• Sonuç bulunamadı

W doped SnO2 growth via sol-gel routes and characterization: Nanocubes

N/A
N/A
Protected

Academic year: 2021

Share "W doped SnO2 growth via sol-gel routes and characterization: Nanocubes"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Optik

j o ur na l h o m e p a g e :w w w . e l s e v i e r . d e / i j l e o

W

doped

SnO

2

growth

via

sol–gel

routes

and

characterization:

Nanocubes

Eyüp

Fahri

Keskenler

a,∗

,

Güven

Turgut

b

,

Serdar

Aydın

b

,

Seydi

Do˘gan

c

aRecepTayyipErdo˘ganUniversity,FacultyofEngineering,DepartmentofNanotechnology,53100Rize,Turkey

bAtatürkUniversity,KazımKarabekirEducationFaculty,DepartmentofPhysics,25240Erzurum,Turkey

cDepartmentofElectricalandElectronicsEngineering,FacultyofEngineeringandArchitecture,BalikesirUniversity,Balikesir10145,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received18September2012 Accepted15February2013 Keywords: SnO2 W-doping Nanocube Sol–gel Cubicphase

a

b

s

t

r

a

c

t

TheeffectsofWdopingonthecharacteristicalpropertiesofSnO2thinfilmspreparedbysol–gelspin coatingmethodwereinvestigated.TheSnO2thinfilmsweredepositedatvariousWdopingratiosand characterizedbyvariousmeasurements.XRDstudiesindicatedthattheundopedandWdopedSnO2films hadcubicandtetragonalphases.TheSEMimagesofWTOthinfilmsshowedcubicshapednanocubes correspondingtocubicphaseandthesmallerparticlescorrespondingtotetragonalphasewereformed onthefilmsurfaces,andtheirdistributionsandsizesweredependentontheWdopingratio.EDX spec-troscopyanalysesshowedthatthecalculatedandparticipatedatomicratiosofW/(W+Sn)(at.%)inthe startingsolutionandintheWTOthinfilmswerealmostclose.Itwasfoundthatthesheetresistance dependedonWdopingratioand2.0at.%WdopedSnO2(WTO)exhibitedlowestvalueofsheetresistance (7.11×103/cm2).

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

Tinoxide(SnO2)hasvarious applicationareas[1] duetoits

uniquepropertiessuchaslow electrical resistivity,highoptical transmittanceinthevisibleregion,highinfraredreflectivity, chem-icallyinertandmechanicallyhard[2–5].SomepropertiesofSnO2

thinfilmscanbeimprovedbysuitabledopantelementssuchas antimony(Sb),fluorine(F),vanadium(V),andtungsten(W).Among thesedopants,tungstenhasoxidationstatesapttoW6+ionstate,

andtheradiusofW6+isclosetothatofSn4+(W6+:67pm,Sn4+:

71pm),which makeiteasytoreplacetheSn4+ions.Therefore,

tungsten-dopedtin oxidemaybe expectedtohave a potential prospect[6].

Undopedand dopedSnO2 thinfilmshave beenpreparedby

variousexperimentaltechniquessuchaselectrochemical deposi-tion[7],hydrothermalmethod[8],polymerizing-complexingand sol–gel[9]techniques.However,tothebestofourknowledge,the fabricationofWdopedSnO2thinfilmshavenotbeenreportedup

tonowbysol–gelspincoatingmethod.Therefore,inthisstudy,we aimedtoinvestigatetheeffectofWdopingonstructural, morpho-logical,opticalandelectricalpropertiesofSnO2thinfilmsprepared

bysol–gelspincoatingmethod.

∗ Correspondingauthor.Tel.:+9004642236126x1764;fax:+9005376104849.

E-mailaddress:keskenler@gmail.com(E.F.Keskenler).

2. Experimental

Inthepresentstudy,W-dopedtinoxide(WTO)thinfilmswere preparedbysol–gelspincoatingmethodonglasssubstrateusinga solpreparedwithstannouschloridedihydrate(SnCl2·2H2O),

tung-stenhexachloride(WCl6),monoethanolamine(C2H7NO,MEA)and

2-methoxyethanol(C3H8O2,2-MTE),asstartingmaterial,dopant

source, stabilizer, and solvent, respectively. The molar ratio of MEAtometalsaltswasmaintainedat1:1inallsolutions.Various amountsofthestannouschloridedihydrateandtugsten hexachlo-ridewerecombinedtoachievedifferentW/W+Snatomicratios changingfrom1.0at.%to4.0at.%with1.0at.%step.Theprecursor solwasstirredat80◦Cfor24hinatightlyclosedflasktoobtain aclearandhomogenoussolution.Theglasssubstratesfirstlywere keptinboilingchromicacidsolutionandthentheywererinsed withdeionized water. Finally,they werecleaned withacetone, methanolanddeionizedwaterbyusinganultrasoniccleanerand driedwithnitrogen.Theresultantsolutionbeingdroppedonglass substratewasrotatedataspeedof3000rpmfor30sbyusinga spin-coater.Aftertheglasssubstrateswerecoated,theyweresinteredat 200◦Cfor5mintoevaporatesolventandremovetheorganic sed-imentsandthenspontaneouslycooledtoroomtemperature.This procedurewasrepeatedfor4timesandfinally,thesampleswere annealedinairat450◦Cfor30min.

ThestructuralcharacterizationoftheWTOthinfilmswas car-riedoutbyX-raydiffraction(XRD)measurementsusingaRigaku MiniflexIIdiffractometerwithCuK␣radiation(=1.5418 ˚A).The diffractometerreflections weretaken atroom temperatureand thevaluesof2werealteredbetween15◦ and80◦. Morpholog-icalpropertiesoftheW-dopedSnO2thinfilmsweredetermined

0030-4026/$–seefrontmatter © 2013 Elsevier GmbH. All rights reserved.

(2)

Fig.1.XRDspectraforundopedandWdopedSnO2thinfilms.

withJeolNano-SEM.Theopticaltransmittanceofthesampleswas recordedinspectralregionof300–1000nmat300KusingaUV-Vis spectrophotometer(Perkin-Elmer,Lambda40)whichworksinthe rangeof200–1100nm.Thesheetresistancevaluesoffilmswere measuredbymeansoffourpointprobetechnique.

3. Resultsanddiscussion 3.1. X-raydiffractionresults

ThecrystalstructureofWTOthinfilmswasinvestigatedby X-raydiffraction(XRD)patterns.Fig.1showsXRDspectraofWTOthin films.Thesespectraindicatethatthesampleshave(111)plane cor-respondingtoSnO2cubicphase(JPDS50-1429)and(110),(101)

planescorrespondingtoSnO2 tetragonalrutilephase (JPDS

41-1445).Noadditionalpeakwhichimpliesoxidesoftungstenwere notobserved.AsseeninFig.1,thestrongestorientationis(111) lineofcubicstructureand(111)peakintensityvalueofundoped samplehasdecreasedcontinuouslywithincreasingWdopant con-tent.ItcaneasilybeconcludedthatthecrystallineofWTOthin filmsarebeingdeterioratedbyincreasedWcontent.

AlthoughSnO2 crystallizeinthetetragonalrutilecrystal

sys-tem,therearealsoorthorhombicandcubicphasesofSnO2.Asa

mineral,SnO2beingformedattetragonalrutilephaseisalsocalled

Cassiterite[10].Suitoetal.[11]reportedthephasetransitionfrom tetragonaltoorthrombicstructure.Shieh[12],HainesandLegér [13]observedSnO2 cubic phase.Phasetransformations ofSnO2

haveusuallybeenstudiedunderhighpressure.Jiangetal.[14]have foundfluoritecubicphasewithFm3mspacegroupabove18GPa pressure,andOnoetal.[15]haveobservedpeaksof(111),(200), (220),(222)belongingtothecubicstructure underhigh pres-sureandtemperature(about23GPaand1000K).Inrecentyears, cubicandotherphaseshavebeenreportedfromtheexperiments studiesbasedonthesolutionsperformedatatmosphericpressure [16–18].CubicphaseforSnO2thinfilmspreparedbyreactiveradio

frequencymagnetronsputteringwithdifferentsputteringpower (about>100W)havebeenreportedbytheSongetal.[19].

Inthisstudy,SnO2cubicstructurehasbeenobtainedat

atmo-sphericpressure,andtothebestourknowledge,thisisthefirst result obtainedfor SnO2 films grownby thesol gel technique.

Intheliterature,ethanole[20,21],1-propylalcohol[22],mixture ofwaterand alcohol[23,24]aregenerallyusedasasolventfor preparation of SnO2 films via sol–gel route. Huang et al. [25]

havesynthesizedWdopedSnO2 thinfilmfromsol–gelsolution

preparedby mixinga weighed quantityofSnCl2·2H2Owithan

ethanol/water,WCl6solutedinmixture.Thereasonforobtaining

thecubic structureinthis studymay,atfirst,betheusageofa solpreparedwithstannouschloridedihydrate(SnCl2·2H2O),

tung-stenhexachloride(WCl6),monoethanolamine(C2H7NO,MEA)and

2-methoxyethanol(C3H8O2),asstartingmaterial,dopantsource,

stabilizerandsolvent,respectively.

Forthesamples,theobserved‘d’valueswhicharethe inter-planerdistances are presented in Table1 and thesevalues are comparedwiththestandardonesfromtheJPDS50-1429datafiles. Thelatticeconstant‘a’forcubicstructureisdeterminedbyrelation [26]. 1 d2 =



h2+k2+l2 a2



(1) where(hkl)ismillerindices.Thecalculatedandstandardlattice constantsarealsogiveninTable1.Thecalculated‘a’valuesagree withJPCDScardno:50-1429(a=4.87 ˚A).AscanbeseeninTable1, thelatticeconstantvalueforundopedsampleis4.8745 ˚A.Thisvalue decreaseswithWdopingupto2.0at.%,andthenitincreases con-tinuouslywiththeWdopingconcentrationinthefilms.Thiscan beexplainedifitisconsideredthat:Whasmanyoxidationstates suchas+6,+5,+4,+3,+2[27,28]andwithdecreasingtheoxidation numberofW,itsionicradiiincreases[28,29].Atthelowdoping levels,W6+presumablysubstituteswiththeSn4+andcauses

lat-ticeconstantdecrease.WiththeincreasingofWdopinglevelin SnO2lattice,W5,4,3,2+oxidationstatesalsosubstitutetoSn4+and

havingincreaseinlatticeconstant.Similarly,inearlierstudies,it wasfoundthatsomeoftheSn4+ionsinthelatticewerereplaced

bySb5+atlowdopinglevel,howeverSb3+substitutedtoSn4+at

highdopinglevel[20]. 3.2. SEMandEDXresults

ThecompositionofWTOthinfilmswasdeterminedbyenergy dispersiveX-rayspectroscopy(EDX).EDXspectraofWTOthinfilms andthecompositionofelementsinSnO2structure aretogether

giveninFig.2.ThesespectraclearlyconfirmtheexistenceofSn andWelementsintheWTOthinfilms.TheSi,Na,MgandCa

ele-Table1

Thestructural,electricalandopticalvaluesofundopedandWTOthinfilms.

Sample Cubic(hkl) Cubic-dst.(Å) Cubic-dobs.(Å) Cubic-a(Å) Rs(×103/cm2) Eg(eV)

UndopedSnO2 (111) 2.8120 2.8143 4.8745 48.22 4.105

1.0at.%WdopedSnO2 (111) 2.8120 2.8140 4.8739 12.96 4.112

2.0at.%WdopedSnO2 (111) 2.8120 2.8236 4.8626 7.11 4.115

3.0at.%WdopedSnO2 (111) 2.8120 2.8146 4.8750 8.24 4.099

(3)

Fig.2.EnergydispersivespectroscopyanalysisofWdopedSnO2thinfilms:(a) undoped,(b)1.0at.%Wdoped,(c)2.0at.%Wdoped,(d)3.0at.%Wdoped,(e)4.0at.% Wdoped,(f)elementalconcentrationsinthefilmwithdifferentWdopinglevelsin SnO2lattice.

ments,insolidfilms,areresultedfromtheglasssubstrates.EDX

analysesshowthatthecalculatedandparticipatedatomicratiosof

W/(W+Sn)(at.%)inthestartingsolutionandintheWTOthinfilms

arealmostclose.Theseresultsconfirmthereliabilityofthesol–gel

spincoatingmethodusedinexperiments.Thescanningelectron

microscopy(SEM)imagesofWTOsthinfilmsgiveninFig.3.Itcan

beseenthatthecubicshapednanocubesareformedonsurfaces ofthefilms,andtheirdistributionsandsizesofnanocubesdepend ontheWdopingratio.Fortheundopedsample(Fig.3a),thesizes ofcubicnanoshapevarybetween300and400nm.Forthe1.0at.% WdopedSnO2 (Fig.3b),thesizesofnanocubesdecreasetothe

valueofabout250–350nm.AscanbeseenfromFig.3c,thesizes ofnanocubessharplydecreasetoabout70nmforthe2.0at.%W dopedSnO2anddistributionofnanocubesismorearranged

com-paredtoundopedand1.0at.%WdopedSnO2.Above2.0at.%W

dopinglevel(Fig.3dande),thesizesofnanocubesincreasesharply toabout200–250nmandthefilmsurfaceconsistoflotof non-uniformeddistortednanocubeshapes.Also,fortheallsamples,it shouldbenotedthatthesenanocubescanbeformedbyan aggre-gationofsmallparticlesobservedonglasssubstrates.Theseresults areinharmonywithtendencyoflatticeconstant‘a’calculatedfrom XRDresultsfortheWTOthinfilms.ThesimilarstructuresofSnO2

cubicphaseandcubicshapewereobtainedforthefilmsgrownby hydrothermalmethod[8].

3.3. Electricalandopticalproperties

Electricalpropertiesofthefilmswereinvestigatedbyfourpoint probemethod.AscanbeseeninTable1,there isadecreasein thesheetresistancevaluesupto2.0at.%Wdopinglevels,thenit increaseswithW-dopantconcentrationincrease.Thevariationin thesheetresistanceofSnO2withWdopingcanbeexplainedon

thebasisofthepresenceofdifferentvalancestateofWelement. WhenitisdopedwithW,someoftheSn4+ionsinthelatticecan

Fig.3. SEMimagesundopedandWdopedSnO2thinfilms:(a)undoped,(b)1.0at.%

Wdoped,(c)2.0at.%Wdoped,(d)3.0at.%Wdoped,(e)4.0at.%Wdoped.

bereplacedbyW6+,resultingthesheetresistance[6,25,30].Hence,

areductioninthesheetresistanceisobserveduntiltheWdoping levelreaches2.0at.%.Beyond2.0at.%ofWdoping,apartoftheW6+

ionsarereducedtothelowvalancestatessuchasW4+,W3+,W2+,

resultingintheformationofacceptorstatesandalossofcarriers. Thusanincreasingisobservedatsheetresistance.Inearlierstudies, itwasfoundthat3.0at.%Wdopingreducedthesheetresistanceof SnO2 andWatomswerefullyoxidizedtothevalenceof6+,and

mostofW6+wereincorporatedinsidetheSnO

2 structureatlow

dopingratiofromXPSstudy[6,25,30].

TheopticalpropertiesofWTOthinfilmswereinvestigatedby usingUV-Visspectrophotometer.Transmittancespectraaregiven in Fig. 4. As can be seen, the transmittance values are varied

(4)

Fig.5.Thevariationof(˛h)2vs.hforundopedandWdopedSnO

2thinfilms.

between60 and75%invisible region.It isquiteclearfromthe transmittancespectrathattransparencyhasslightlychangedwith Wdoping.Theanalysisofthedependenceofabsorptioncoefficient versusphotonenergyinthehighabsorptionregionsiscarriedout toobtainmoredetailedinformationabouttheenergybandgaps. Theabsorptioncoefficient(˛)isdeterminedbytheequation[31]; ˛= ln(1/T)

d (2)

whereTistransmissionanddisfilmthickness.Theopticalband gapofWTOsisobtainedbyfollowingrelation[32];

˛h=A(h−Eg)1/2 (3)

wherehandAarephotonenergyandtheconstant,respectively.Eg

valuesweredeterminedbyplotting(˛h)2vs.handextrapolating

ofthelinearregionoftheplottozeroabsorption((˛h)2=0).The

bandgapvaluesofundoped,1.0,2.0,3.0and4.0at.%WdopedSnO2

thinfilmswerefoundas4.105,4.112,4.115,4.099,4.097eV, respec-tively.ItisclearlyseeninFig.5thattheincreasingWcontentin theSnO2structuresupto2.0at.%,thebandgapvaluesincreaseand

thencontinuouslydecreasewithfurtherincreasingWdopinglevel. ThereasonforincreasingbandgapwithWcontentmayprobably beexplainedasfollows;SnO2isoneofdegeneratesemiconductors

[10],whichtheFermilevellieswithintheconductionband[27]. Thus,theopticalbandgapsarerelatedtotheexcitationofthe elec-tronsfromthevalancebandtoFermilevels[33,34].Thismeans thatFermilevelisliftedsomemoreintotheconductionbandofthe degeneratesemiconductorduetotheincreaseinthecarrier den-sity.Thisleadstotheenergybandbroadening(shifting)andsomeof theSn4+ionsinthelatticearereplacedbyW6+(orW5+),andthisis

calledMoss–Bursteineffect[35].Adecreaseintheenergybandgaps beyond2.0at.%WdopingcanbecausedthatapartoftheW6+ions

isreducedtolowervalancestatesofWlikeW4+,W3+,W2+,which

canresultintheformationofdefects,impuritiesorcompletelynot substitutionofdopantwithhostatomsorinterstitialandlattice strain[36–39].Thecalculatedlatticeconstantvaluessupportthat W6+arebeingreplacedwithSn4+atlowdopingcontents(for1.0

and2.0at.%). 4. Conclusions

Thisstudypresentscubicphasebeingobtainedforthefirsttime forWdopedSnO2thinfilmsgrownbysol–gelspincoating,using

methanolamine,2-methoxyethanol,stannouschloridedihydrate, andtungstenhexachloridebasedonprecursorsolution.XRD stud-iesindicatethattheundopedandWdopedSnO2 havegrownat

cubicandtetragonalphases.EDXanalysesshowthatthecalculated andparticipatedatomicratiosofW/(W+Sn)(at.%)inthestarting solutionandintheWTOthinfilmsarealmostclose.TheSEMimages

ofWTOsthinfilmsshowedthatthevariousdistributedandsized cubicshapednanocubeswereformedonthesurfacesofthefilms, dependingonWdopingratio.Allresultshadshowedthat2.0at.% WdopedSnO2filmhadthebestoptoelectronicproperty.Thus,the

resultsofthis studyindicatethatthestructural,morphological, electrical,andopticalpropertiesoftheSnO2thinfilmsprepared

bysol–gelmethodcanbestronglyaffectedbytheincorporationof WelementsinSnO2thinfilmsandWTOthinfilmscanbeusefulfor

microandnano-sizedoptoelectronicdeviceapplications.

References

[1]D.Jadsadapattarakul,C.Euvananont,C.Thanachayanont,J.Nukeaw,T.Sooknoi, Tinoxidethinfilmsdepositedbyultrasonicspraypyrolysis,Ceram.Int.34 (2008)1051–1054.

[2]E.Elangovan,S.A.Shivashankar,K.Ramamurthi,Studiesonstructuraland elec-tricalpropertiesofsprayedSnO2:Sbfilms,J.Cryst.Growth276(2005)215–221.

[3]K.S.Kim,S.Y.Yoon,W.J.Lee,K.H.Kim,Surfacemorphologiesandelectrical propertiesofantimony-dopedtinoxidefilmsdepositedbyplasma-enhanced chemicalvapordeposition,Surf.Coat.Technol.138(2001)229–236.

[4]S.Chacko,N.S.Philip,K.G.Gopchandran,P.Koshy,V.K.Vaidyan,Nanostructural andsurfacemorphologicalevolutionofchemicallysprayedSnO2thinfilms,

Appl.Surf.Chem.254(2008)2179–2186.

[5]E.Elangovan,M.P.Singh,K.Ramamurthi,Studiesonstructuralandelectrical propertiesofspraydepositedSnO2:Fthinfilmsasafunctionoffilmthickness,

Mater.Sci.Eng.B113(2004)143–148.

[6]Y.Huang,Q.Zhan,G.Li,Transparentconductivetungsten-dopedtinoxide polycrystallinefilmspreparedonquartzsubstrates,Semicond.Sci.Technol. 24(2009),015003-5.

[7]M.Lai,J.H.Lim,S.Mubeen,Y.Rheem,A.Mulchandani,M.A.Deshusses,N.V. Myung,Size-controlledelectrochemicalsynthesisandpropertiesofSnO2

nano-tubes,Nanotechnology20(2009),185602-6.

[8]L.Shi,K.Bao,J.Cao,Y.Qian,ControlledfabricationofSnO2solidand

hol-lownanocubeswithasimplehydrothermalroute,Appl.Phys.Lett.93(2008) 152511.

[9]M.Bagheri-Mohagheghi, N.Shahtahmasebi,M.R. Alinejad,A.Youssefi, M. Shokooh-Sarem,Theeffectofthepost-annealingtemperatureonthe nano-structureandenergybandgapofSno2semiconductingoxidenano-particles

synthesizedbypolymerizing-complexingsol–gelmethod,PhysicaB403(2008) 2431–2437.

[10]M.Batzill,U.Diebold,Thesurfaceandmaterialsscienceoftinoxide,Prog.Surf. Sci.79(2005)47–154.

[11]K.Suito,N.Kawai,Y.Masuda,HighpressuresynthesisoforthorhombicSnO2,

Mater.Res.Bull.10(1975)677–680.

[12]A.R.Shien,High-pressurephasesinSnO2to117GPa,Phys.Rev.B73(2006),

014105-7.

[13]J.Haines,J.M.Legér,X-raydiffractionstudyofthephasetransitionsand struc-turalevolutionoftindioxideathighpressure:relationshipsbetweenstructure typesandimplicationsforotherrutile-typedioxides,Phys.Rev.B55(1997) 1144–1154.

[14]J.Z.Jiang,L.Gerward,J.S.Olsen,Pressureinducedphasetransformationin nanocrystalSnO2,Scr.Mater.44(2001)1983–1986.

[15]S.Ono,E.Ito,T.Katsura,A.Yoneda,M.J.Walter,S.Urakawa,W.Utsumi,K. Funakoshi,Thermoelasticpropertiesofhigh-pressurephaseofSnO2

deter-minedbyinsituX-rayobservationsupto30GPaand1400K,Phys.Chem.Miner. 27(2000)618–622.

[16]P.S.Patil,R.K.Kawar,S.B.Sadale,P.S.Chigare,Propertiesofspraydepositedtin oxidethinfilmsderivedfromtri-n-butyltinacetate,ThinSolidFilms437(2003) 34–44.

[17]C.Agashe,R.C.Aiyer,High-yieldsynthesisofnanocrystallinetindioxideby thermaldecompositionforuseingassensors,Int.J.Appl.Ceram.Technol.5 (2008)181–187.

[18]B.Hariprakash,A.U.Mane,S.K.Martha,S.A.Gaffoor,S.A.Shivashankar,A.K. Shukla,Alow-cost,highenergy-densitylead-acidbattery,Electrochem.Solid StateLett.7(2004)A66–A69.

[19]J. Song,M.Z.Cai, Q.F.Dong,M.S. Zhen,Q.H.Wu,S.T. Wu,Structuraland electrochemicalcharacterizationofSnOxthinfilmsforLi-ionmicrobattery,

Electrochim.Acta54(2009)2748–2753.

[20]C.Terrier,J.P.Chatelon,J.A.Roger,R.Berjoan,C.Dubois,Analysisofantimony dopingintinoxidethinfilmsobtainedbythesol–gelmethod,J.Sol–GelSci. Technol.10(1997)75–81.

[21]Y.J.Lin,C.J.Wu,Thepropertiesofantimony-dopedtinoxidethinfilmsfromthe sol–gelprocess,Surf.Coat.Technol.88(1997)239–247.

[22]M.Izerrouken,S.Kermadi,N.Souami,A.Sari,M.Boumaour,Influenceofreactor neutronsirradiationonelectrical,opticalandstructuralpropertiesofSnO2film

preparedbysol–gelmethod,Nucl.Instrum.MethodsA611(2009)14–17.

[23]Y.Xiao,S.Ge,L.Xi,Y.Zuo,X.Zhou,B.Zhang,L.Zhang,C.Li,X.Han,Z.Wen, RoomtemperatureferromagnetismofMn-dopedSnO2thinfilmsfabricatedby

sol–gelmethod,Appl.Surf.Sci.254(2008)7459–7463.

[24]L.K.Dua,A.De,S.Chakraborty,P.K.Biswas,Studyofspincoatedhighantimony contentSn–Sboxidefilmsonsilicaglass,Mater.Charact.59(2008)578–586.

(5)

[25]Y.Huang,D.Li,J.Feng,G.Li,Q.Zhang,Transparentconductivetungsten-doped tinoxidethinfilmssynthesizedbysol–geltechniqueonquartzglasssubstrates, J.Sol–GelSci.Technol.54(2010)276–281.

[26]R.J.D.Tilley,CrystalandCrystalStructures,Wiley,London,UK,2006.

[27]J.J.Lingane,L.A.Small,Polarographyofthevariousoxidationstatesoftungsten, J.Am.Chem.Soc.71(1949)973–978.

[28]E.Lassner,W.-D.Schubert,Tungsten,KluwerAcademic,NewYork,1999.

[29]N.N.Greenwood,A.Earnsha,ChemistryoftheElements,seconded.,Elseiver, Oxford,UK,1997.

[30]Y.Huang,G.Li,J.Feng,Q.Zhang,Investigationonstructural,electricaland opticalpropertiesoftungsten-dopedtinoxidethinfilms,ThinSolidFilms518 (2010)1892–1896.

[31]T.Serin,N.Serin,S.Karadeniz,H.Sarı,N.Tu˘gluo˘glu,O.Pakma,Electrical, struc-turalandopticalpropertiesofSnO2thinfilmspreparedbyspraypyrolysis,J.

Non-Cryst.Solids352(2006)209–215.

[32]J.Tauc,R.Grigorovici,A.Vancu,Opticalpropertiesandelectronicstructureof amorphousgermanium,Phys.StatusSolidi(b)15(1966)627–637.

[33]A.R.Babar,S.S.Shinde,A.V.Moholkar,C.H.Bhosale,J.H.Kim,K.Y.Rajpure, Struc-turalandoptoelectronicpropertiesofantimonyincorporatedtinoxidethin films,J.AlloysCompd.505(2010)416–422.

[34]A.R.Babar,S.S.Shinde,A.V.Moholkar,C.H.Bhosale,J.H.Kim,K.Y.Rajpure, Sensingpropertiesofsprayedantimonydopedtinoxidethinfilms:solution molarity,J.AlloysCompd.509(2011)3108–3115.

[35]E.Burstein,AnomalousopticalabsorptionlimitinInSb,Phys.Rev.93(1954) 632–633.

[36]F.Yakuphanoglu,Y.Caglar,S.Ilican,M.Caglar,Theeffectsoffluorineonthe structural,surfacemorphologyandopticalpropertiesofZnOthinfilms,Physica B394(2007)86–92.

[37]M.Tomakin,M.Altunbas,E.Bacaksız,I.Polat,Preparationand characteriza-tionofnewwindowmaterialCdSthinfilmsatlowsubstratetemperature (<300K)withvacuumdeposition,Mater.Sci.Semicond.Process.14(2011) 120–127.

[38]L.B.Freund,S.Suresh,ThinFilmMaterials:Stress,DefectFormationandSurface Evolution,CambridgeUniversityPress,Cambridge,2003,pp.192.

[39]Y.H.Lee,W.J.Lee,Y.S.Kwon,G.Y.Yeom,J.K.Yoon,EffectsofCdSsubstrates onthephysicalpropertiesofpolycrystallineCdTefilms,ThinSolidFilms341 (1999)172–175.

Referanslar

Benzer Belgeler

In the search for a mathematical characterization of the gel point, we observed that successive derivatives of the sigmoidal curve representing the number of removed individuals

Cyclitols and their halogen derivatives are important compounds in organic chemistry, and thus their synthesis with high efficiency has gained importance.. In BX 3 -assisted (BBr 3

EDLC devices based on activated carbon electrodes can show superior electrochemical performance not only due to their high surface area but also because of

 At the eutectic point, three phases (liquid, solid salol, and solid thymol) coexist. The eutectic point therefore denotes an invariant system because, in a

Code section in the hospitals, the system will be recognized when the user logs in accordance with the hospital to record another hospital to provide hospital code and test code

[r]

Kemal okuyor, yazıyor, postayı hazırlı­ yor, kavgaları yatıştırıyor, Muhbir doğruyu söylemekten ayrılınca Hürriyet’ i çıkarıyor. A v­ rupa’ya Avrupa’

Bitirirken Türk tarih tezi, millî, Millî bir tarih inşa etme gayesindedir. Yalnız, millî değerler ve Türklük, modern ve laik bir şekil ve içerikte tanımlanmıştır. Türk