnot significantly recognize white and redpulps

(Fig.3d).

3.1.4. Gallbladder

Gallbladder hasseverallayers;themucosa, muscularis,

per-imuscularandserosa.Our resultsuggeststhat therearecertain

structuraldifferencesbetweenneotenicandmetamorphicAxolotls

gallbladder.

Firstof all,limitedmucosalfoldsareobserved inthelumen

oftheneotenicAxolotlsgallbladder(Fig.4a)whereasnumberof

mucosalfoldsincreasesaftermetamorphosis(Fig.4b).Although

epitheliumandlooseconnectivetissueexist,thereisnomuscle

layerbeneath theepithelium for neotenicgallbladder (Fig. 4a).

Ontheotherhandinmetamorphosedgallbladdercircularsmooth

musclelayerdispersedinvesselrichconnectivetissueisobserved

(Fig.4b,c).Moreover,NeotenicAxolotl’sepitheliumis

character-izedbysingle-layeredcubic/single-layeredprismaticcellsandafter

metamorphosisgallbladderepitheliumofAxolotlchangeto

multi-layeredfromsingle-layered(Fig.4b).Furthermore,unlikeneotenic

Axolotl,Rokitansky-Aschoffsinusesformedbymucosalfoldscan

beseeninmetamorphicorganism(Fig.4b).

3.2. Minorremodelingevents

3.2.1. Cerebrum

Wecouldnotdetectdramaticdifferencesbetweentheneotenic

andmetamorphicAxolotlsbrainsections.Theaxolotlsbrainis

char-acterizedbythepresenceofanarrow,one-tothreecelllayeredVZ

(matrixzone)contiguoustotheventricle(Fig.5b).TheVZis

encom-passedbywide regionof uniformly sphericalneurons((Maden

etal.,2013);Fig.5b).AsshowninFig.5,Granulecelllayer(GcL),

MitralcellLayer(McL)andGlomerularLayerexistinbothneotenic

andmetamorphicAxolotlsbrainsections(a–d).Theolfactorybulb

(Fig.5a)andAnteriorOlfactoryNucleus(Fig.5b)arenoticedon

neotenicAxolotlsbrainsection.

3.2.2. Tongue

Asshown inthefigures nosignificantstructuraldiversity is

observedbetweentheneotenicandmetamorphicAxolotltongue

sections(Fig.6a–d).Inbothofthesamples,anon-stratified

squa-mousepitheliumcoversthelooseconnectivetissue (Fig.6a–d).

Likewisetoskinepithelium,Leydigcellsexistwithinthe

epithe-liumoftongue(Fig.6b,c).Bothtonguesectionshaveavesselrich

connectivetissue(Fig.6b,c)whichisalsositefortheskeletalmuscle

fibers(Fig.6c,d).Furthermore,thehyalincartilageareasarenotably

observedinbothneotenicandmetamorphicAxolotlstongue

sec-tions(Fig.6a,d).

3.2.3. Heart

Asshown in Fig.7 there is nodramatic difference between

neotenicandpostmetamorphicAxolotlsheartsectionsinterms

ofcardiomyocytedispersionandorganizationofthetissue.

Car-diomyocytescanbeobservedinrandompatterninbothanimals

(Fig.7a,c).Thesecellshaveacentralovalnucleusandtheyform

thestriated heartmuscle structure (Fig. 7b,d).As distinctfrom

postmetamorphic animal’sheart section, theconnective tissue

(endomysium),surroundedbymusclefibers,ismorenoteworthy

inneotenicone(Fig.7b,d).

3.2.4. Lung

Accordingto our result, central air space of Axolotl lung is

dividedintosmallerairpocketsbyalveolarfolds(Fig.8a–c).Blood

vessels,alveolarfoldsandsmoothmuscletissuesformanetwork

tofacilitatethegasexchange.Thinepitheliumofthealveolarfolds

(6)

Fig.4. Axolotlgallbladderhistology.

Neotenic(a)andmetamorphicAxolotl’sgallbladder(bandc).Epithelialandmuscletissuesareformed/reformedduringthemetamorphosisprocess(bandc). a(10X),andb(20X)(hematoxylinandeosinstaining,bar=100␮m).

thickblackarrow:epithelium,CT:connectivetissue,thinblackarrow:smoothmuscle, *:Rokitansky–Aschoffsinuses.

c(20X)(massontrichromestaining,bar=100␮m),v:vessel.

Fig.5. Axolotlcerebrumhistology.

Microscopicexaminationofneotenic(aandb)andmetamorphicAxolotl’scerebrum(candd).

a(10X),c(10X)andd(20X)(hematoxylinandeosinstaining,bar=100␮m)ob:olfactorybulb,GcL:Granulecelllayer,McL:Mitralcelllayer,GL:Glomerularlayer,AON:Anterior olfactorynucleus.

b(10X)(luxolbluestaining,bar=100␮m)v:ventricle.

threedifferentcelltypeswhicharepneumocytes,ciliatedcellsand

gobletcells(DierichsandDosche,1982).WhilePneumocytesare

locatedononesideofcapillary(Fig.8b),thetwoothergroupsof

thecells,ciliatedandgobletcells,coverthesmoothmusclecells

anddonottakepartintherespirationprocessdirectly(Fig.8a,c).

Bloodcellsaredetectedinthelargebloodvesselsandvoluminous

connectivetissueisrecognized(Fig.8b,c).

Weobservedsomesimilaritiesandvariationsinneotenicand

metamorphicAxolotl’slungsamples.Themajornoticeddifference

isanobviousdecreaseintheamountofconnectiveandsmooth

muscletissues(Fig.8d,f).Furthermore,althoughthepneumocytes

andciliatedcellsarerecognizedaroundtheairpockets(Fig.8e),we

couldnotdetectanygobletcells(Fig.8f)onthesection.Thereare

alsomanyalveoliwhichhasafunctioninpulmonaryrespirationin

metamorphicAxolotlasinmammalianlungs(Fig.8f).

3.2.5. Liver

Themicroscopicimagesofhistologicalslidesofneotenicand

metamorphicAxolotls’liveraredepictedinFig.9.Asshowninthe

figure,therearenovoluminousdifferencesbetweentheliverof

neotenicandmetamorphicorganismintermsoftissuecomposition

andcelltypes.Theobserveddifferencescanbelistedasfollowing:

Firstofall,neotenichepatocytes(shownwith‘h’letteronfigures)

arepolyhedralandhavearoundednucleus(Fig.9a,b),whilethe

hepatocytesofmetamorphic organismsareseenaseither

poly-hedralorrounded(Fig.9c,d).Furthermore,neotenichepatocytes’

nucleiarelocatedinthecenterofcytoplasmorapproachtoone

sideofcytoplasm.Ontheotherhand,aftermetamorphosis

hepa-tocytesbecomemoreregularandnucleiofthecellsarecommonly

locatedinthemiddleofcytoplasm.Themostsignificanthistological

(7)

752 T.Demircanetal./ActaHistochemica118(2016)746–759

Fig.6.Axolotltonguehistology.

Microscopyofneotenic(aandb)andmetamorphicAxolotlstongue(candd).

a(4x,bar=1000␮m)andc(20X,bar=100␮m)(hematoxylinandeosinstaining)blacktriangleEpithelium,*:Cartilage,CT:ConnectiveTissue,M:Musculus,blackarrow: Leydigcell.

b(40x)andd(10x)(massontrichromestaining,bar=100␮m)blacktriangle:Epithelium,*:Cartilage,CT:ConnectiveTissue,M:Musculus,blackarrow:Leydigcell,V:Vessel, thinarrow:denseregularconnectivetissue.

Fig.7.Axolotlcardiactissuehistology.

Morphologicalanalysesofneotenic(aandb)andmetamorphicAxolotl’scardiactissue(candd). a(10x)andb(10X)(hematoxylinandeosinstaining,bar=100␮m).

c(40x)andd(40x)(hematoxylinandeosinstaining,bar=100␮m)blackarrowindicatesthecentralnucleusofcardiacmusclecells.

incytoplasmicstaining.Inneoteniclivertissueabsenceofregular

stainedareasispresumablyduetocytoplasmicglycogenandlipid

storage.Additionally,alargenumberofmelaningranules

assem-bliescanbenoticedinthemetamorphicAxolotl’sliverparenchyma,

asopposedtoneotenic(Fig.9c).Centralveinofneotenicand

meta-morphosedliversamplesresembleeachotherand elasticfibers

arenoticedaroundthecentralveininbothtissues(Fig.9b,d).Our

(8)

Fig.8. Axolotllunghistology.

Neotenic(a,bandc)andmetamorphicAxolotl’slungsections(d–f)indicatesstructuralsimilaritiesandvariationsbeforeandafterthemetamorphosis.

a(10X)andd(10X)(hematoxylinandeosinstaining,bar=100␮m)V:Vessel,ap:airpocket,M:smoothmussle,a:alveol,blackarrow:ciliatedandcuboidalcells,CT:connective tissue.

b(20X)ande(20X)(massontrichromestaining,bar=100␮m)V:Vessel,ap:airpocket,a:alveol,blackarrow:ciliatedandcuboidalcells,blacktriangle:pneumocytesM: musculus.

c(20x)andf(20X)(alcianbluestaining,bar=100␮m)V:Vessel,thinblackarrow:gobletcell,ap:airpocket,a:alveol.(Forinterpretationofthereferencestocolourinthis figurelegend,thereaderisreferredtothewebversionofthisarticle.)

thepreviouslyobservedandreportedimagesand/ordescription

(Lopezetal.,2014).

3.3. Stomach

Thetypicalhistologyof stomachis comprisedoffourlayers.

AsdemonstratedinFig.10,fromtheinsideout,theselayersare

mucosa,submucosa,muscularlayerandserosallayer;respectively.

Themucosaisformedofmucous-secretingcolumnarepithelium

andnumerousgastriccells(Fig.10a,d).Gastricchiefcellsareone

ofthemaincomponentsofmucosalayerforbothneotenicand

metamorphicanimalstomach(Fig.10b,e)Betweenthemucosaand

epitheliuminlaminapropria,serousandmucousglandsarenoticed

(Fig.10b,e).Mucin-secretinggobletcellsarefoundin

metamor-phicAxolotlstomachsample(Fig.10f).Connectivetissuegetsmore

organizedaftermetamorphosisasshowninsubmucosa(Fig.10e)

Incontrary,fortheneotenicones,connectivetissueelements

dis-persedmorebetweenthegastriccells thanthemetamorphosed

animals(Fig.10b, e) Submucosa,characterizedby vascular and

undifferentiatedconnectivetissues,isdetectedinboth neotenic

andmetamorphic Axolotl(Fig.10a–f).Intensevascularizationis

noticedinsubmucosainbothorganisms(Fig.10c,f).Finally,thelast

observationaboutbothneotenicandmetamorphicAxolotl

stom-achis,tunicamuscularis(showninthefigureasME)composedof

circularsheet.

3.4. Intestine

AsshowninFig.11,luminalsideoftheintestineiscomposed

ofmultilayerofepithelialcells.Theepitheliumissurroundedby

thinlayersofconnectivetissueandoutermuscles.Thereis

numer-ousepithelialfold.Theneotenicintestinaltractresemblesatypical

vertebrateintestine.Theepitheliumisintoathicktemporarymulti

cellularlining(Fig.11a–c).Theepitheliumhasabundantgobletcells

(Fig.11b,c).

Intestine of metamorphosed animal shares similarities with

neotenicones.Forinstance,theepitheliumoftheintestineis

devel-opedintothemultiplyfoldedstructure(Fig.11d).Cryptandvilli

(9)

plen-754 T.Demircanetal./ActaHistochemica118(2016)746–759

Fig.9.Axolotlliverhistology.

Microscopicexaminationofneotenic(aandb)andmetamorphicAxolotl’sliver(candd)ontakensections.

a(20x)andc(20X)(hematoxylinandeosinstaining,bar=100␮m)h:hepatocytes,CV:centralvein,blacktriangle:sinusoid,C:Cortex,blackcircle:Brownpigmentgranules. b(10x)andd(20x)(massontrichromestaining,bar=100␮m)blackarrow:basementmembrane,h:hepatocytes,CV:centralvein,blacktriangle:sinusoid.(Forinterpretation ofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

tifulgobletcellsaredetectedinmetamorphosedsamplesaswell

(Fig.11e,f).

Isolatedintestine sizeforthemetamorphosed oneis

signifi-cantlyshorterthantheneotenicone(datanotshown).

3.5. Skeletalmuscle,vesselandbonetissues

Axolotlsskeletalmusclesectionsareindistinguishablefromthe

mammalianskeletalmusclesintermsofthenucleuslocalization.

Asshowninthefigureoftransversalandlongitudinalmuscle

sec-tions,thenucleusisplacedtheperipheryofcell(Fig.S2a,c).Muscle

fasciclesaresurroundedbyconnectivetissue(Fig.S2b,d)and

meta-morphicmusclefasciclesaremorecompactthantheneotenicones

(Fig.S2b,d)asdefinedelsewhere(Monaghanetal.,2014).On

meta-morphicsection,therearemoreintensiveconnectivetissuethan

inneotenicone,andasastrikingdifference,lossofedemainthe

connectivetissueisobserved(Fig.S2b,d).

Beside analyzedmuscle tissue, nosignificant alterations are

noticedforvessel(Fig.S3) andbone (Fig.S4) sections.For

ves-selsamples,artery,vein,erythrocytes,endotheliumandfibroblast

cellsaredetectedinbothneotenicandmetamorphicAxolotls(Fig.

S3a–d).Inthesameway,wecouldnotrecognizecrucialdifferences

inbonesamples.Vessel,osteocytes,collagenandcartilagetissue

arefoundinbothneotenicandmetamorphicbonesections(Fig.

S4a,b).

4. Discussion

4.1. Skin

Skinistheprotectivecoverageforthebodysurfaceandit

con-ductsmanyvitalfunctions.Foraquaticorganisms,skinpermitsthe

transitionofoxygenandwaterbetweentheorganismand

envi-ronmenttomaintainthehomeostasis.InneotenicAxolotl,oxygen

transportthroughtheskincontributes torespirationand

pene-trationofwaterintotheskinfulfillstheneedtowater.Themost

strikingchangeswiththeinductionofAxolotltometamorphosis

occurintheskin.Inpreviousstudiesremovalofpre-metamorph

epidermisandconstructionofmetamorphepidermisasa

conse-quenceofTHsinductionwasexamined(Pageetal.,2009;Seifert

etal.,2012)andtheirresultsareagreeswellwithour

observa-tions.StructureofmetamorphosedAxolotlskinresemblesother

terrestrialvertebrates’keratinizedstratifiedsquamousepithelium.

Thisadaptationiscrucialtoreducethewaterlossandprotectthe

organismfromphysicaldamage.Humidityleveloftheskinis

main-tainedbycontinuousmucussecretionfromtheincreasednumber

of glands. Moreover,this increase mayaccount for providing a

protectivelayer.Additionalrolesthatmucussecretionplaysare

protectionfrompathogenssuchasbacteria,coolingthebodyvia

evaporationandfunctioningasapartofexcretionsystem.

4.2. Tail

ChangingsbetweenneotenicandmetamorphicAxolotlstail

sec-tionsaresimilartoalterationsintheskin.Theepitheliumturnsinto

keratinizedstratifiedsquamousepitheliumandmucousglandsare

formedtoactinrequiredmucoussecretionfortheterrestriallife

conditions.Sinceaquaticanimalsdonotneedtohumidify their

skin,appearanceofmucousglandsaftermetamorphosisis

essen-tialtopreventwaterloss.Besidethehumidityrelatedremodeling

andlossoffin,nosignificantmodificationsarenoticed.

4.3. Spleen

Thespleenisoneofthelymphoidsystemorgansanduntilfifth

monthoffetallifeitactsasapartofhematopoieticsystem.On

post-partumperiodinvertebrates,spleenhasvarioustasksintermsof

bloodfiltrationandstorage,phagocytosis,destructionofold

(10)

Fig.10.Axolotlstomachhistology.

Microscopyofneotenic(a,bandc)andmetamorphicAxolotl’sstomach(d–f)ontakensections.

a(10X)andd(10X)(hematoxylinandeosinstaining,bar=100␮m)M:Mucosa,GC:Gastriccells,SM:Submucosa,ME:Muscularisexterna.

b(20X)ande(20X)(massontrichromestaining,bar=100␮m)E:Epithelium,blackarrowsshowparietalcellsandblacktriangleindicateschiefcells.

c(20X)andf(20X)(alcianbluestaining,bar=100␮m)circle:gobletcells,*vessel.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle.)

The spleen is surrounded by a capsule and from this

cap-sule,thinconnectivetissuecompartments(trabecula)splitoffand

thesecompartments proceedtodepthof theorgan withblood

cells.Capsuleandtrabeculaeformthestromaofthespleen.The

spleenparenchymasettledinthisstromaiscalledthepulp.The

pulp is shaped by cell rich connective tissue and divided into

two groups; white and red pulp. White pulp consists of cords

formedbylymphoidtissue.Redpulpisaspeciallymphoidtissue

includesreticulumcells,macrophages,plasmacells,lymphocytes,

andplatelets(EroschenkoandDiFiore,2013)

InneotenicAxolotlsspleen,whitepulpanderythrocytesrich

red pulp areas indicate that spleen takes an active role in

hematopoiesis.Aftermetamorphosisnotwithstanding,we

consid-eredthespleenmayalreadyhavecompletedthisfunction.

4.4. Gallbladder

Weobservedmajordifferencesindifferentlayersofthe

gall-bladderbeforeandafterthemetamorphosis.Themucosalayerof

gallbladderconsistsofasimplecolumnarepitheliumandunderline

theepitheliumthereisconnectivetissue.Nosubmucosaisdefined

ingallbladder.Changeofepitheliumorganizationandincreasein

themucosafoldsmightpointoutthefactthatbileisconcentrated

ingallbladderafterproductionintheliverforthemetamorphosed

animalbutnotfortheneotenicone.Themuscularislayeris

com-posedofscatteredbundlesofsmoothmuscle(Rajguruetal.,2013).

Adventitalocatesin themuscularisand denseconnectivetissue

ofAdventita bindsthegallbladder totheliver.Gallbladder

sur-faceandabdominalcavityisinterruptedwithserosalayerwhich

comprisesbloodvessels,nervesandalymphaticnetwork(Frierson,

1989).Theexistenceofmusclelayeraftermetamorphosiscanbe

interpretedasacrucialalterationinordertoconcentratebile

secre-tion.LackofmusclelayeringallbladderofneotenicAxolotlcould

beduetotheunnecessityofactivebilesecretioninthisperiod.

Rokitansky-Aschoffsinusesarepseudo-diverticulainthewallof

gallbladderandformationofthemmightberelatedtoincreased

pressure(Rajguruetal.,2013).

4.5. Cerebrum

Inmammals,THsarecrucialfor braindevelopment.

Regard-ingthepreandpostmetamorphicstages,amphibiansrepresentan

excellentmodeltoinvestigatetheTHsrolesonbraindevelopment

(11)

develop-756 T.Demircanetal./ActaHistochemica118(2016)746–759

Fig.11.Axolotlintestinehistology.

Neotenic(a–c)andmetamorphicAxolotl’sintestinesections(d–f)specifiesstructuralresemblancesanddifferencesbeforeandafterthemetamorphosis. a(20X)andd(20X)(hematoxylinandeosinstaining,bar=100␮m)S:Serosa,SM:Submucosa,M:Mucosa,V:Vessel,L:Lumen,blackframe:villi. b(20X)ande(20X)(massontrichromestaining,bar=100␮m)SM:Submucosa,M:Mucosa,L:Lumen,blackarrow:gobletcells,*:musculus. c(20x)andf(20X)(alcianbluestaining,bar=100␮m)S:Serosa,M:Mucosa,V:Vessel,L:Lumen,blackarrow:gobletcells,*:musculus.

ment.Additionally,amphibiansVentricularzone(VZ)andNeural

progenitor cells (NPCs) are considered to proliferate

through-outadulthoodwhichisnotcommonforhighervertebrates.The

amphibiantelencephalon includesa dorsal and thicker ventral

matrix (ventricular) zone that reveals higher proliferative and

regenerativecapacitythantheteleostandreptiletelencephalonVZ

(Madenetal.,2013).Incomparisontoanuranmodels,an

impor-tantbenefitinemployingAxolotlistheabilitytoinducetheonset

ofmetamorphosisinjuvenileoradults(Hugginsetal.,2012).From

thesectionsweexamined,wedidnotobserveanydrasticchanges

betweenneotenicand metamorphic brainslices.This mightbe

theresultofearlymodelingofbrainwithlimitedTHspresentin

neotenicAxolotl. Inorder totest this hypothesis,it isworthto

analyzebrainofyoungerjuvenileAxolotls.Moreover,histological

resemblancesofmetamorphosedbrainareencouragingtoinspect

moredetailed for regenerationcapacity asdescribed elsewhere

(Amamotoetal.,2016).

4.6. Tongue

As seen in some other organs, there is no detectable

dif-ferencebetweentheneotenicand metamorphicAxolotl tongue

samplesbasedonhistologicalstainingandlightmicroscopyresults.

Absence of lingual papillae in both samples is a noteworthy

observationincomparison tomammaliantonguestructure.The

mammaliantongueisorganizedascoreofmusclecoveredby-non

stratified/stratifiedsquamousepithelium.Thisepitheliumlayeris

coveredwithlingualpapillaecharacterizedbyvarious

irregulari-tiesandelevations.(BillinghamandSilvers,1967).LackofLeydig

cellsinlarvalAxolotlandappearanceduringthedevelopmentmay

correlatewithpartialreorganizationoftissuesviasecretionofTHs

(Wistubaetal.,1999).WedetectedLeydigcellsinbothneotenic

andmetamorphosedAxolotl’stonguesections.Remarkablefinding

aboutthemetamorphosedAxolotltongueispresenceoftheLeydig

cellssincetheonesintheskindisappearduringmetamorphosis.

4.7. Heart

We did not observe considerable variations between the

neotenic and metamorphic heart sectionsregarding

cardiomy-ocytes. However,Malvinand Heisler pointed outoccurrence of

severalmorphologicaldifferences of heartafter metamorphosis

(MalvinandHeisler,1988).Themajoralterationthatthey

(12)

approximately%45oftotalO2uptakeactualizeswithpulmonary

respirationinneotenicstage,aftermetamorphosisthisproportion

increasessignificantly andbecomes approximately%65 (Malvin

andHeisler,1988).Presumably,theobservedsimilaritybetween

theneotenicand metamorphic Axolotlslung sectionsis dueto

activeusageoflungsduringtheneotenicstage.Thisisanotherlayer

ofevidencetosupportthepartialremodelingoftheneotenicorgans

withtheproducedT3hormonewhoselevelisnormallyinadequate

toinducemetamorphosis.

However, the transition from aquatic to terrestrial life still

obligesseveralcrucialadaptationsregardingrespiration.For

exam-ple, theloss of buoyancy requires more energy for movement

and consequently an increased metabolism with increasedgas

exchange.Since terrestrial animals’skinis adaptedtodiminish

thewater loss,this alteration bringsabout thedecrease ingas

exchangethroughtheskin.Lossofgillduringmetamorphosisis

anotherreasontoberestrictedtouselungsmoreefficientlyforthe

metamorphosedanimals.Toovercomethedifficultiescomingwith

terrestriallifeconditions,numberofalveolarincreasesandshows

morefoldingtoincreasethesurfaceareainordertocarryoutan

effectiverespiration.

4.9. Liver

Thelargestinternal organis liverand it hascrucial rolesin

proteinsynthesis,storageofmetabolites,bilesecretionand

detox-ification. Lobule structure of liver is formed from hepatocytes

andcapillarynetworkcalledassinusoidswhicharelocalizedin

betweenhepaticplates.Accordingtolightmicroscopyresults,we

didnotdetectremarkabledifferencesbetweenneotenicand

meta-morphosedAxolotlliversamples.Themaindistinctionnoticedis

incytoplasmicstainingpattern,whichcanbeduetoglycogenand

lipidstorageinneotenicIivertissuesandnotinmetamorphosed

ones.Variations in feedingregime with metamorphosisand/or

temperaturedifferenceinandoutofaquaticenvironmentmaybe

thesourceofobserveddifference.

Clusteringofmelaningranulesinmetamorphicliversamples

mayberelatedtohigherphagocyticactivitysincehepatocyteswith

melaninpigmentsareconsideredasthepartofreticulohistiocytic

system.Difficultiesinremovalofcytotoxicionsandfreeradicals

fromthebodyinterrestriallifeconditionsmayaccountforhigher

phagocyticactivityandthereforeclusteringofmelaninpigments.

4.10. Stomach

Thestomachisplacedintheposteriorforegutandits

morphol-ogyidentifiedwiththickenedmuscleanduniqueglands.Thickened

muscleisessentialforperistalticmovementsandelasticdistention

whenthestomachisfilledwithlargequantityoffood(Smithetal.,

2000).

Accordingtopreviousresearches,mostanurantadpoles

gen-erallyindicateslackinga“true”stomachandproteolyticenzymes

(Smithetal.,2000).However,gastricchiefcellswhichproduce

pro-teolyticpepsinogenenzymecanbenumerouslyseeninneotenic

Axolotlstomach.Itcouldbetheresultofbeingacarnivoreborn

species,andthereforerequiredenzymestohydrolyzetheproteins

4.11. Intestine

Intestineisoneofthehighlyplasticorgansthatfunctionsmainly

infoodprocessingand nutrientabsorption.Itownsits

reestab-lishment to its plasticity and this is highly affected from THs.

Postembryonicdevelopmentandremodelingofintestineisa

com-monlyobservedprocessamongvertebrate.Inmouse,formation

ofcrypt-villistructure takesfew weeksafterthebirth sinceT3

production and its release to blood is required for remodeling

theintestine(Hasebeetal.,2013).T3isalsocrucialfor

amphib-ians’ intestine establishment post-embryonicallyand itsclimax

structures the crypt-villi formation in intestinal epithelium of

amphibians(SunandShi,2012).

Basedonourlightmicroscopyresults,thereisnosignificant

dif-ferencebetweentheneotenicandmetamorphicAxolotlintestine,

unlikethefrog.IthasbeendocumentedthatT3isproducedbythe

timeofearlyjuvenilestagesinneotenicAxolotlbutitisnotenough

tostimulatethemetamorphosis(Badawy,2011;Rosenkildeand

Ussing,1996).Sincetheanimalsweusedwereolderthan6months,

themostplausiblescenarioissecreted T3amountistoolow to

transformtheanimals;howeveritishighenoughtoremodelthe

intestine.Inthatrespect,post-embryonicintestinalestablishment

ofneotenicAxolotlshouldoccuratveryearlystagesafterthebirth

oftheanimal.

4.12. Skeletalmuscle,vesselandbonetissues

In both neotenic and metamorphic animals skeletal muscle

andconnectivetissuesexhibitsimilaritiesratherthandifferences

in terms of found cells and structural organization. The main

alterationinthesetissuesislossofedemawithTHsclimax.

Resem-blancesofthesetissuesbetweenpreandpostmetamorphicanimals

mightbeduetoconservedstructuralrolesofthesetissuesamong

vertebrates.

5. Concludingremarks

Tissue renewal and restoration capacity of Axolotls makes

thempromisingmodeltoexplorethemolecularmechanismsthat

havecrucialrolesinregeneration.Availabilityofmetamorphosed

AxolotlsbyadministrationofTHsandalterations in

experimen-talcharacteristicsaftermetamorphosisoffersadualmodelsystem

to performstem cell, regeneration and cancerstudies. Reliable

evolutionaryproximitybetweenamphibiansandmammalsmay

facilitatethedigestionofmessagesfromsalamanderstudiesandit

mayenhancethetranslationofmessagesfromamphibiansto

mam-mals.Inthisstudywepresentacomparison ofneotenicaxolotl

withmetamorphiconesintermsofdetailedhistologicalanalysis

whichmaycontributetogainnewperspectivestolinkthe

renew-ablecapacityoftissuesandtheirorganizationforthefuturestudies.

Ourfindingssuggestthatremodelingoforgansandtissueswith

THsinductionfacilitatetheadaptationtoterrestriallife.

Surpris-ingly,wehavenoticedextensivesimilaritiesbetweentheneotenic

(13)

758 T.Demircanetal./ActaHistochemica118(2016)746–759

inearlydevelopmentalstagesmayaccountforremodelingof

sev-eraltissuesandorgansofNeotenicAxolotlduetobeingresponsive

totraceamountsofTHs.Totestthispossibility,amore

compre-hensiveresearchbyinspectionoforgans fromyoungeranimals

atdifferentdevelopmentalstagescanbecarriedout.Moreover,a

moredetailedanalysisusingelectronmicroscopytoexamineintra

andintercellular componentswouldbeadvantageousto

distin-guishresemblingstructures.Furthermore,cellandtissuespecific

immune-stainingwouldprovideavaluabledatatoobservethe

sim-ilaritiesanddifferencesbetweentheorgansandtissuesofneotenic

andmetamorphosedAxolotl.

Conflictofintereststatement

Theauthorshavenoconflictsofinteresttodeclare.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,

intheonlineversion,athttp://dx.doi.org/10.1016/j.acthis.2016.07.

006.

References

Amamoto,R.,Huerta,V.G.,Takahashi,E.,Dai,G.,Grant,A.K.,Fu,Z.,Arlotta,P.,2016. Adultaxolotlscanregenerateoriginalneuronaldiversityinresponsetobrain injury.eLife5.

Atkinson,B.G.,Warkman,A.S.,Chen,Y.,1998.Thyroidhormoneinducesa reprogrammingofgeneexpressionintheliverofpremetamorphicRana catesbeianatadpoles.WoundRepairRegen.6(4),323–337.

Badawy,G.M.,2011.Effectofthyroidstimulatinghormoneontheultrastructureof thethyroidglandintheMexicanaxolotlduringmetamorphicclimax.J.Appl. Pharm.Sci.1(4),60–66.

Bertrand,S.,Brunet,F.G.,Escriva,H.,Parmentier,G.,Laudet,V.,Robinson-Rechavi, M.,2004.Evolutionarygenomicsofnuclearreceptors:fromtwenty-five ancestralgenestoderivedendocrinesystems.Mol.Biol.Evol.21(10), 1923–1937.

Billingham,R.E.,Silvers,W.K.,1967.Studiesontheconservationofepidermal specificiesofskinandcertainmucosasinadultmammals.J.Exp.Med.125(3), 429–446.

Brown,D.D.,Cai,L.,2007.Amphibianmetamorphosis.Dev.Biol.306(1),20–33. Buchholz,D.R.,Paul,B.D.,Fu,L.,Shi,Y.B.,2006.Molecularanddevelopmental

analysesofthyroidhormonereceptorfunctioninXenopuslaevis,theAfrican clawedfrog.Gen.Comp.Endocrinol.145(1),1–19.

Burggren,W.W.,Warburton,S.,2007.Amphibiansasanimalmodelsforlaboratory researchinphysiology.ILARJ.48(3),260–269.

Colombo,B.M.,Scalvenzi,T.,Benlamara,S.,Pollet,N.,2015.Microbiotaand mucosalimmunityinamphibians.Front.Immunol.6,111.

Coots,P.S.,Seifert,A.W.,2015.Thyroxine-inducedmetamorphosisintheaxolotl (Ambystomamexicanum).MethodsMol.Biol.1290,141–145.

Cosden-Decker,R.S.,Bickett,M.M.,Lattermann,C.,MacLeod,J.N.,2012.Structural andfunctionalanalysisofintra-articularinterzonetissueinaxolotl

salamandersOsteoarthritisandcartilage/OARS.OsteoarthritisRes.Soc.20(11), 1347–1356.

Das,B.,Cai,L.,Carter,M.G.,Piao,Y.L.,Sharov,A.A.,Ko,M.S.,Brown,D.D.,2006.Gene expressionchangesatmetamorphosisinducedbythyroidhormoneinXenopus laevistadpoles.Dev.Biol.291(2),342–355.

Denis,J.F.,Levesque,M.,Tran,S.D.,Camarda,A.J.,Roy,S.,2013.Axolotlasamodel tostudyscarlesswoundhealinginvertebrates:roleofthetransforming growthfactorbetasignalingpathway.Adv.WoundCare2(5),250–260. Dierichs,R.,Dosche,C.,1982.Thealveolar-lininglayerinthelungoftheaxolotl,

Ambystomamexicanum.Anelectron-microscopicstudyusingheavymetal complexes.CellTissueRes.222(3),677–686.

Dodd,M.H.I.,Dodd,J.M.,1976.Thebiologyofmetamorphosis.In:Lofts,B.(Ed.), PhysiologyoftheAmphibia.AcademicPress,NewYork,pp.467–599. Eroschenko,V.P.,DiFiore,M.S.H.,2013.DiFiore’sAtlasofHistologywithFunctional

Correlations.LippincottWilliams&Wilkins.

Escriva,H.,Manzon,L.,Youson,J.,Laudet,V.,2002.Analysisoflampreyandhagfish genesrevealsacomplexhistoryofgeneduplicationsduringearlyvertebrate evolution.Mol.Biol.Evol.19(9),1440–1450.

FriersonJr.,H.F.,1989.Thegrossanatomyandhistologyofthegallbladder, extrahepaticbileducts,Vateriansystem,andminorpapilla.Am.J.Surg.Pathol. 13(2),146–162.

Furlow,J.D.,Neff,E.S.,2006.Adevelopmentalswitchinducedbythyroidhormone: xenopuslaevismetamorphosis.ABBVTrendsEndocrinol.Metab.17(2),40–47. Galton,V.A.,1992.Thyroidhormonereceptorsandiodothyroninedeiodinasesin

thedevelopingMexicanaxolotl,Ambystomamexicanum.Gen.Comp. Endocrinol.85(1),62–70.

Hasebe,T.,Fu,L.,Miller,T.C.,Zhang,Y.,Shi,Y.B.,Ishizuya-Oka,A.,2013.Thyroid hormone-inducedcell–cellinteractionsarerequiredforthedevelopmentof adultintestinalstemcells.CellBiosci.3(1),18.

Hayes,T.,Chan,R.,Licht,P.,1993.Interactionsoftemperatureandsteroidson larvalgrowth,development,andmetamorphosisinatoad(Bufoboreas).J.Exp. Zool.266(3),206–215.

Huang,P.,Chandra,V.,Rastinejad,F.,2010.Structuraloverviewofthenuclear receptorsuperfamily:insightsintophysiologyandtherapeutics.Annu.Rev. Physiol.72,247–272.

Huggins,P.,Johnson,C.K.,Schoergendorfer,A.,Putta,S.,Bathke,A.C.,Stromberg, A.J.,Voss,S.R.,2012.Identificationofdifferentiallyexpressedthyroidhormone responsivegenesfromthebrainoftheMexicanAxolotl(Ambystoma mexicanum).Comparativebiochemistryandphysiology.Toxicol.Pharmacol. CBP155(1),128–135.

Hulbert,A.J.,2000.Thyroidhormonesandtheireffects:anewperspective.Biol. Rev.75(4),519–631.

Ishizuya-Oka,A.,Hasebe,T.,Shi,Y.B.,2010.Apoptosisinamphibianorgansduring metamorphosis.Apoptosis:Int.J.Program.CellDeath15(3),350–364. Jacobs,G.F.,Michielsen,R.P.,Kuhn,E.R.,1988.Thyroxineandtriiodothyroninein

plasmaandthyroidsoftheneotenicandmetamorphosedaxolotlAmbystoma mexicanum:influenceofTRHinjections.Gen.Comp.Endocrinol.70(1), 145–151.

Jonasson,K.A.,Russell,A.P.,Vickaryous,M.K.,2012.Histologyandhistochemistry ofthegekkotannotochordandtheirbearingonthedevelopmentof notochordalcartilage.J.Morphol.273(6),596–603.

Kliewer,S.A.,Umesono,K.,Mangelsdorf,D.J.,Evans,R.M.,1992.RetinoidXreceptor interactswithnuclearreceptorsinretinoicacid,thyroidhormoneandvitamin D3signalling.Nature355(6359),446–449.

Kragl,M.,Knapp,D.,Nacu,E.,Khattak,S.,Maden,M.,Epperlein,H.H.,Tanaka,E.M., 2009.Cellskeepamemoryoftheirtissueoriginduringaxolotllimb regeneration.Nature460(7251),60–65.

Kupferberg,S.J.,Marks,J.C.,Power,M.E.,1994.Effectsofvariationinnaturalalgal anddetritaldietsonlarvalanuran(Hyla-Regilla)life-historytraits.Copeia2, 446–457.

Lopez,D.,Lin,L.,Monaghan,J.R.,Cogle,C.R.,Bova,F.J.,Maden,M.,Scott,E.W.,2014. Mappinghematopoiesisinafullyregenerativevertebrate:theaxolotl.Blood 124(8),1232–1241.

Maden,M.,Manwell,L.A.,Ormerod,B.K.,2013.Proliferationzonesintheaxolotl brainandregenerationofthetelencephalon.NeuralDev.8,1.

Malvin,G.M.,Heisler,N.,1988.Bloodflowpatternsinthesalamander,Ambystoma tigrinum,before,duringandaftermetamorphosis.J.Exp.Biol.137,53–74. McCusker,C.,Gardiner,D.M.,2011.Theaxolotlmodelforregenerationandaging

research:amini-review.Gerontology57(6),565–571.

Menger,B.,Vogt,P.M.,Jacobsen,I.D.,Allmeling,C.,Kuhbier,J.W.,Mutschmann,F., Reimers,K.,2010.Resectionofalargeintra-abdominaltumorintheMexican axolotl:acasereport.Vet.Surg.:VS39(2),232–233.

Monaghan,J.R.,Stier,A.C.,Michonneau,F.,Smith,M.D.,Pasch,B.,Maden,M., Seifert,A.W.,2014.Experimentallyinducedmetamorphosisinaxolotlsreduces regenerativerateandfidelity.Regeneration1(1),2–14.

Mondou,P.M.,Kaltenbach,J.C.,1979.Thyroxineconcentrationsinbloodserumand pericardialfluidofmetamorphosingtadpolesandofadultfrogs.Gen.Comp. Endocrinol.39(3),343–349.

Nussey,S.,Whitehead,S.,2013.Endocrinology:anIntegratedApproach.CRCPress. Page,R.B.,Voss,S.R.,2009.InductionofMetamorphosisinAxolotls(Ambystoma

Mexicanum).ColdSpringHarborprotocols(pdbprot5268).

Page,R.B.,Monaghan,J.R.,Walker,J.A.,Voss,S.R.,2009.Amodeloftranscriptional andmorphologicalchangesduringthyroidhormone-inducedmetamorphosis oftheaxolotl.Gen.Comp.Endocrinol.162(2),219–232.

Paris,M.,Laudet,V.,2008.Thehistoryofadevelopmentalstage:metamorphosisin chordates.Genesis46(11),657–672.

Rajguru,J.,Jain,S.,Khare,S.,Fulzele,R.R.,Ghai,R.,2013.Embryologicalbasisand clinicalcorrelationoftherarecongenitalanomalyofthehumangallbladder:– thediverticulum–amorphologicalstudy.J.Clin.Diagn.Res.:JCDR7(10), 2107–2110.

RodrigoAlbors,A.,Tazaki,A.,Rost,F.,Nowoshilow,S.,Chara,O.,Tanaka,E.M.,2015. Planarcellpolarity-mediatedinductionofneuralstemcellexpansionduring axolotlspinalcordregeneration.eLife4.

Rosenkilde,P.,Ussing,A.P.,1996.Whatmechanismscontrolneotenyandregulate inducedmetamorphosisinurodeles?Int.J.Dev.Biol.40(4),665–673. Rovira,J.,Villaro,A.C.,Bodegas,M.E.,Valverde,E.,Sesma,P.,1995.Metamorphic

changesinthestomachofthefrogRanatemporariatadpoles.Tissuecell27(1), 13–22.

Satoh,A.,Mitogawa,K.,Makanae,A.,2015.Regenerationinducersinlimb regeneration.Dev.GrowthDiffer.57(6),421–429.

Schnapp,E.,Kragl,M.,Rubin,L.,Tanaka,E.M.,2005.Hedgehogsignalingcontrols dorsoventralpatterning,blastemacellproliferationandcartilageinduction duringaxolotltailregeneration.Development132(14),3243–3253. Seifert,A.W.,Monaghan,J.R.,Voss,S.R.,Maden,M.,2012.Skinregenerationinadult

axolotls:ablueprintforscar-freehealinginvertebrates.PLoSOne7(4), e32875.

Semlitsch,R.D.,Caldwell,J.P.,1982.Effectsofdensityongrowth,metamorphosis, andsurvivorshipintadpolesofScaphiopus-Holbrooki.Ecology63(4), 905–911.

Shi,Y.B.,2000.Amphibianmetamorphosis.In:FromMorphologytoMolecular Biology.Wiley-Liss,NewYork,pp.p288.

(14)

Şekil

Fig. 1. Axolotl skin histology.
Fig. 2. Axolotl tail histology.
Fig. 3. Axolotl spleen histology.
Fig. 5. Axolotl cerebrum histology.
+6

Referanslar

Benzer Belgeler

When the effect of ethanol on blood lipids was as- sessed, the highest levels of cholesterol and triglycerides were in the EtOH group, and propolis was found to reduce the effects of

In this study, cytomorphological characteristics of sam- ples from a patient group diagnosed as NSCLC based on the histological examination of transthoracic fine-needle

Reduced blood volume and erythrocyte count (hemorrhagic anemia) due to hemorrhagic blood loss.. Reduction of erythrocytes by various reasons

E.coli cell counts in 84 meat samples have been found higher than Turkish Food Codex limits and 42 of 84 have been observed that were collected from public bazaars. S.aureus counts

Influence of DPH treatment on ethanol induced lipid peroxidation in the liver of mice (*) Significantly different from saline-treated control (p<0.001).. (**)

Sosyal medya tutumu ölçüm verileri dağılımlarına ilişkin betimsel istatistik analiz sonuçları incelendiğinde yerel basın çalışanlarının genel olarak sosyal medya

The aim of this study was to investigate the effects of anaesthetic combinations of xylazine, detomidine, sevoflurane and isoflurane on clinical, laboratory, and

Ayrıca, Kumyer Mevkii arkeolojik seramik örneklerinin ESR yaş tayini için uygun malzemeler olup olmadıklarını belirlemek üzere yapay olarak ışınlanmış örneklerin