• Sonuç bulunamadı

On a conjecture of Ilmonen, Haukkanen and Merikoski concerning the smallest eigenvalues of certain GCD related matrices

N/A
N/A
Protected

Academic year: 2021

Share "On a conjecture of Ilmonen, Haukkanen and Merikoski concerning the smallest eigenvalues of certain GCD related matrices"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Linear

Algebra

and

its

Applications

www.elsevier.com/locate/laa

On

a

conjecture

of

Ilmonen,

Haukkanen

and

Merikoski

concerning

the

smallest

eigenvalues

of

certain

GCD

related

matrices

Ercan Altınışıka,∗, Ali Keskina, Mehmet Yıldıza,

Murat Demirbükenb

aDepartmentofMathematics,Facultyof Sciences,GaziUniversity,06500

Teknikokullar–Ankara,Turkey

b

DepartmentofComputerScience,FacultyofEngineering,İ.DoğramacıBilkent University,06800Bilkent–Ankara,Turkey

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received14July2015 Accepted23November2015 Availableonline15December2015 SubmittedbyR.Brualdi MSC: 15A18 15A23 15B36 15B48 11B39 11C20 Keywords: GCDmatrix (0,1)-matrix Positivematrix Eigenvalue Spectralradius Fibonaccinumber

LetKnbethesetofalln× n lowertriangular(0,1)-matrices

witheachdiagonalelementequalto1,Ln={Y YT: Y ∈ Kn}

andletcnbetheminimumofthesmallesteigenvalueofY YT

as Y goes throughKn.TheIlmonen–Haukkanen–Merikoski

conjecture(theIHMconjecture)statesthatcnisequaltothe

smallesteigenvalueofY0Y0T,whereY0 ∈ Kn with(Y0)ij = 1−(−1)i+j

2 fori> j.Inthispaper,wepresentaproofofthis

conjecture.Inourproofweuseaninequalityforspectralradii ofnonnegativematrices.

© 2015ElsevierInc.All rights reserved.

* Correspondingauthor.Tel.:+903122021070.

E-mailaddresses:ealtinisik@gazi.edu.tr(E. Altınışık),akeskin1729@gmail.com(A. Keskin),

yildizm78@mynet.com(M. Yıldız),murdem91@gmail.com(M. Demirbüken).

http://dx.doi.org/10.1016/j.laa.2015.11.023

(2)

1. Introduction

Let S = {x1,x2,. . . ,xn} be a set of distinct positive integers, (xi,xj) denote the

greatest common divisor of xi and xj and let ε be apositive real number. The n× n

matrices (S) = ((xi,xj)) and (Sε) = ((xi,xj)ε) are called the GCD matrix and the

powerGCDmatrixonS,respectively.TheLCMmatrixandthepowerLCMmatrixare similarly defined. In 1876, Smith [30] proved thatif S is factor closed, then det(S) = n

k=1ϕ(xk),where ϕ isEuler’stotient.Sincethen manyresultsonthese matriceshave

been publishedintheliterature,seee.g.[5,6,10,11,13,21].

AninterestingandactiveareainthestudyofGCDtypematricesistheir eigenstruc-ture. The first results on this subject were published in the papers [32,7,23] but the paper ofHongand Loewy[16]canbe consideredasthe firstpaperon thestudyof the eigenvalues of GCD and related matrices due to the number theoretical aspect of the subject. Since their pioneeringpaper manyresults onthe subjecthave been published in the literature, see e.g. [1,3,4,14,15,17,19,24,26–28]. In that paper, Hong and Loewy investigatedtheasymptoticbehavioroftheeigenvaluesofpowerGCDmatricesbyusing sometoolsofnumbertheory.Besidetheirresultsonasymptoticbehaviorofthese matri-ces, inthesamepaperHongandLoewyintroducedaconstantcn andusedittopresent

alowerboundforthesmallesteigenvaluesofpowerGCDmatrices.LetKn bethesetof

all n× n lowertriangular (0,1)-matriceswith eachdiagonalelement equalto 1 and let

Ln={Y YT : Y ∈ Kn}.Theydefinedthenumberscn dependingonlyonn asfollows:

cn= min Z∈Ln



μ(1)n (Z) : μ(1)n (Z) is the smallest eigenvalue of Z. (1.1) Then theyproved that

λ(1)n ((Sε))≥ cn· min

1≤i≤n{Jε(xi)},

whereisJordan’sgeneralizationofEuler’stotientandλ(1)n ((Sε)) isthesmallest

eigen-valueofthepowerGCDmatrix(Sε),see[16, Theorem 4.2].

In2008,Ilmonen,HaukkanenandMerikoski[19]studiedeigenvaluesofmeetandjoin matriceswhichareabstractgeneralizationsofGCDandLCMmatrices,respectively,and they generalizedthe aboveresultconcerning the numberscn for positivedefinite meet

matrices definedonlocally finite meetsemilattices.They alsoobtainedasimilar result for joinmatrices andhence,inparticular,forLCM matrices.Inthesamepaper,inthe light of their MATLAB calculations for n = 2,3,. . . ,7, they presented an interesting conjecture abouttheconstants cn.

Conjecture 1.1 (The IHM conjecture). (See [19,Conjecture 7.1].)Let Y0 = (y0ij)∈ Kn

(3)

yij0 = 1− (−1)

i+j

2 (1.2)

ifi> j.Thencn isequaltothesmallesteigenvalue ofY0Y0T.

Wehave furthernumericalevidence of the IHM conjecture as follows. Recently,the first, the second and the fourth author of the paper have investigated that the IHM conjectureholdsforn= 7 and n= 8 withthehelpofaMATLABcode.OurMATLAB code running on a computer1 has verifiedthe truth of the IHM conjecture for n = 7

in 23 minutes and for n = 8 in 3.5 days. Since |L8| = 228 = 268,435,456 and |L9| =

236= 68,719,476,736,itwouldtakeabout3 yearstoverifytheIHMconjectureforn= 9

withthehelpofourMATLABcode.Toovercomethisdifficultyabouttime,wewritea differentcodeinCprogramminglanguage.WeuseNewton’sidentities(see[20])toobtain thecharacteristicpolynomialofamatrixZ inLnandwecalculatethesmallesteigenvalue

of Z by using Newton’s method (see [31]) to shorten therunning time. Indeed, our C coderunningonthesamecomputerhas verifiedthe truthof theIHM conjecturein30 minutesforn= 8 andin7daysforn= 9.Thus,wehaveconcludedthatConjecture 1.1 holdsfor n= 8 and n= 9. Thisinvestigationhasbeen presented bythefirstauthor of thispaperin[2].

Afterobtainingenoughnumericalevidence thatthe IHMconjecture canbe true,we getthemotivation to findoutaproofof it.The strategyoftheproof isas follows. We provethatfor anymatrixY inKn, |Y−1|≤ |Y0−1|, wherethe matrixY0 given by(1.2)

and|Y−1| istheelement-wiseabsolutevalueofthematrixY−1.Secondly,weshowthat

|Z−1| ≤ |(Y

0Y0T)−1| for all Z ∈ Ln. Then, by using an inequalityfor spectral radii of

nonnegativematrices, weobtainaproofoftheIHM conjecture.Weconcludethepaper with a conjecture on the uniqueness of the matrix Y0 and a discussion about further

studiesontheconstantcn.

2. PropertiesofmatricesinKn

Firstwepresentasimplefactaboutaparticularnilpotent(0,1)-matrixwhichweuse inthe courseof our proofs. Here we give theproof of this fact thoughone canfind in theliterature.

Lemma 2.1. Let Y ∈ Kn and N := Y − I, where I is the n× n identity matrix. We

denoteby(Nk)ij theij-entryof thepositiveintegerk-th powerofN . Thenwehavethe

followingproperties.

i) (Nk)

ij = 0 wheneveri− j < k,

ii) Y−1 = I− N + N2− · · · + (−1)n−1Nn−1.

1

(4)

Proof. Since N is a strictly lower triangular (0,1)-matrix, the proof of the first claim follows fromthematrixmultiplication.Fortheproofofthesecond claim,consider

In− (−N)n = (I + N )(I− N + N2− · · · + (−1)n−1Nn−1). Since Nn = 0 andY = I + N ,wehave

Y−1= I− N + N2− · · · + (−1)n−1Nn−1. 2

Now we investigate the inverse of any matrixY in Kn. In the following lemma we

obtainarecurrencerelationfortheentriesoftheinverseof Y .

Lemma2.2.LetY ∈ Kn andN := Y − I.Denote N = (nij) andY−1 = (aij).Thenwe

have thefollowingrecurrencerelationforakl:

akl= ⎧ ⎪ ⎨ ⎪ ⎩ 0 if k < l, 1 if k = l, k−1i=l nkiail if k > l.

Proof. When we multiply both sides ofthe equality inLemma 2.1(ii) from the left by

−N,wehave

−NY−1 =−N + N2− · · · + (−1)n−1Nn−1+ (−1)nNn.

Since Nn = 0,onecaneasily obtain

I− NY−1= Y−1. (2.1)

ByLemma 2.1,itisclearthatakl= 0 ifk < l andakl = 1 ifk = l.Now,from(2.1),we

have akl= n i=1 nkiail

forallk > l and hence,byLemma 2.1,weobtain

akl= k−1 i=l nkiail forallk > l. 2

Inthefollowing theorem,wefindanupper boundforeachaij interms ofFibonacci

(5)

Theorem 2.1. LetY ∈ Kn and denoteY−1 = (aij). Then, for 1≤ j < i ≤ n, we have

|aij| ≤ fi−j,wherefi−j isthe(i− j)-th Fibonaccinumber.

Proof. LetN = (nij) beasinLemma 2.2.Letj = 1,2,. . . ,n−1.Weprovebyinduction

ont= 1,2,. . . ,n−j that|aj+t,j| ≤ ftforallY ∈ Kn.ByLemma 2.2,wehave|aj+1,j| =

nj+1,j,where nj+1,j canbe0 or1.Thus,|aj+1,j| ≤ 1= f1forallY ∈ Kn.Now,assume

that for each t = 1,2,. . . ,k− 1 we have |aj+t,j| ≤ ft for all Y ∈ Kn. We provethat

|aj+k,j| ≤ fk for allY ∈ Kn. ByLemma 2.2, we haveaj+k,j = j+ki=j−1nj+k,iaij for

allY ∈ Kn.

Case 1. Assume nj+k,j+k−1 = 0. Then |aj+k,j| = j+ki=j−2nj+k,iaij . Also, by

Lemma 2.2, aj+k−1,j = j+k−2i=j nj+k−1,iaij. Since both of nj+k,i and nj+k−1,i for

each i = j,j + 1,. . . ,j + k− 2 can arbitrarily be 0 or 1, it is clear that aj+k,j and

aj+k−1,j gothrough thesamevalues,as Y goes throughthe setKn. Therefore, bythe

inductionhypothesis,weobtain|aj+k,j| ≤ fk−1≤ fk forallY ∈ Kn.

Case 2.Assumenj+k,j+k−1 = 1.

Subcase i.Assumenj+k−1,j+k−2= 0.ByLemma 2.2,wehave

|aj+k,j| ≤ j+k−2 i=j nj+k,iaij +|aj+k−1,j| .

Also, by Lemma 2.2, it is clear that aj+k−1,j = j+k−2i=j nj+k−1,iaij. Since both of

nj+k,iandnj+k−1,i foreachi= j,j + 1,. . . ,j + k− 2 canarbitrarilybe0 or1,itisclear

that j+k−2i=j nj+k,iaij and aj+k−1,j go through the samevalues, as Y goes through

the set Kn. Thus, by the inductionhypothesis, we obtain j+ki=j−2nj+k,iaij ≤ fk−1.

Beside this, by ourassumption in Subcase i, |aj+k−1,j| = j+ki=j−3nj+k−1,iaij . Since

both of nj+k−1,i and nj+k−2,i for each i = j,j + 1,. . . ,j + k− 3 can arbitrarily be 0 or 1,itisobviousthat j+k−3i=j nj+k−1,iaij andaj+k−2,j gothroughthesamevalues,as

Y goesthrough the set Kn. Bytheinduction hypothesis, we obtain|aj+k−1,j| ≤ fk−2

forallY ∈ Kn.Thus,|aj+k,j| ≤ fk−1+ fk−2= fk forallY ∈ Kn.

Subcase ii.Assumenj+k−1,j+k−2= 1. ByLemma 2.2,wehave

|aj+k,j| ≤ j+k−3 i=j nj+k,iaij + j+k−1 i=j+k−2 nj+k,iaij .

Since j+ki=j−3nj+k,iaij andaj+k−2,j gothroughthesamevalues,asY goesthroughthe

setKn,bytheinductionhypothesis,wehave i=jj+k−3nj+k,iaij ≤ fk−2forallY ∈ Kn.

Inadditiontothis, sincenj+k−1,j+k−2= 1 we obtain j+k−1 i=j+k−2 nj+k,iaij = (nj+k,j+k−2− 1)aj+k−2,j− j+k−3 i=j nj+k−1,iaij.

(6)

Here each(1− nj+k,j+k−2),nj+k−1,j,. . . ,nj+k−1,j+k−3 canarbitrarily be 0 or1.Thus, j+k−1

i=j+k−2nj+k,iaij andaj+k−1,j gothroughthesamevalues,asY goesthroughtheset

Knandhence,bytheinductionhypothesis, j+k−1i=j+k−2nj+k,iaij ≤ fk−1forallY ∈ Kn.

Therefore, weobtain|aj+k,j| ≤ fk−2+ fk−1 = fk forallY ∈ Kn.

Theprincipleofinductioncompletestheproof. 2

LetA= (aij),B = (bij)∈ Mn(R),thatis,thesetofalln× n realmatrices.Wewrite

A ≥ 0 ifallaij ≥ 0.Also,we write A≥ B ifA− B ≥ 0.In additionto this, wedefine

|A| = (|aij|),thatis,|A| istheelement-wiseabsolutevalueofA.Thelargest eigenvalue

of A inmodulusisdenotedbyρ(A) andcalledthespectral radiusofA.Nowwefix the notation fortherest ofthepaper.

Theorem 2.2. Let Y0 = (y0ij)∈ Kn be as in (1.2) andlet Z0 := Y0Y0T. ForallZ ∈ Ln,

we have|Z−1|≤ |Z0−1|.

Proof. Firstly we obtaintheinverseofY0.LetN0= Y0− I andN0= (mij).Then

mij =

0 if i≤ j,

1−(−1)i+j

2 otherwise.

WeclaimthattheinverseofY0 isthen× n matrix(cij),where

cij= ⎧ ⎪ ⎨ ⎪ ⎩ 0 if i < j, 1 if i = j, (−1)i−jfi−j if i > j.

Since Y0∈ Kn byLemma 2.2, itisclearthatcij = 0 ifi< j andcij = 1 ifi= j.Also,

byLemma 2.2,wehave cij = i−1 k=j mikckj

fori> j.Nowweprovethatcij = (−1)i−jfi−j wheneveri> j byinductionont= i−j.

Fort= 1,

cj+1,j =−mj+1,j=−1 = −f1.

Assumethatcj+t,j= (−1)tftforallt= 1,2,. . . ,k− 1.Recall that

cj+k,j= j+k−1

s=j

(7)

Bytheinductionhypothesis, ifk iseventhenwe have cj+k,j = k/2 s=1 f2s−1= fk

andifk isoddthen

cj+k,j =−1 −

(k−1)/2

s=1

f2s=−fk.

Here thelast equalities follow from the well-knownFibonacciidentities, see [22, Theo-rem 5.2andCorollary 5.1].Thus,cj+k,j= (−1)kfk.

Secondly,wecalculatetheinverseofZ0.SinceZ0= Y0Y0T andY0−1= (cij),wehave

(Z0−1)ii = n k=1 c2ki= 1 + n k=i+1 fk−i2 (2.2)

foralli= 1,2,. . . ,n.Nowlet1≤ i< j≤ n.Then

(Z0−1)ij= n t=1 ctictj = cji+ n t=j+1 ctictj = (−1)j−ifj−i+ n t=j+1 (−1)−i−jft−ift−j = (−1)j−i(fj−i+ n t=j+1 ft−ift−j). (2.3)

SinceZ0−1 issymmetric, forall1≤ j < i≤ n,

(Z0−1)ij = (−1)i−j(fi−j+ n

t=i+1

ft−ift−j). (2.4)

Nowweprovetheclaimofthetheorem.ForeachZ ∈ Ln,there existsamatrixY in

Kn such thatZ = Y YT. Let Y−1 = (aij). Then, by Lemma 2.2 and Theorem 2.1, we

(8)

(Z−1) ii = n k=1 a2ki = n k=1 |aki|2 = n k=i |aki|2 ≤ 1 + n k=i+1 fk−i2 = (Z0−1)ii

foralli= 1,2,. . . ,n. Letj > i. ByLemma 2.2andTheorem 2.1,wehave (Z−1) ij = n t=1 atiatj n t=1 |ati||atj| =|aji| + n t=j+1 |ati||atj| ≤ fj−i+ n t=j+1 ft−ift−j = (Z0−1)ij .

Finally,sinceZ−1 andZ0−1 aresymmetric,|Z−1|≤ |Z0−1| forallZ∈ Ln. 2

3. ProofofConjecture 1.1

Thefollowing lemmaiscrucialintheproofofConjecture 1.1.

Lemma 3.1. (See [18, Theorem 8.1.18].) Let A,B ∈ Mn(R). If |A| ≤ B, then ρ(A)

ρ(|A|)≤ ρ(B).

Proofoftheconjecture. LetZ0 beas inTheorem 2.2.Firstweprovethatthematrices Z0−1 and|Z0−1| have thesame characteristic polynomial.Bythedefinition ofthe trace of asquarematrix,itisclearthat

tr((Z0−1)k) = n i1,...,ik=1 (Z0−1)i1i2. . . (Z −1 0 )ik−1ik(Z −1 0 )iki1

(9)

foreachk = 1,2,. . . ,n.Also,fromformulae(2.2)–(2.4)intheproofofTheorem 2.2,one caneasily showthatsgn(Z0−1)ij= (−1)i−j forall1≤ i,j≤ n.Thus,we have

sgn((Z0−1)i1i2. . . (Z

−1

0 )ik−1ik(Z −1

0 )iki1) = 1

and hence tr(|Z0−1|k) = tr((Z0−1)k). By Newton’s identities [20], we obtain that Z0−1

and |Z0−1| have the same characteristic polynomial. Thus, ρ(|Z0−1|) = ρ(Z0−1). From

Theorem 2.2and Lemma 3.1,now weobtain

ρ(Z−1)≤ ρ(|Z−1|) ≤ ρ(|Z0−1|) = ρ(Z0−1),

forall Z inLn. Sinceall Z inLn are positivedefinite,thesmallesteigenvalue ofZ0 is

lessthanor equalto thesmallesteigenvalueofZ forallZ inLn. 2

Finally, inour investigation [2], we cannot find any matrixY other than Y0 in Kn

suchthat cn is equalto the smallesteigenvalue ofY YT foreach n= 2,3,. . . ,9.After

thisobservationwecanpresent thefollowing conjecture.

Conjecture3.1.Letn≥ 2.ThereisauniquematrixY inKn suchthatcn isequaltothe

smallesteigenvalue ofY YT.In otherwords,ifthesmallest eigenvalueof Y YT isequal tocn thenY = Y0,whereY0 isdefined by(1.2).

4. Lowerboundsforcn

Intheliteraturetherearenotsomanyresultsonestimatingthevalueofcn.Recently,

Mattila[24] haspresented alower bound forcn.Indeed, heproved thatcn isbounded

belowby( 6

n4+2n3+2n2+n)

n−1

2 .Thenheshowedthatthislowerboundcanbereplacedwith

( 48

n4+56n2+48n)

n−1

2 when n is even, and ( 48

n4+50n2+48n−51)

n−1

2 when n is odd. Recently,

beside Mattila’s results, Altınışık and Büyükköse [4] have obtaineda lower bound for thesmallest eigenvaluetn of then× n matrix EnTEn, where the ij-entry of En is 1if

j|i and0 otherwise,i.e.,tn≥

n nk=1μ2(k)−1.Indeed,thisboundcanbeusedinstead

oflower bounds includingcn for thesmallesteigenvaluesof GCDand related matrices

definedonS ={1,2,. . . ,n} intheliterature,see[14,16,19,24,27].Afterabovestudieson estimatingthevalueofcn,wenaturallyraise thefollowing problem.

Problem4.1.Canoneimprovethelowerboundsmentionedaboveforcn?

In the review process, Professor Jorma K. Merikoski proposed a solution to Prob-lem 4.1,whichispresented inAppendix A.

Acknowledgements

TheauthorswouldliketothankProfessorIlkerInam,ProfessorPenttiHaukkanenand two anonymous reviewers for their valuable suggestions inimproving the presentation

(10)

of ourmanuscript.Wealsowouldlike tothanktoProfessorJormaK.Merikoskiforhis solutionto Problem 4.1.

Appendix A. AsolutiontoProblem 4.1(byJorma K.Merikoski) Recall thatthematrixZ0−1= (ζij) satisfies

ζii= 1 + n k=i+1 fk−i2 , |ζij| = f|j−i|+ n k=j+1 fk−ifk−j, i= j.

Alsorecallthatthespectralradius ofanonnegative squarematrixislessthan orequal to themaximalrowsum,andequalityholds ifand onlyifthematrixisirreducible and allrowsumsareequal(e.g., [9,Chapter 2,Theorem (2.35)]).Now

c−1n = ρ(Z0−1) = ρ(|Z0−1|) < max i n j=1 |ζij| = n j=1 |ζ1j| =11| + n j=2 |ζ1j| = 1 + n k=2 fk−12 + n j=2  fj−1+ n k=j+1 fk−1fk−j = 1 + n−1 k=1 fk+ n j=1 n k=j+1 fk−1fk−j = 1 + S1+ S2.

It iswell-known[12,Eq. (22)]that

m k=1 fk = fm+2− 1; (A.1) so S1= fn+1− 1.

Moreworkmustbe donewith S2. Firstwehave

S2= (f12+ f22+· · · + fn−12 ) + (f2f1+ f3f2+· · · + fn−1fn−2) +· · ·

(11)

= f1(f1+· · · + fn−1) + f2(f2+· · · + fn−1) +· · · + fj(fj+· · · + fn−1) +· · · + fn−2(fn−2+ fn−1) + fn2−1 = n−1 j=1 fj n−1 k=j fk. By(A.1), n−1 k=j fk = n−1 k=1 fk− j−1 k=1 fk= (fn+1− 1) − (fj+1− 1) = fn+1− fj+1, whichimplies S2= n−1 j=1 fj(fn+1− fj+1) = fn+1 n−1 j=1 fj− n−1 j=1 fjfj+1= T1− T2.

ItremainstosimplifyT1 and T2.By(A.1),

T1= fn+1(fn+1− 1).

Itiswell-known[29,SequenceA064831]that

m j=1fjfj+1= fm+12 − 1 ifn iseven, m j=1fjfj+1= fm+12 ifn isodd. Hence T2= fn2ifn iseven, T2= fn2− 1 ifn isodd. Inotherwords, T2= fn2− ηn, where ηn= 1− (−1)n 2 . Now c−1n < 1 + S1+ T1− T2 = 1 + (fn+1− 1) + fn+1(fn+1− 1) − fn2+ ηn

(12)

= fn+12 − fn2+ ηn

= (fn+1− fn)(fn+1+ fn) + ηn

= fn−1fn+2+ ηn.

It iswell-known[8,Eq. (2)]that

fm−rfm+s− fmfm+s−r= (−1)m−r−1frfs. Hence fn−1fn+2= fnfn+1+ (−1)n, and so c−1n < fnfn+1+ (−1)n+ ηn = fnfn+1+ θn, where θn= 1 + (−1)n 2 . Therefore cn> (fnfn+1+ θn)−1 = γn,

whichseemstobemuchbetterthanMattila’s[25]bounds.Forexample,c6= 0.0148 (in

three digits). Thebound γ6 = 0.00952 is rather good, while Mattila’s betterbound is

0.0000205. References

[1]E. Altınışık, On inverses of GCD matrices associated with multiplicative functions and a proof of the Hong–Loewy conjecture, Linear Algebra Appl. 430 (2009) 1313–1327.

[2]E. Altınışık, On a conjecture on the smallest eigenvalues of some special positive definite matrices, in: 3rd International Conference on Applied Mathematics & Approximation Theory – AMAT 2015, 28–31 May 2015, Ankara, Turkey, 2015.

[3]E. Altınışık, Ş. Büyükköse, A proof of a conjecture on monotonic behavior of the largest eigenvalue of a number-theoretic matrix, in: 12th International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, 2014.

[4]E. Altınışık, Ş. Büyükköse, A proof of a conjecture on monotonic behavior of the smallest and the largest eigenvalue of a number-theoretic matrix, Linear Algebra Appl. 471 (2015) 141–149. [5]E. Altınışık, B.E. Sagan, N. Tu˜glu, GCD matrices, posets, and nonintersecting paths, Linear

Mul-tilinear Algebra 53 (2) (2005) 75–84.

[6]E. Altınışık, N. Tu˜glu, P. Haukkanen, A note on bounds for norms of the reciprocal LCM matrix, Math. Inequal. Appl. 7 (4) (2004) 491–496.

[7]F. Balatoni, On the eigenvalues of the matrix of the Smith determinant, Mat. Lapok 20 (1969) 397–403 (in Hungarian).

[8]A.T. Benjamin, N.T. Cameron, J.J. Quinn, Fibonacci determinants – a combinatorial approach, Fibonacci Quart. 45 (2007) 39–55.

(13)

[9]A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994. [10]S. Beslin, S. Ligh, Greatest common divisor matrices, Linear Algebra Appl. 118 (1989) 69–76. [11]K. Bourque, S. Ligh, On GCD and LCM matrices, Linear Algebra Appl. 174 (1992) 65–74. [12] P. Chandra, E.W. Weisstein, Fibonacci number, from MathWorld – a Wolfram web resource,

http://mathworld.wolfram.com/FibonacciNumber.html.

[13]P. Haukkanen, J. Wang, J. Sillanpää, On Smith’s determinant, Linear Algebra Appl. 258 (1997) 251–269.

[14]S. Hong, Asymptotic behavior of largest eigenvalue of matrices associated with completely even functions (mod r), Asian-Eur. J. Math. 1 (2008) 225–235.

[15]S. Hong, K.S. Enoch Lee, Asymptotic behavior of eigenvalues of reciprocal power LCM matrices, Glasg. Math. J. 50 (2008) 163–174.

[16]S. Hong, R. Loewy, Asymptotic behavior of eigenvalues of greatest common divisor matrices, Glasg. Math. J. 46 (2004) 303–308.

[17]S. Hong, R. Loewy, Asymptotic behavior of the smallest eigenvalue of matrices associated with completely even functions (mod r), Int. J. Number Theory 7 (2011) 1681–1704.

[18]R. Horn, C.R. Johnson, Matrix Analysis, second ed., Cambridge University Press, Cambridge, London, 2013.

[19]P. Ilmonen, P. Haukkanen, J.K. Merikoski, On eigenvalues of meet and join matrices associated with incidence functions, Linear Algebra Appl. 429 (2008) 859–874.

[20]D. Kalman, A matrix proof of Newton’s identities, Math. Mag. 73 (4) (2000) 859–874.

[21]I. Korkee, P. Haukkanen, On meet and join matrices associated with incidence functions, Linear Algebra Appl. 372 (2003) 127–153.

[22]T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley, New York, 2001.

[23]P. Lindqvist, K. Seip, Note on some greatest common divisor matrices, Acta Arith. 84 (2) (1998) 149–154.

[24]M. Mattila, On the eigenvalues of combined meet and join matrices, Linear Algebra Appl. 466 (2015) 1–20.

[25]M. Mattila, On the eigenvalues of combined meet and join matrices, Linear Algebra Appl. 466 (2015) 1–20.

[26]M. Mattila, P. Haukkanen, On the eigenvalues of certain number-theoretic matrices, in: International Conference in Number Theory and Applications, 2012.

[27]M. Mattila, P. Haukkanen, On the eigenvalues of certain number-theoretic matrices, East-West J. Math. 14 (2) (2012) 121–130.

[28]M. Mattila, P. Haukkanen, On the positive definiteness and eigenvalues of meet and join matrices, Discrete Math. 326 (2014) 9–19.

[29] N.J.A.Sloane,Theon-lineencyclopediaofintegersequences,http://oeis.org/.

[30]H.J.S. Smith, On the value of a certain arithmetical determinant, Proc. Lond. Math. Soc. (1) 7 (1876) 208–212.

[31]E. Süli, D. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, Cambridge, London, 2003.

Referanslar

Benzer Belgeler

Refik Halid Karay’ın romanlarında öne çıkan kadınlar geleneksel kadın tipi değildir, daha çok cinsel kimliği vurgulanan, özgürlüğüne düşkün, hatta kimi zamanda

To summarize the thesis, having being discussed on which theory of emotion I take into account here, I initiated my argument by grounding on the idea that fictional emotions

In this paper, after introducing a general overview of the significance and requirements of informed consent, we will consecutively discuss the decision making and

By taking the lead term ideal of both sides in the above equality of initial form ideals with respect to &lt;, one sees that this set is also the reduced Gr¨ obner basis with respect

The idea of logarithmic determinants also provides us with a connection which works in the opposite direction: starting with a known result about the Hilbert transform, one arrives at

In our sample period, January 1998 to December 2011, 13 variables were analyzed for being the source of variations in stock returns: monthly return on BIST 100 index,

It is this approach that we employ in the paper (see Sect. 3 for the precise statements); its principal advantage over the clas- sical purely geometric treatment is the fact that,

Bunun yanı sıra; Sağlık hizmetlerinde sağlık turizminin gerektirdiği entegre yaklaşımın (sağlık kuruluşları, pazarlama kuruluşları, lojistik ve ulaşım