• Sonuç bulunamadı

Effects o follicular fluid oxidative status on human mural granulosa cells, oocyte competency and ICSI parameters

N/A
N/A
Protected

Academic year: 2021

Share "Effects o follicular fluid oxidative status on human mural granulosa cells, oocyte competency and ICSI parameters"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Effects

o

follicular

fluid

oxidative

status

on

human

mural

granulosa

cells,

oocyte

competency

and

ICSI

parameters

Seda

Karabulut

a,b,

*

,

Oya

Korkmaz

a,b

,

Pelin

Kutlu

c

,

Hilal

Eren

Gozel

a,b

,

Ilknur

Keskin

a,b

a

IstanbulMedipolUniversity,InternationalSchoolofMedicine,HistologyandEmbryologyDepartment, _Istanbul,Turkey

b

MedipolUniversity,SchoolofMedicine,Kavacık, _Istanbul,REMER(RegenerativeandRestorativeMedicineResearchCenter),KavacıkMah.EkincilerCad. No.19KavacıkKavşagı34810Beykoz, _Istanbul,Turkey

cMedicanaÇamlıcaHospital,IVFCenter, _Istanbul,Turkey

ARTICLE INFO Articlehistory: Received4June2019

Receivedinrevisedform2June2020 Accepted8June2020

Keywords: Oxidativestress Follicularfluid

Intracytoplasmicsperminjection DNA

Muralgranulosacells

ABSTRACT

Purpose:Theaimofthepresentstudywastounderstandthemolecularandgeneticalterationsinvolved

infollicularfluidoxidativeprocessbyinvestigatinghumanmuralgranulosacellsandtofindpossible

biomarkersforoocytecompetencyandICSIoutcomemeasures.

Methods:Atotalof166patientswereincludedinthestudy.Totalantioxidantandoxidantlevelsof

follicularfluidsweremeasuredonthedayofoocytepick-upand oxidativestatuswerecalculated.

Expressionprofilesofthreepotentialtargetproteinsincasesofoxidativestress(Hsp70,Tgf-β,Notch1),

DNAstatusandchromatinintegrityofmuralgranulosacellswereanalyzed.

Results:TASlevelswerepositivelycorrelatedwiththeHsp70andTgf-βexpressionpatternsofmural

granulosacells.Matureoocyterateandfertilizationrateswereaffectednegativelybythepresenceof

oxidative stressandasignificantpositivecorrelationwas foundwith theoxidativestatus andthe

fertilization rate,whereasnocorrelationwiththeremainingICSIparametersinthe overallgroup.

Conclusions:Oxidativestressdetectedinfollicularfluidadverselyaffectsfertilizationratespost-ICSI

howevernoeffectontheremainingparametersincludingembryoquality,pregnancy,andimplantation

rates.DNAdamage,chromatinintegritywereincreased,whereasHsp70andTgf-ßweredecreasedin

muralgranulosacellsincasesofoxidativestresswhichmayindirectlyreflecttheoocytecompetencyand

maybeusedasbiomarkersforICSIoutcomemeasures.

PublishedbyElsevierB.V.

Introduction

Infertilityburden millions of people all around the world, yetcurrenttreatmentstrategiesarecapableofremedyingonly 40%ofthem[1,2].Intracytoplasmicsperminjection(ICSI)isone of themost commonlyusedassistedreproduction techniques for the treatment of infertility in couples with conception failure.

Oxidativestress(OS)whichisdefinedasaconsequenceofan imbalancebetweentheamountofreactiveoxygenspecies(ROS) produced, and the capability of antioxidant mechanisms to eliminatetheseoxidizingspecies,hasbeensuggestedasoneof thecausativefactorsof femaleinfertility[3–6]accordingtothe recentdata.Importantphysiologicalrolesofoxidativestatushave

beendemonstratedtoaffectawidevarietyoffemalereproductive functionsincludingoocytematurationandquality,formation of corpus luteum, ovarian steroidogenesis, fertilization process, embryo development, and pregnancy [3–5]. ROS are knownto beside-productsofnormalmetabolicactivityandareprovedto havevariousbeneficialeffects ontheorganismatphysiological concentrations[7].However,theimbalancebetweenROS produc-tion and its elimination is reported to cause damage to the components of cellular structures suchas lipids, nucleic acids, carbohydrates,andproteins[8,9].

Studiesregardingtheimpactofoxidativestressonthefemale reproductivecapacity mostlyfocusonthemicroenvironment of thedevelopingoocyte,ovarianfolliclesandinparticular,levelsof ROSand antioxidantswithinthefollicularfluid withconflicting results[3,10–16].Althoughthereisalsosomeevidencefortherole of reactive oxygen species (ROS) in the pathophysiology of infertilityandassistedfertility[17,18]withspecialroleonoocyte qualityandimpairedoocytefertilization[12,18–20]theexisting data are conflicting and the effect of oxidative stress on the outcomeofIVFisnotclear[15,21]

* Correspondingauthorat:MedipolUniversity,InternationalSchoolofMedicine, DepartmentofHistologyandEmbryology,Kavacıkmah,Ekincilercd.No:19Beykoz, Istanbul,Turkey.

E-mailaddress:sedakarabulut@medipol.edu.tr(S.Karabulut).

https://doi.org/10.1016/j.ejogrb.2020.06.021

0301-2115/PublishedbyElsevierB.V.

ContentslistsavailableatScienceDirect

European

Journal

of

Obstetrics

&

Gynecology

and

Reproductive

Biology

(2)

Ovarian follicles are sites of developing oocytes in which complicated network of systemic and localsignaling pathways crosstalks with each other. Within these follicles, the oocyte becomes mature which is essential for its normal fertilization processandthecompetenceoftheembryo[22].Follicularfluidisa mixture that contains proteins, metabolites, polysaccharides, steroids, reactive oxygen species, and antioxidant enzymes [23,24]whichactassignalingmoleculesandcontributetoproper oocytematuration.Molecularinteractionsthatregulatethefollicle and oocyte development until ovulation, require a suitable environment provided by the local and systemic interactions between follicular cells and fluid. Mural granulosa cells are importantcomponentsofovarianfolliclesthatsurround develop-ingoocytesandwhicharethesourcesofcumulusoophorousand corona radiata cells. These cells act as a provider of different moleculessuchassugars,amino acids,signalingmoleculesand nucleotidesfortheoocyte[25]. Furthermore,thesecells supply glutathione which is an important antioxidant for the oocyte [26,27],cysteineforthesynthesisofglutathione[28]hencedefend theoocyteagainstoxidativestress[29,30]andregulatematuration of oocytes by producing regulatory signals, induce meiosis for progressionandalterthecytoskeletonoftheoocyteaswell[31]. Astheoocytesappearsasthemostcommonfactor(70–80%) thatisresponsibleforimplantationfailure[32]andqualityofthe oocytereflectstheintrinsicdevelopmentalpotentialofanoocyte, itisofgreatimportancetounderstandthenatureofthemolecular andcellularprocessesthatmayaffectthequalityandcompetence of the oocyte. Assessment of oocyte quality depends only on morphologicexaminationandnotonthemolecularcompetency duringanassistedreproductivetechnique(ART)program.Several indirectmethodsthat evaluatethecompetencyof oocyteshave beenthesubjectof severalstudiesmostlyfocusingoncumulus cellsasthereflectorsoftheoocytes[33,34].Inthelightofthedata aboutthepotentialroleofgranulosacellsasregulatorsofoocyte competence and as biomarkers for oocyte/embryo quality or pregnancyoutcome [35–41], alterations in themetabolism and protein composition of follicular cells is suggested to cause problemsinoocytematurationandcompetence[42].

Folliculogenesisisacomplexeventwhichincludethecrosstalk ofmanycellsinthefollicularenvironmentandactivationofmany pathwaysinthosecellsinastrictlycoordinatedmanner.Thisevent controltheoocyte and thus developing embryos’ fatewhich is expected to change under different follicular circumstances. Amongthose proteins,three ofwhich are importantregulators ofcellsfate(Hsp70,Tgf-β,Notch1)andpossiblytargetofoxidative damagewereanalyzedintherecentstudy.

Heatshockproteins (Hsps)areaproteinfamilythat maybe potential candidateto affectoocyte competencefunctioning as chaperonesinthecell[43].Theirexpressionincreaseasaresultof variousstressinducersincludingoxidativestress[44].Hsp70isthe most abundant,highly conserved, and sensitive protein of the superfamilyofHsps[45,46]whichinteractswithmany intracellu-lar pathwaysthat control cell proliferation,differentiation, and cellulardeath[47].Hspswereshowntobeexpressedinfollicular cells[45,48–55],andshowntohavearoleinovarianphysiology andfolliculardevelopment[56,57].

Transforming growth factor beta (Tgf-β) is a multifunctional cytokinebelongingtothetransforminggrowthfactorsuperfamily thatfunctionasagrowthfactorinfolliculardevelopment[58]. Tgf-βwasidentifiedatmRNAandproteinlevelinpreantralfolliclesof various species including human, rodents, cattle, and sheep [59–63]andlocalTgf-βmemberswereshowntoregulatepreantral folliclegrowthpositively[64].

Notch signalingis another pathway regulatingproliferation, differentiationandapoptosis,andcontrollingcell-fatedecisions between adjacent cells [57,65]. It has been reported that the

membersofNotchsignalingareexpressedinmammalianovaries, butexactfunctionsofthispathwayinfolliculardevelopmentare not clearly identified. One of the suggested functions is the regulationofgranulosacellproliferationduringfollicular devel-opment. Notch genes are reportedto be actively expressed by cumuluscellsduringfolliculogenesis[66].

Allthreeproteinsanalyzedintherecentstudydeterminethe faithof thecellbyactivatingsignalingpathwaysforsurvival or apoptosis.Becauseitisreportedthatoocytematuration, fertiliza-tion,qualityoftheresultantembryos,numberofoocytesobtained, fertilization rate, and pregnancy outcomes following in vitro fertilization are associated withthe apoptosisof cumulus cells [67–69]understandingthebehavioroftheseproteinsindifferent circumstanceswillprovidecluesforunderstandingthemolecular basisofoxidativestressinfollicularfluidandforpredictingoocyte andembryoniccompetence.

Theaimofthepresentstudywastounderstandthemolecular and genetic mechanisms involved in follicular fluid oxidative processbyinvestigatinghumanmuralgranulosacellsandtofind possible biomarkers of oocyte competency and ICSI outcome measures.Dataobtained,mayprovideuscluesabouttheeffectsof oxidativestatus onoocyte and embryo developmentcausing a successfulpregnancy.

Materialsandmethods

Studyparticipantsandstudydesign

This prospective clinical study was conducted at Medicana ÇamlıcaHospital,IVFcenterbetweenJanuary2017toJune2018on 166 cycles that were undertaken ICSI treatment because of unexplainedinfertility.Patientexclusioncriteriawereasfollows: 1) For both gender: having any anatomic and physiologic abnormality of the reproductive system as revealed by their physicaland clinicalexaminations, having chromosomal abnor-malityand a smoking history.2) For women:poor responders according to ESHRE consensus, absence of polycystic ovary syndrome as defined by the Rotterdam criteria [[70]] and endometriosis, age<25and >37years, body mass index(BMI) <19and>26kg/m2.3)Formen:anyspermabnormalityasdefined

bytheWHO2010criteria[71],varicocelehistory.ICSIcycleswith preimplantationgeneticdiagnosis,assistedhatching,total fertili-zationfailure,noembryotransferregardless ofthereason,and coasting were also excluded from the study. Patients were informed about the study and written informed consent form were taken from the couples.The study was approved by the Ethical ReviewBoard of the Istanbul Medipol University ethics committeeon27September2017.

Follicularfluidsof166patientswerecollectedandtotaloxidant andtotalantioxidantlevelsweremeasuredonthedayofoocyte pick-up(OPU).Toanalyzetheeffectsofoxidativestressonmural granulosa cells, three potential target proteins’ (Hsp70, Tgf-β, Notch1) expression levels, their intracellular localization, DNA fragmentationlevels,andchromatinintegritiesweredetermined. Oocytequality,numberofoocytescollected,normalfertilization (2 P N) rate, embryo development rate, embryo qualities, pregnancyrate,implantationrate,clinicalpregnancy,and sponta-neousmiscarriagerateswereassessedforeachpatientinorderto definetheeffectsofoxidativestressonICSIoutcomemeasures. Granulosacellscollection

Follicularaspiratesofpatientswerecollectedseparatelyfrom eachfolliclebyasinglelumenfolliclepunctureneedle(Swemed, Sweden)onthedayofoocytepick-upwithoutperformingflushing. Follicular samples with blood contamination were discarded.

(3)

Cumulus-oocyte complexes (COC) within the aspirates were collectedunderstereo-microscopeand placed intoapreviously equilibratedculturedish.Allofthefollicularfluidswerecollected individually, numbered and the fluids of mature oocytes were pooled in a separate sterile containerafter oocyte denudation because only the mature oocytes which are checked for the presence of 1 st polar body (metaphase II), were used for microinjection.Pooledaspirateswerecentrifugedat600gfor10 min and supernatants and sedimented pellets were seperated. Aspirates were used for oxidative status analysis and the sedimented pellet were used as the source of granulosa cells. Granulosacellsweredividedintotwoportions,firstportionfor preparingthesmearsforimmunocytochemistry,immuno fluores-cence, toluidine blue, and TUNEL analysis, and the remaining portionwasstoredat 20Cforproteinextraction.

OvarianstimulationandICSIprocedures

Allwomenwereundertakenovulationinductionusingashort or long gonadotrophin-releasing hormone (GnRH) analog sup-pression protocol or a GnRH antagonist protocol and human menopausalgonadotrophins orrecombinant follicle-stimulating hormone(FSH).Oocyte-cumuluscomplexes(OCC)wererecovered 36 h after the administration of 5000 IU of human chorionic gonadotrophin(Ovitrelle,MerckSerono,Italy).

Cumulus and corona cells surrounding the oocytes were removedenzymatically(Hyase-10XTM,Vitrolife,Sweden)byusing

denudation pipettes. Nuclear maturation of the oocytes was assessed under inverted microscope with X40 magnification. Oocytes with a polar body (PB) in their first microscopic examination after denudation and oocytes that extrude their polarbodywithin4hafterdenudationweredefinedasamature oocyteinMetaphaseIIstage.Theoocyteswereclassifiedintotwo categories as good and poor morphology according to their cytoplasmicstatus,PBmorphology,zonamorphology,shape,and size.Oocyteswithadiameterof120 130

m

m,anintactshape,a homogeneous cytoplasm, no vacuolization, granulation and refractilebodyformation,non-fragmentedpolarbody,andazona pellucidabelow10

m

mwereclassifiedas‘goodmorphology’,while theremainingwereclassifiedas‘poor-morphology’(Fig.1).Oocyte qualitywas denotedasthepercentage(%) ofgoodmorphology oocytespertotalnumberofmatureoocytes.

Matureoocytes weremicroinjected with a motile sperm as describedpreviouslybyVanSteirteghemetal.,1993[72].Further cultureofinjectedoocyteswasperformedin25

m

Lmicrodropsof culturemedium (IVF,Vitrolife,Sweden) underlight paraffin oil (OVOIL,Vitrolife,Sweden).Fertilizationwasconfirmedafter16–18 hbytheobservationoftwodistinctpronuclei(2PN)andtwopolar bodies.Fertilizationratewascalculatedasthenumberoffertilized

oocytedivided bythetotalnumber ofmatureoocytesforeach couple. Oocytes with 2 P N were observed for embryonic development onday 2and 3 following microinjection.Embryo development rates were calculated as the number of embryos developeddividedbythetotalnumberofmatureoocytes,foreach couple. Quality of the embryosat cleavage stagewas assessed underaninvertedmicroscopewithX40magnificationaccordingto thecriteriaofStaessenetal.,1992[73].GradeAandBembryos weregroupedasgoodqualityembryosandgradeCandDembryos were grouped as poor quality embryos. All ICSI procedures including microinjection, embryo, and oocyte grading was performedbythesameembryologist.Goodqualityembryorate wascalculatedasthenumberofgoodqualityembryosdividedby thetotalnumberofembryos,foreachcouple.Embryoswith4-cell inday2weregroupedasnormallycleavedembryosandembryos withlessormorethan4-cellinday2weregroupedasabnormally cleavedembryos.Normally/abnormallycleavedembryorateswere calculatedasthenumberofnormally/abnormallycleavedembryos developeddividedbythetotalnumberofembryos,foreachcouple. Embryotransferswereperformedbythesameclinicianonday 3or5accordingtothenumberandqualityofdevelopingembryos. Wallace catheter (1816 N, SmithsMedical, USA) were used for embryotransfer.β-hCGlevelinthebloodwasmeasuredtwelve daysafterembryotransferanda50mIU/mLß-hCGvalueonday 12, indicated a positive pregnancy. Biochemical pregnancy (positive hCG without a gestational sac), implantation rate (number of gestational sacs/number of embryos transferred), clinicalpregnancy rate (intrauterinepregnancy withfetal heart activity),andfirst-trimesterspontaneousmiscarriage(pregnancy failureaftervisualizationofintrauterinegestationsac),werealso assessed.

Follicularfluidoxidativestatusdetermination

TotalAntioxidantStatus(TAS)andTotalOxidantStatus(TOS) levelsinfollicularfluidsweredeterminedbyusingRelassaykits (RelAssayDiagnostics,Turkey).ForTASlevels,TotalAntioxidant Status AssayKit was usedand theabsorbancesweremeasured using a spectrophotometer (Molecular Devices SpectraMax i3 Multi-ModeMicroplatereader).

TOS levelsweremeasuredbyTotalOxidantStatusAssayKit, whose method is as follows: oxidants present in the sample oxidizeferrous-o-dianisidinecomplexintotheferricions[74].The absorbancesweremeasuredat530nm.Theresultsareexpressed in micromoles hydrogenperoxide equivalent per liter(H2O2eq

m

mol/

m

L).

TASlevelsweremeasuredbyTotalAntioxidantStatusAssayKit whosemethodisasfollows:thehydroxylradicalastheproductof Fenton reaction reacts with colorless o-dianisidine to form a

Fig.1.(a)Agoodqualityoocytewithahomogeneous,brightooplasmandanintactpolarbody(b)Apoorqualityoocytewithmanyvacuoles,granulationandalarge perivitellinespace(X40).

(4)

radicalbrightyellowishbrowndianisylsubstrate.Theabsorbances were measured at 660 nm. The measurement results were expressed in Trolox equivalent of millimoles per liter (TroloxEq

m

mol/

m

L)[75].

Theintraassay%CVvaluesfortheTASmeasurementwere2.36% forthe0.50(0.35 0.65)mmolTroloxequiv/Land2.24%forthe2.0 (1.7–2.3)mmolTroloxequiv/L.TheintraassayCV%valuesforTOS measurementswere3.57%for5.5(3.0–8.0)

m

mol/Land5.17%for 19.5(16–23)

m

mol/L.OxidativeStressIndex(OSI)wascalculated withtheformula:TotalOxidantStatus(TOS)/TotalAntioxidant Level(TAS).

ProteinanalysisbyImmunocytochemistryandimmunofluorescence Immunocytochemistry analysiswas performedto determine theexpressionandimmunolocalizationofHsp70,Tgf-βandNotch1 proteins(Fig.2).Immunofluorescenceanalysiswasperformedto determinetheexpression levelsby measuringrelative staining intensity,andwesternblotwasperformedinordertoconfirmthe results(Fig.3).

For immunocytochemistry, granulosa cells were fixed with freshlyprepared4%paraformaldehyde(PFA)atroomtemperature for 20 min.Cells were washedwith phosphatebuffered saline

(PBS)duringthewholeprocedure.Toinhibitendogenoushydrogen peroxidase activity, slides were incubated with 3% hydrogen peroxidesolutionfor20min.Cellswereincubatedwithboiling citrate buffer for 5 min for antigen retrieval. Protein blocking solution was applied for 10 min at room temperature in a humidified chamber. The cells werethen incubatedwith anti-bodies(anti-Hsp70antibody(1:200,sc-24,SantaCruz,CA,USA), anti-Tgf-β antibody (1:200, sc-146, Santa Cruz), anti-Notch1 antibody(1:200,sc-6014-R,SantaCruz)),overnightat+4C.After

washingwithPBS,biotinylatedgoatanti-polyvalentsolutionwas performedfor10minatroomtemperature,andthesampleswere incubatedwithstreptavidin-peroxidaseforanother10min.DAB (3,3-diaminobenzidine)was appliedforcounterstainingfor10 min,and hematoxylinwas appliedfor 5 min.Slides werethen rinsedwithtapwateranddehydratedbyusingseriesofalcohol withincreasing concentrationand then mounted. Imageswere obtainedusingNikonEclipseNi(Nikon,Japan)microscopewith 100Xoil-immersionobjective.

For immunofluorescence,granulosa cellswerefixed with4% paraformaldehydefor15minatroomtemperature.Granulosacells werewashedwithPBSduringthewholeprocedure.Slideswere permeabilized with 0.1 % Triton X-100 for 10 min at room temperatureandwereblockedwith10%normalgoatserumand

Fig.2. ImmunocytochemistrystainingresultsforNotch1,Hsp70,andTgf-βproteinexpressionsinhumanmuralgranulosacellsofLOSandHOSgroups(40X).Arrowsindicate Notch1(+)cells(a)inLOSgroupand(b)inHOSgroup.ArrowsindicateHsp70(+)cells(c)inLOSgroupand(d)inHOSgroup.ArrowsindicateTgf-β(+)cells(e)inLOSgroupand (f)inHOSgroup.Arrowheadsindicate(-)staining.

(5)

0.3%TritonX-PBSfor30min.Thecellswerethenincubatedwith anti-Hsp70 antibody (1:200, sc-24, Santa Cruz Biotechnology, SantaCruz, CA, USA), anti-Tgf-β antibody (1:200, sc-146, Santa Cruz),anti-Notch1antibody(1:200,sc-6014-R,SantaCruz).Bound antibodieswerevisualizedwithAlexaFluor5681-conjugatedgoat anti-mouse IgG (1:200, ab175473, Abcam, UK) for Hsp70, and Alexa Fluor 4881-conjugated goat anti-rabbit IgG (1:200, ab 150077,Abcam,UK)foranti-Notch1andanti-Tgf-β.Fluorescence imageswereobtainedwithZeissCellObserverSDSpinningDisk Time-Lapse Microscope (Carl Zeiss, Jena, Germany) with a magnification of 400.In average,100 cells were counted for eachpatientineverygroup.Negativecontrolsweretestedineach slideforqualitycontrol.Relative intensitywascalculatedasthe ratioofintensitytoareaofeachcellviatoolsthatareprovidedby ZENprogram(CarlZeiss,Jena,Germany)ineachslide.

Electrophoresis(SDS-PAGE)andWesternblotting

Celllysisprocedurewasperformedsubsequenttothethawing ofthesamplesatroomtemperature.Sampleswerewashedtwice withcooledPBSbycentrifugingat2500Gfor10min.A400

m

L lysis buffer solution (M-PER Mammalian Protein Extraction Reagent; Thermo Scientific, Wien, Austria) supplemented with 10

m

L/mLprotease-phosphataseinhibitorcocktail(HaltProtease InhibitorCocktail;ThermoScientific)at1:100wasaddedtothe pelletonice.Thesuspensionsweremixedandleftonicefor20min whileshakinggently.Suspensionswerethencentrifugedfor15 minat14,000g,andthesupernatantwas transferredtoa new tube.BCAassay(PierceBCAProteinAssayKit;ThermoScientific) wasusedforproteinassayaccordingtotheinstructionmanual.A mathematicalcurvewasplottedbymeasuringserialBSAstandards ofpre-knowndilutions.Protein concentrationsof theunknown sampleswerecalculatedaccordingtothestandardcurveobtained. Extractedproteins(20

m

g)weremixedwitha4Xloadingdye andrunonagelwitha4%concentrationfor15minat90V,and

subsequentlyona10%separatinggelfor1.5hat100Vatroom temperature.Marker(PageRulerTMPlus;ThermoScientific)was loadedoneachgelformolecularweightanalysis.Thegelswere thentransferredelectrophoretically(100V)onaPVDFmembrane (Hybond-P;AmershamBiosciences,Buckinghamshire,UK)for1h. Membraneswereblockedfor1hin5%(W/v)skimmilkpowderin Tris-buffered(20mM)salinecontaining1%Tween20(TBS-T)and wereincubatedovernightwithprimaryantibodies:Hsp70/Hsc70 (sc24,SantaCruzBiotechnologies,USA),Tgf-β1(sc-146,SantaCruz Biotechnologies, USA), Notch1(C-20)-R (sc-6014-R, Santa Cruz Biotechnologies,USA),ß-Actin(4967,Cellsignaling,Netherlands). Membraneswerewashedthreetimesandincubatedfor1hwith thesuitablesecondaryantibody(goatanti-mouse,ab175473,goat anti-rabbit, ab150077, Abcam, England), then exposed to HRP conjugated antibody (goat anti-mouse IgGHRP; Santa Cruz Biotechnologies, USA and anti-rabbit IgG HRP-linked antibody, Cell Signalling Technologies, Netherlands). After incubation, membranes were washed with TBS-T and the immunoreactive bandintensitieswereanalyzedwithChemiDocMolecularImager (Bio-Rad, Philadelphia, PA, USA). The integrated density values werecalculatedbycomparingthesignalsoftargetproteinstothat ofthehousekeepingActin.

DNAfragmentationandchromatinintegrityassessment

TUNELtestwasusedtoevaluateDNAfragmentationlevelsand Toluidineblue(TB)stainingwasperformedinordertodetermine thechromatinintegrityofcumuluscells(Fig.4).TBstainingwas evaluated under light microscope as positive (dark-stained) or negative(pale-stained)bycomparingdyeintake.

ForTUNELprocedure,slideswerefixedinfreshlyprepared4% PFAatroomtemperaturefor20min.Forpermeabilization,0.1% Triton-XinPBSwasusedonicefor2min.DNAfragmentationwas determinedbyTUNELassayusingacommerciallyavailablekit(In SituCellDeathDetectionKit,fluorescein,Roche,Indianapolis,IN,

Fig.3. ImmunofluorescencestainingresultsforNotch1,Hsp70,andTgf-βproteinexpressionsinhumanmuralgranulosacellsinLOSandHOSgroup(40X).Arrowsindicate Notch1(+)cells(a)inLOSgroupand,(b)inHOSgroup.Hsp70(+)cells(c)inLOSgroupand(d)inHOSgroup.Tgf-β(+)cells(e)inLOSgroupand(f)inHOSgroup. (g)RepresentativeproteinbandsforHsp70,Notch1andß-actin(42kDa)expressionlevelsof5patientsofLOS(L)and5patientsofHOS(H).(h)Relativeexpressionlevels (meandensitometry)ofHsp70,andNotch1proteinobtainedfromwesternblottinganalyses.Barsrepresentthemeansanderrorbarsrepresentstandarddeviationofthe quantifiedproteins.*p<0.05(statisticallysignificant).

(6)

USA).Cellswereincubatedat37CwithTUNELreactionsolution (whichisobtainedfromkit)for1h.Slideswererinsedthreetimes withPBS.DAPIwasusedtolabelnuclei.Cellswereexaminedunder Zeiss Cell Observer SD Spinning Disk Time-Lapse Microscope (CarlZeiss,Jena,Germany)with400magnification.Aminimum of 100 granulosa cells were chosen randomly in at least 10 microscopicfieldswithamagnificationof10Xandtheresultswere givenasmeanpercentage(%).TUNEL-positivecellswerecounted tocalculatetheratioofapoptoticcellsineachgroup.Cellsstained in green werethose with fragmented DNA, and not-stained in greenwerewithoutfragmentedDNA.

ForToluidinebluestaining,cellswerefixedinfreshlyprepared 96%ethanol-acetone(1:1)at4Cfor1handhydrolyzedin0.1N HClat4Cfor5min.Slideswererinsedthreetimesindistilled waterfor2minandwerestainedwith0.05%Toluidinebluefor5 minatroomtemperature.Theslideswerethenrinsedthoroughly indistilled water beforemounting.Imageswereobtained with NikonEclipse(Nikon,Japan)microscopeby100xoil-immersion objective.

Statistics

AllstatisticalanalyseswereperformedusingStatisticalPackage for Social Sciences (SPSS, Version 21 for Windows; SPSS, Inc., Chicago,IL,USA).Samplesizewascalculatedforasignificancelevel of5%andapowerhigherthan80%,inordertodetectadifference betweenmeanshigherthan15%.StatMateforWindows (Graph-PadSoftware, USA)program package was usedfor sample size calculations.Univariate(mean,standarddeviation,andfrequency) and bivariate (Student’s t-test, Mann–Whitney-Uand Wilcoxon tests) descriptive statistics wereperformed. Statistical compar-isons for categorical variables were carried out using the chi-square test. The Kolmogorov–Smirnov test was used toassess complianceofthevariablestonormaldistribution.Associations amongquantitativevariableswereanalyzedusingthePearson’s correlationcoefficient.

All tests were conducted using a p-value  0.05 defining statistical significance. The data were expressed as mean  standard deviation for continuous variables and number of

Fig.4. Tunel(DNAfragmentation)andToluidineBlue(chromatineintegrity)stainingresultsforNotch1,Hsp70,andTgf-βproteinexpressionsinhumanmuralgranulosacells inLOSandHOSgroups(40X).Tunelstaining:ArrowheadrepresentsTunel(-)cells,arrowsindicateTunel(+)cells(a)inLOSand(b)inHOSgroup.Toluidinebluestaining (40X).ArrowsindicateToluidineBlue(+)cells,arrowheadsindicateToluidineBlue(-)cells(c)inLOSand(d)inHOSgroupe.DNAfragmentationandchromatinintegrityrates ofLOSandHOSgroupswereshowninbars.Resultsweregivenaspercentage(%).*p<0.005(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderis referredtothewebversionofthisarticle).

Table1

Oxidativeparameters(TAClevels,TOClevels)accordingtoLOS(<10mmol/L)andHOS(>10mmol/L)subgroups.

Oxidativeparameters LOS HOS pvalue

TASlevel(meanO.D.) 309095 036026 0000* TOSlevel(meanO.D.) 1197373 1305531 054 Oxidativestatus(TOS/TASratio)(meanO.D.) 422197 685677, 0000* ResultsweregivenasmeanO.D.SD.

(7)

cases(n)andpercentageofoccurrence(%)forqualitativevariables. Receiver operating characteristic (ROC) curves were used to determinethesensitivityand specificity values andareaunder curve.

Results

Meanantioxidantandoxidantlevelswithinthefollicularfluid intheoverallgroupundergoingICSItreatmentweremeasuredto be1.64and12.32OD(opticaldensity)resp.,andthemeanlevelof oxidative statuswhichindicatesthe balancebetween oxidants and antioxidantswas calculatedtobe41.49 OD.Patients were dividedintotwogroupaccordingtotheirfollicularfluidoxidative statusaslowoxidativestress(LOS,10OD)andhighoxidative stress(HOS,>10OD).Follicularfluidoxidativestatuswithineach grouparepresentedinTable1.Demographicdataofthegroups were similar between two groups in terms of maternal age, numberofpreviouscycle,E2levelonthedayofoocytepick-up, controlledoverstimulationperiod,numberofoocytescollected, numberofembryostransferredandthedayofembryotransfer (Table2,p>005).

TheoxidativelevelwascalculatedasTOS/TASratio.TASlevels weresignificantlyincreasedinHOSpatientsalthoughTOSlevels weresimilar(p=0.000;p=0.545resp.).Asaresult,TASlevelswere foundtobethedeterminativeparameterofoxidativestresslevelin bothgroups.

Expressionprofilesof three possible targetproteins (Hsp70, Tgf-β,Notch1)ofoxidativestresswereanalyzedinmuralgranulosa cells.Accordingtotheresultsofimmunocytochemistry,Hsp70and Notch1werefoundtobeexpressedstatisticallylowerintheHOS groupwhereastherewasnodifferenceinTgf-βexpressionrates betweenthegroups(Table3,Fig.2,p=0.0026,p=0.0047resp.). Theresultsobtainedwerefurtherconfirmedbyimmuno fluores-cenceandwesternblotanalysis(Fig.3).

Chromatinintegrityrateswhichisassessedbytoluidineblue paintingweresignificantlydecreasedinHOSgroupthanLOSgroup (17.2%; 81 %resp,p= 0.0023)althoughthe differenceinDNA fragmentation rates did not reach statistical significance level (75%;66.15%resp.p=012).(Fig.4).

ICSIoutcomeparametersincludingoocytequality,fertilization, embryodevelopment,embryoquality,clinicalpregnancy, implan-tationandmiscarriagerateswerealsoassessedtoseetheeffectof oxidativestatusonICSIoutcome(Table2).Matureoocyteratesand fertilizationratesweretheonlytwoparameterthatwereaffected negativelyfromtheoxidativestresswhich wereobservedtobe decreasedsignificantlyinHOSgroup(p=002,p =0011,resp.). OtherICSIoutcomemeasureswerenotaffectedsignificantlybythe presenceofoxidativestress(p>005,Table2).

We then performed correlation analysis to analyze the correlation with the expression pattern of the three possible targetproteinswithTAS,TOSlevelsandICSIoutcomemeasures. Wefounda positivecorrelationbetweentheTASlevelsandthe expressionsofHsp70(p=0.001,r=0.488)althoughtherewereno correlation between TOS levels and expression profiles of investigatedproteins(p>005).

Among all ICSI parameters, fertilization rate is the only parameterthatisfoundtobecorrelatedwithoxidativestatusof follicularfluid(p=0.001,r=0.518).Therewerenocorrelationwith theremainingparametersincludingembryodevelopment,embryo quality,clinicalpregnancy,implantationandspontaneous miscar-riageratesintheoverallgroup(p>005).

Discussion

Oxidativestressisknowntoplayamajorrolein pathophysi-ology of infertility, yetthe causes, effects, andthe molecular mechanisms underlying this phenomenon is not well under-stood.Thereareseveralstudiesreportingthenegativeeffectsof follicular fluid oxidative stress on fertilization capacity [12,13,20,76] while the others had foundnocorrelation [77]. Underphysiologicalconditionstheantioxidantdefense mecha-nism of oocytes and ovaries, consisting of enzymatic antiox-idantssuchassuperoxidedismutase(SOD),andnon-enzymatic antioxidants (GSH), detoxifies excess ROS maintaining the oxidant/antioxidantbalance.However, increasedlevelsof ROS beyondthephysiologicalrangemayleadtoOSandcauseawide range ofmolecular damages,including lipidperoxidationand protein and DNAdamage resultingin deterioration of oocyte quality[78–81].

Granulosa cells are the common cell population that are exposedand thusareaffectedfromthefollicular microenviron-ment.Hencetheyactbothasabridgeandabarrierbetweenthe oocyte and the follicular microenvironment. As their activity directlyaffectsparacrinesignalingwiththeoocytestheysurround, understandingtheirbehaviorunderdifferentoxidativeconditions maygivevaluable clues abouttheeffect ofoxidativestatus on oocyte’sdevelopmentalcompetenceandthesuccessofICSIcycle usingtheseoocytes.

Inthisaspect,theexpressionpatternsofthreepossibletarget proteins (Hsp70, Tgf-β, Notch1) of oxidative stress, which are involvedinimportantregulatorysignalingpathwaysinthecells wereinvestigated.Allthreeproteinswereactivelyexpressed in granulosa cells of patientsbut with differentrates. Hsp70 and Notch1werefoundtobeexpressedstatisticallylowerintheHOS groupwhereastherewasnodifferenceinTgf-βexpressionrates betweenthegroups.

Table2

DemographicdataandICSIoutcomemeasuresaccordingtoLOS(<10mmol/L)andHOS(>10mmol/L)subgroups.

ICSIoutcomemeasures LOS HOS pvalue

Maternalage 336615 344616 036

NumberofpreviousIVFcycle 170098 176125 088 EstradiolLevel 31,92819,038 51,67813,135 029 Controlledovarianstimulationperiod(day) 652172 656131 038 Meannumberofoocytesretrieved 753610 706508 062 Meannumberofmatureoocytes 576357 3,12,5 002* Normalfertilizationrate(%)(#of2PN/#ofmatureoocytes) 72762102 62541416 0011* Embryodevelopmentrate(%)(#of6 8cellonday3/#of2PN) 811112 731167 021 Topqualityembryorate(%) 451343 371446 025 Pregnancyrate(positiveß-hcG)(%) 502 396 030

Clinicalpregnancyrate(%) 413 322 0,4

Implantationrate(%) 245 206 032

Spontaneousmiscarriagerate(%) 532 912 018

ResultsweregivenasmeanO.D.SD.

(8)

Hsp70isoneoftheimportantmembersofHeatshockproteins (Hsp) that protect the cells against damages caused by stress conditions,andtomediatethetransportofdamagedproteinsto targetorganellesfortheirrepairordegradation.Wefoundalower Hsp70expressionrateinHOSgroup.Itmaybesuggestedthatthe oxidativefollicularenvironmentsuppressHsp70expressionwhich may,inturn,decreasethetoleranceofcellstooxidativestressand causethemtobecomemorevulnerable.Thereisnodatainthe literatureanalyzingtheHsp70expressionrate ofgranulosacells underdifferentoxidativestressconditions.

Tgf-β superfamily members have found to be selectively expressedbyoocytesfromprimaryfolliclesinrodents,andfrom primordial follicles in cows and sheep [59–63,78,79,82–84]. Varioustypeswereshowntobeexpressedbygranulosacellsof theearly folliclestages,makingthesecells potentialtargetsfor paracrinesignalingandlocalTgf-βfromthecaandgranulosacells implicatedaspositiveregulatorsofpreantralfolliclegrowth[85]. Binelli and Murphy indicated an inhibitory effect of Tgf-β on primaryfolliclesurvivaland/orprogressiontothelatepreantral/ earlyantralstagewhileothersindicatedlackofanyeffects[86,87]. Tgf-βisreportedtostimulateFollicle-stimulatinghormone(FSH) receptor expression, amplify FSH-induced aromatase activity, inhibin production, progesterone production and luteinizing hormone(LH)receptor induction[69,88–91] andits expression werereportedtochangeunderdifferentcircumstancesincluding female age [92]. We found no significant difference in Tgf-β expressionratesbetweenthegroupswhichprovidesevidencethat follicularfluid oxidative status do not haveany effect onTgf-β expressionsingranulosacells.

TheotherproteinevaluatedwasNotch1,whichisa transmem-branereceptor and controls cell-fatedecisions betweentightly adjacentcellsbymodulatingcellproliferation,differentiation,and survival[65].Notchgenesareshowntobeactivelyexpressedby cumulus cells during folliculogenesis [66]. Notch signaling is showntobeinvolvedinovarianfollicledevelopmentbyregulating granulosacellproliferation[68].Wefoundasignificantdecreasein Notch1expressionratesinHOSpatientswhichmayinfluencethe fateofgranulosacellsandpossiblytheoocyteneighboringthem. There is also no data about the effects of oxidative stress on granulosaTgf-βexpressionrates.

ICSIoutcomemeasureswereanalyzedtoanalyzetheeffectsof oxidative status on ICSI outcome. Beyond all ICSI parameters includingoocytequality, embryo development,embryo quality, clinical pregnancy, implantation, and spontaneous miscarriage ratesthetwoparametersincludingtheoocytematurationrateand thefertilizationratewerenegativelyaffectedfromthefollicular fluid oxidative environment. Mature oocyte number were also

found to be significantly lower in HOS group indicating the possiblenegativeroleofoxidativestressonoogenesis.

Hsp70andNotch1activitywassignificantlyloweringranulosa cells of HOS patients according toour findings which may be correlated with the oocyte maturation. One of the possible suspected protein is Hsp70 which is shown to have role in regulatingestradiolbiosynthesisunderstressconditions[93].

Resultsofthisstudyprovideevidencetoexplaintheretarded oocytematurationratedetectedinHOSgroupofourstudy.Second suspectedproteinforretardedoocytematurationisNotch1,which isknowntoregulatefolliculogenesisthusoogenesis.As matura-tionandcompetencyofanoocyteiscloselyrelatedtothesurvival signalsitreceives,Notch1mayhaveeffectonthedevelopmental capacityofoocytesbyparacrinesignalingfromgranulosacells.

This studyshows a decrease in the activities of Hsp70and Notch1 of granulosa cells with mature oocyte number under oxidativecircumstance,thusprovidingindirectevidenceforthe roleoftheseproteinsinoocytematuration.Theotherparameter thatisinfluencedbyoxidativestresswasthefertilizationrate.We observedasignificantlydecreasedfertilizationrateinHOSgroup indicating the possible role of oxidative status on pronucleus formationorgametesactivation.Oneofthereasonsmaybethe lowerHsp70expressionrates in HOSgroupwhich maynot be enough to overwhelm the damage caused by oxidative stress. Increased oxidative attack and decreased cellular protection mechanismsmayresultindamagedormisfoldedproteinswhich contribute the fertilization process. We found no significant differencefortheotherICSIoutcomemeasuresanalyzedincluding oocyte quality, embryo development, embryo quality, clinical pregnancy,implantation,andspontaneousmiscarriagerates.The correlation analysis results also confirmed these findings by observingasignificantpositivecorrelationwiththefertilization rate which, in turn, showed that higher Hsp70 and Notch1 expressionsmaybeusedasbiomarkersofmatureoocytes,leading tosuccessfulfertilization.Ourresultsdonotseeminaccordance with several other studies which reported negative effects of oxidativestatusonembryoformation,quality,andpregnancyrate after ICSI[2,13,18]. The difference obtainedmaybe becauseof differences in oxidative status determination methods and different patient population. Oxidative status of the follicular fluidisnotfoundtobepredictiveforpregnancyassessmentinan ICSIcycleintherecentstudy.

Thegeneticstabilityofthesecellswerealsoanalyzedwhichis showntoaffectoocyteprogression[94–96].Wefoundanincreased DNAfragmentationratesinHOSgroupalthoughthedifferencedid not reach statistical significance. But the chromatin integrity which is assessed by toluidineblue paintingwere significantly

Table3

ExpressionrateandlevelofHsp70,Tgf-ß,Notch1accordingtoaccordingtoLOS(<10mmol/L)andHOS(>10mmol/L)subgroups.Resultsweregivenaspercentage(%)unless otherwisestated.Abbreviations:IF,Immunofluorescence*p<0.05.

Proteinsofinterest LOS HOS pvalue

Hsp70

Immunostainedcell(%) Expressionlevel

IF(Meanfluorescenceintensity) Westernblot(Meandensitometry)

7591461 180.13 0,20,1 566828951210520.12013 0026* 0.64 0.24 Tgf-β Immunostainedcell(%) Expressionlevel

IF(Meanfluorescenceintensity) Westernblot(Meandensitometry)

820413091850830.24033 731918382051090.320,3 0067034042

Notch1

Immunostainedcell(%) Expressionlevel

IF(Meanfluorescenceintensity) Westernblot(Meandensitometry)

78,8818174121,10.4017 721714594251,70.26023 0047* 0.43 0.3

(9)

decreasedinHOSgroupprobablyaddressingsomeproblemson DNArepackaging.DNAmethylationplaysacentralrole ingene expressionviaepigeneticwhichmodifiesthegeneticmaterialand DNA packaging. The decreased Hsp70 may be one of the responsibleproteinsofDNAmethylationwhichisreportedtobe negativelyassociatedwiththeexpressionofHsp70understress conditionsindifferenttissues[97]. Thedecreaseinfertilization ratesinourstudymaybearesultofthisconsequencewhichmay affectfertilizationprocess byalteringchromatinrearrangement during pronucleus formation. However, this study was not designed to investigate the association of individual follicular fluid status with the quality of the corresponding oocyte and embryo.Furtherinvestigationsareneededtoevaluateindividual follicles,otheroxidativestressmarkersortheclinical character-istics ofpatients. Strategiesaimed atreducing oxidative stress, includingtheaddition of antioxidantsin the oocyteincubation mediumorembryoculturemedium,maybetestedtoseewhether theseeffectsaredisappearedornot.Furtherstudiesshouldfocus on possible other pathways and crosstalks between them to understandthemolecularmechanismsunderlying thesituation and thepossible potentialof Hsp70 and Notch1 tobe usedas biomarkersforICSIoutcomeshouldbefurtherinvestigatedinthe lightofthedataobtainedinthisstudy.

Funding

Thisresearchdidnotreceiveanyspecificgrantfromfunding agenciesinthepublic,commercial,ornot-for-profitsectors. DeclarationofComeptingInterest

Theauthorsdeclarenoconflictofinterest References

[1]GerrisJ,DeNeubourgD,MangelschotsK,VanRoyenE,VandeMeersscheM, ValkenburgM.Preventionoftwinpregnancyafterinvitrofertilizationor intracytoplasmicsperminjectionbasedonstrictembryocriteria:a prospec-tiverandomizedclinicaltrial.HumReprod1999;14(10):2581–7.

[2]DasS,ChattopadhyayR,GhoshS,GhoshS,GoswamiSK,ChakravartyBN,etal. Reactiveoxygenspecieslevelinfollicularfluid–embryoqualitymarkerinIVF? HumReprod2006;21(9):2403–7.

[3]AgarwalA,Aponte-MelladoA,PremkumarBJ,ShamanA,GuptaS.Theeffects ofoxidativestressonfemalereproduction:areview.ReprodBiolEndocrinol 2012;10:49.

[4]RuderEH,HartmanTJ,GoldmanMB.Impactofoxidativestressonfemale fertility.CurrOpinObstetGynecol2009;21(3):219–22.

[5]SuginoN,ShimamuraK,TakiguchiS,TamuraH,OnoM,NakataM,etal. Changesinactivityofsuperoxidedismutaseinthehumanendometrium throughoutthemenstrualcycleandinearlypregnancy.HumReprod1996;11 (5):1073–8.

[6]GuptaS,GhulmiyyahJ,SharmaR,HalabiJ,AgarwalA.Powerofproteomicsin linking oxidative stress and female infertility. Biomed Res Int 2014;2014:916212.

[7]SwamyM,SirajudeenKNS,ChandranG.Nitricoxide(NO),citrulline-NOcycle enzymes,glutaminesynthetase,andoxidativestatusinkainicacid-mediated excitotoxicityinratbrain.DrugChemToxicol2009;32(4):326–31. [8]UttaraB,SinghAV,ZamboniP,MahajanRT.Oxidativestressand

neurodegen-erative diseases: a review of upstream and downstream antioxidant therapeuticoptions.CurrNeuropharmacol2009;7(1):65–74.

[9]DuanJ,KasperDL.Oxidativedepolymerizationofpolysaccharidesbyreactive oxygen/nitrogenspecies.Glycobiology2011;21(4):401–9.

[10]AitkenRJ.TheAmorosoLecture.Thehumanspermatozoon–acellincrisis?J ReprodFertil1999;115(1):1–7.

[11]RevelliA,Delle-Piane L, Casano S,Molinari E,Massobrio M, RinaudoP. Follicularfluidcontentandoocytequality:fromsinglebiochemicalmarkersto metabolomics.ReprodBiolEndocrinol2009;7:40.

[12] OyawoyeO,Abdel-GadirA,GarnerA,ConstantinoviciN,PerrettC,HardimanP. Antioxidants and reactive oxygen species in follicular fluid of women undergoingIVF:relationshiptooutcome.HumReprod2003;18(11):2270–4. [13]PasqualottoEB,AgarwalA,SharmaRK,IzzoVM,PinottiJA,JoshiNJ,etal.Effect ofoxidativestressinfollicularfluidontheoutcomeofassistedreproductive procedures.FertilSteril2004;81(4):973–6.

[14]AppasamyM,JauniauxE,SerhalP,Al-QahtaniA,GroomeNP,MuttukrishnaS. Evaluationoftherelationshipbetweenfollicularfluidoxidativestress,ovarian

hormones,andresponsetogonadotropinstimulation.FertilSteril2008;89 (4):912–21.

[15]FujimotoVY,BloomMS,HuddlestonHG,ShelleyWB,OcqueAJ,BrowneRW. Correlations of follicular fluid oxidative stress biomarkers and enzyme activitieswithembryomorphologyparametersduringinvitrofertilization. FertilSteril2011;96(6):1357–61.

[16]PereiraAC,MartelF.Oxidativestressinpregnancyandfertilitypathologies. CellBiolToxicol2014;30(5):301–12.

[17]WangX,SharmaRK,SikkaSC,ThomasJr.AJ,FalconeT,AgarwalA.Oxidative stressisassociatedwithincreasedapoptosisleadingtospermatozoaDNA damageinpatientswithmalefactorinfertility.FertilSteril2003;80(3):531–5. [18]BedaiwyMA,ElnasharSA,GoldbergJM,SharmaR,MaschaEJ,ArrigainS,etal. Effectoffollicularfluidoxidativestressparametersonintracytoplasmicsperm injectionoutcome.GynecolEndocrinol2012;28(1):51–5.

[19]PaliniS,BenedettiS,TagliamonteMC,DeStefaniS,PrimiterraM,PolliV,etal. InfluenceofovarianstimulationforIVF/ICSIontheantioxidantdefencesystem andrelationshiptooutcome.ReprodBiomedOnline2014;29(1):65–71. [20]Borowiecka M,Wojsiat J,Polac I,RadwanM,RadwanP, ZbikowskaHM.

Oxidativestressmarkersinfollicularfluidofwomenundergoinginvitro fertilizationandembryotransfer.SystBiolReprodMed2012;58(6):301–5. [21]JozwikJozwikM,WolczynskiS,SzamatowiczM.Oxidativestressmarkersin

preovulatoryfollicularfluidinhumans.MolHumReprod1999;5(5):409–13. [22]GougeonA.Dynamicsofhumanfolliculargrowth:morphologic,dynamic,and

functionalaspects.Ovary2004;2:25–43.

[23]AmbekarAS,NirujogiRS,SrikanthSM,ChavanS,KelkarDS,HindujaI,etal. Proteomicanalysis ofhuman follicularfluid:a newperspectivetowards understandingfolliculogenesis.JProteome.2013;87:68–77.

[24]KushnirMM,NaessénT,WanggrenK,HreinssonJ,RockwoodAL,MeikleAW, etal.Exploratorystudyoftheassociationofsteroidprofilesinstimulated ovarianfollicularfluidwithoutcomesofIVFtreatment.JSteroidBiochemMol Biol2016;162:126–33.

[25]RussellDL,GilchristRB,BrownHM,ThompsonJG.Bidirectional communica-tionbetweencumuluscellsandtheoocyte:Oldhandsandnewplayers? Theriogenology2016;86(1):62–8.

[26]OzawaM,NagaiT,SomfaiT,NakaiM,MaedomariN,MiyazakiH,etal.Cumulus cell-enclosedoocytesacquireacapacitytosynthesizeGSHbyFSHstimulation duringinvitromaturationinpigs.JCellPhysiol2010;222(2):294–301. [27]MoriT, AmanoT,Shimizu H.Roles of gap junctionalcommunication of

cumuluscellsincytoplasmicmaturationofporcineoocytesculturedinvitro. BiolReprod2000;62(4):913–9.

[28]TatemotoH,MutoN,SunagawaI,ShinjoA,NakadaT.Protectionofporcine oocytes against cell damage caused by oxidative stress during in vitro maturation:roleofsuperoxidedismutaseactivityinporcinefollicularfluid. BiolReprod2004;71(4):1150–7.

[29]TatemotoH,SakuraiN,MutoN.Protectionofporcineoocytesagainstapoptotic celldeathcaused byoxidative stressduring invitromaturation:roleof cumuluscells.BiolReprod2000;63(3):805–10.

[30]MatosL,StevensonD,GomesF,Silva-CarvalhoJL,AlmeidaH.Superoxide dismutaseexpressioninhumancumulusoophoruscells.MolHumReprod 2009;15(7):411–9.

[31]CoticchioG,Dal-CantoM,Mignini-RenziniM,GuglielmoMC,BrambillascaF, TurchiD,etal.Oocytematuration:gamete-somaticcellsinteractions,meiotic resumption, cytoskeletal dynamicsand cytoplasmic reorganization. Hum ReprodUpdate2015;21(4):427–54.

[32]SakkasD,RamalingamM,GarridoN,BarrattCL.Spermselectioninnatural conception:what canwelearn fromMotherNature toimprove assisted reproductionoutcomes?HumReprodUpdate2015;21(6):711–26. [33]UyarA,TorrealdayS,SeliE.Cumulusandgranulosacellmarkersofoocyteand

embryoquality.FertilSteril2013;99(4):979–97.

[34]FragouliE,LaliotiMD,WellsD.Thetranscriptomeoffollicularcells:biological insightsandclinicalimplicationsforthetreatmentofinfertility.HumReprod Update2014;20(1):1–11.

[35]AssouS,HaouziD,DeVosJ,HamamahS.Humancumuluscellsasbiomarkers forembryoandpregnancyoutcomes.MolHumReprod2010;16(8):531–8. [36]ThompsonJG.Theimpactofnutritionofthecumulusoocytecomplexand

embryoonsubsequentdevelopment inruminants.JReprodDev2006;52 (1):169–75.

[37]HamamahS,MathaV,BerthenetC,AnahoryT,LoupV,DechaudH,etal. Comparativeproteinexpressionprofilinginhumancumuluscellsinrelation tooocytefertilizationandovarianstimulationprotocol.ReprodBiomedOnline 2006;13(6):807–14.

[38]FeuersteinP,CadoretV,Dalbies-TranR,GuerifF,BidaultR,RoyereD.Gene expressioninhumancumuluscells:oneapproachtooocytecompetence.Hum Reprod2007;22(12):3069–77.

[39]HamelM,DufortI,RobertC,GravelC,LeveilleMC,LeaderA,etal.Identification ofdifferentiallyexpressedmarkersinhumanfollicularcellsassociatedwith competentoocytes.HumReprod2008;23(5):1118–27.

[40]ZangL,ZhangQ,ZhouY,ZhaoY,LuL,JiangZ,etal.ExpressionpatternofG protein-coupledestrogenreceptor1(GPER)inhumancumulusgranulosacells (CGCs)ofpatientswithPCOS.SystBiolReprodMed2016;62(3):184–91. [41]HuangZ,WellsD.Thehumanoocyteandcumuluscellsrelationship:new

insightsfrom thecumulus celltranscriptome.Mol HumReprod2010;16 (10):715–25.

[42]RuvoloG,FattouhRR,BoscoL,BrucculeriAM,CittadiniE.Newmolecular markersfortheevaluationofgametequality.JAssistReprodGenet2013;30 (2):207–12.

(10)

[43]EllisRJ.Thegeneralconceptofmolecularchaperones.PhilosTransRSocLond, B,BiolSci1993;339:257–61.

[44]MaradaA,AlluPK,MurariA,PullaReddyB,TammineniP,ThiriveediVR,etal. Mge1,anucleotideexchangefactorofHsp70,actsasanoxidativesensorto regulatemitochondrialHsp70function.MolBiolCell2013;24(6):692–703. [45]YaoYW,ZhangGH,ZhangYY,LiWD,WangCH,YinCY,etal.

Lipopolysaccha-ridepretreatmentprotectsagainstischemia/reperfusioninjuryviaincreaseof Hsp70andinhibitionofNF-kB.CellStressChaperones2011;16(3):287–96. [46]VabulasRM,RaychaudhuriS,Hayer-HartlM,HartlFU.Proteinfoldinginthe

cytoplasmandtheheatshockresponse.ColdSpringHarbPerspectBiol2010;2 (12)a004390.

[47]VelazquezMM,AlfaroNS,DupuyCR,SalvettiNR,ReyF,OrtegaHH.Heatshock proteinpatternsinthebovineovaryandrelationwithcysticovariandisease. AnimReprodSci2010;118(2–4):201–9.

[48]JaiswalMK,AgrawalV,JaiswalYK.Lipopolysaccharidedrivesalternationof heatshockproteinsandinducesfailureofblastocystimplantationinmouse. BiolReprod2013;88(6):162.

[49]Sirotkin AV, Bauer M. Heatshock proteins inporcine ovary: synthesis, accumulationandregulationbystressandhormones.CellStressChaperones 2011;16(4):379–87.

[50]ZhouJ,AnH,XuH,LiuS,CaoX.Heatshockup-regulatesexpressionofToll-like receptor-2andToll-likereceptor-4inhumanmonocytesviap38kinasesignal pathway.Immunology2005;114(4):522–30.

[51]ChenCF,WangD,LeuFJ,ChenHI.Theprotectiveroleofnitricoxideandnitric oxidesynthasesinwhole-bodyhyperthermia-inducedhepaticinjuryinrats. IntJHyperthermia2012;28(5):421–30.

[52]LiL,WuJ,LuoM,SunY,WangG.Theeffectofheatstressongeneexpression, synthesisofsteroids,andapoptosisinbovinegranulosacells.CellStress Chaperones2016;21(3):467–75.

[53]KhannaA,AtenRF,BehrmanHR.Heatshockprotein-70inductionmediates lutealregressionintherat.MolEndocrinol1995;9(11):1431–40.

[54]Pennarossa G, Maffei S,RahmanMM, BerrutiG, BreviniTA, Gandolfi F. Characterization of the constitutive pig ovary heat shock chaperone machineryanditsresponsetoacutethermalstressortoseasonalvariations. BiolReprod2012;87(5):119.

[55]MochidaS,MatsuraT,YamashitaA,HorieS,OhataS,KusumotoC,etal. Geranylgeranylacetoneamelioratesinflammatoryresponseto lipopolysac-charide(LPS)inmurinemacrophages:inhibitionofLPSbindingtothecell surface.JClinBiochemNutr2007;41(2):115–23.

[56]IsobeN,YoshimuraY.Deficientproliferationandapoptosisinthegranulosa andthecainternacellsofthebovinecysticfollicle.JReprodDev2007;53 (5):1119–24.

[57]SalvettiNR,MullerLA,AcostaJC,GimenoJE,OrtegaHH.Estrogenreceptors alphaandbetaandprogesteronereceptorsinnormalbovineovarianfollicles andcysticovariandisease.VetPathol2007;44(3):373–8.

[58]ShimizuT,AbeY,WakaiT,HoshinoY,MiyamotoA,SatoE.Recentpatentsof TGF-betafamilyandVEGFassociatedwithovarianfolliculardevelopmentin mammals.RecentPatDNAGeneSeq2007;1(3):195–9.

[59]TeerdsKJ,DorringtonJH.Immunohistochemicallocalizationoftransforming growthfactor-beta1and-beta2duringfolliculardevelopmentintheadultrat ovary.MolCellEndocrinol1992;84(1–2):R7–13.

[60]SchmidP,CoxD,vanderPuttenH,McMasterGK,BilbeG.Expressionof TGF-betasandTGF-betatypeIIreceptormRNAsinmousefolliculogenesis:stored maternalTGF-beta2messageinoocytes.BiochemBiophysResCommun 1994;201(2):649–56.

[61]RoySK,KoleAR.Ovariantransforminggrowthfactor-beta(TGFbeta)receptors: in-vitroeffectsoffolliclestimulatinghormone,epidermalgrowthfactorand TGF-beta onreceptor expression inhuman preantral follicles.Mol Hum Reprod1998;4(3):207–14.

[62]NilssonEE,DoraiswamyV, SkinnerMK.Transforminggrowthfactor-beta isoformexpressionduringbovineovarianantralfollicledevelopment.Mol ReprodDev2003;66(3):237–46.

[63]JuengelJL,BibbyAH,ReaderKL,LunS,QuirkeLD,HaydonLJ,etal.Theroleof transforminggrowthfactor-beta(TGFbeta)duringovarianfollicular develop-mentinsheep.ReprodBiolEndocrinol2004;2:78.

[64]McGeeEA,RajRS.Regulatorsofovarianpreantralfollicledevelopment.Semin ReprodMed2015;33(3):179–84.

[65]TromblyDJ,WoodruffTK,MayoKE.SuppressionofNotchsignalinginthe neonatalmouseovarydecreasesprimordialfollicleformation.Endocrinology 2009;150(2):1014–24.

[66]JohnsonJ,EspinozaT,McGaugheyRW,RawlsA,WilsonRawlsJ.Notchpathway genesare expressedinmammalianovarianfollicles.MechDev2001;109 (2):355–61.

[67]SmithSD,MikkelsenA,LindenbergS.Developmentofhumanoocytesmatured invitrofor28or36hours.FertilSteril2000;73(3):541–4.

[68]ZhangCP,YangJL,ZhangJ,LiL,HuangL,JiSY,etal.Notchsignalingisinvolved inovarianfollicledevelopmentbyregulatinggranulosacellproliferation. Endocrinology2011;152(6):2437–47.

[69]ZhangZW,FindlayJK,CarsonRS,HeringtonAC,BurgerHG.Transforming growthfactorbetaenhancesbasalandFSH-stimulatedinhibinproductionby ratgranulosacellsinvitro.MolCellEndocrinol1988;58(2–3):161–6.

[70]Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised2003consensusondiagnosticcriteriaandlong-termhealthrisks relatedtopolycysticovarysyndrome.FertilSteril2004;81(1):19–25. [71]WorldHealthOrganization.Departmentofreproductivehealthandresearch.

WHOLaboratory Manualfor theExamination andProcessingof Human Semen.5thedn.Geneva:WHOPress;2010.

[72]Van-SteirteghemAC,LiuJ,JorisH,NagyZ,JanssenswillenC,TournayeH,etal. Highersuccessratebyintracytoplasmicsperminjectionthanbysubzonal insemination.Reportofasecondseriesof300consecutivetreatmentcycles. HumReprod1993;8(7):1055–60.

[73]Staessen C, Camus M, Bollen N, Devroey P, Van-Steirteghem AC. The relationship between embryo quality and the occurrence of multiple pregnancies.FertilSteril1992;57(3):626–30.

[74]ErelO.Anewautomatedcolorimetricmethodformeasuringtotaloxidant status.ClinBiochem2005;38(12):1103–11.

[75]ErelO.Anovelautomatedmethodtomeasuretotalantioxidantresponse againstpotentfreeradicalreactions.ClinBiochem2004;37(2):112–9. [76]YalçınkayaE,CakırogluY,DogerE,BudakO,CekmenM,CalışkanE.Effectof

follicularfluidNO,MDAandGSHlevelsoninvitrofertilizationoutcomes.J TurkGerGynecolAssoc2013;14(3):136–41.

[77]NishiharaT,MatsumotoK,HosoiY,MorimotoY.Evaluationofantioxidant statusandoxidative stressmarkersinfollicularfluid forhumaninvitro fertilizationoutcome.ReprodMedBiol2018;17(4):481–6.

[78]JaatinenR,LaitinenMP,VuojolainenK,AaltonenJ,LouhioH,HeikinheimoK, etal.Localizationofgrowthdifferentiationfactor-9(GDF-9)mRNAandprotein inratovariesandcDNAcloningofratGDF-9anditsnovelhomologGDF-9B. MolCellEndocrinol1999;156(1–2):189–93.

[79]BodensteinerKJ,ClayCM,MoellerCL,SawyerHR.Molecularcloningofthe ovine growth/differentiation factor-9 gene and expression of growth/ differentiationfactor-9inovineand bovineovaries.BiolReprod1999;60 (2):381–6.

[80]DevinePJ,PerreaultSD,LudererU. Rolesofreactiveoxygenspeciesand antioxidantsinovariantoxicity.BiolReprod2012;86(2):27.

[81]PrasadS,TiwariM,PandeyAN,ShrivastavTG,ChaubeSK.Impactofstresson oocytequalityandreproductiveoutcome.JBiomedSci2016;23:36. [82]McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/

differentiationfactor-9.MolEndocrinol1995;9(1):131–6.

[83]Elvin JA, Yan C, Matzuk MM. Oocyte-expressed TGF-beta superfamily membersinfemalefertility.MolCellEndocrinol2000;159(1–2):1–5. [84]McNattyKP,JuengelJL,WilsonT,GallowaySM,DavisGH.Geneticmutations

influencing ovulation rate in sheep. Reprod Fertil Develop. 2001;13(7-8):549–55.

[85]BinelliM,MurphyBD.Coordinatedregulationoffollicledevelopmentbygerm andsomaticcells.ReprodFertilDev2010;22(1):1–12.

[86]Fortune JE. The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Anim Reprod Sci 2003;78(3–4):135–63.

[87]JuengelJL,McNattyKP.Theroleofproteinsofthetransforminggrowth factor-betasuperfamilyintheintraovarianregulationoffolliculardevelopment. HumReprodUpdate2005;11(2):143–60.

[88]DunkelL, TillyJL,ShikoneT, NishimoriK,HsuehAJ.Folliclestimulating hormonereceptorexpressionintheratovary:increasesduringprepubertal developmentandregulationbytheopposingactionsoftransforminggrowth factorsbetaandalpha.BiolReprod1994;50(4):940–8.

[89]HutchinsonLA,FindlayJK,deVosFL,RobertsonDM.Effectsofbovineinhibin, transforming growth factor-beta and bovine activin-Aon granulosa cell differentiation.BiochemBiophysResCommun1987;146(3):1405–12. [90]KimIC,SchombergDW.Theproductionoftransforminggrowthfactor-beta

activitybyratgranulosacellcultures.Endocrinology1989;124(3):1345–51. [91]DrummondAE,DysonM,TheanE,GroomeNP,RobertsonDM,FindlayJK.

Temporalandhormonalregulationofinhibinprotein andsubunitmRNA expressionbypost-natalandimmatureratovaries.JEndocrinol2000;166 (2):339–54.

[92]RibeiroA,FreitasC,MatosL,GouveiaA,GomesF,Silva-CarvalhoJL,etal. Age-relatedexpressionofTGFbetafamilyreceptorsinhumancumulusoophorus cells.JAssistReprodGenet2017;34(9):1121–9.

[93]LiH,GuoS,CaiL,MaW,ShiZ.Lipopolysaccharideandheatstressimpairthe estradiolbiosynthesisingranulosacellsviaincreaseofHsp70andinhibitionof smad3phosphorylationandnucleartranslocation.CellSignal2017;30:130–41. [94]TangheS,Van-SoomA, NauwynckH,CorynM,de KruifA. Minireview: functionsofthecumulusoophorusduringoocytematuration,ovulation,and fertilization.MolReprodDev2002;61(3):414–24.

[95]ShaeibF,KhanSN,AliI,ThakurM,SaedMG,DaiJ,etal.Thedefensiveroleof cumuluscellsagainstreactiveoxygenspeciesinsultinmetaphaseIImouse oocytes.ReprodSci2016;23(4):498–507.

[96]LolicatoF,BrouwersJF,deLestCH,WubboltsR,AardemaH,PrioreP,etal.The cumuluscelllayerprotectsthebovinematuringoocyteagainstfatty acid-inducedlipotoxicity.BiolReprod2015;92(1):16.

[97]GanJK,ZhangDX,HeDL,ZhangDXQ,ChenZY,LuoQB.Promotermethylation negatively correlated with mRNA expression but not tissue differential expressionafterheatstress.GenetMolRes2013;12(1):809–19.

Şekil

Fig. 2. Immunocytochemistry staining results for Notch1, Hsp70, and Tgf-β protein expressions in human mural granulosa cells of LOS and HOS groups (40X)

Referanslar

Benzer Belgeler

Abstract In the present study, we found that baicalein (BE), but not its glycoside baicalin (BI), induced apoptosis in hu- man leukemia HL-60 and Jurkat cells, but not in primary

  美好回憶、降低住院時的抗拒和焦慮感。【上圖:失智症專責病房溫馨的交誼廳 (左圖)及護理站的特殊紅磚瓦造型(右圖)】

雙和醫院婦產科溫國璋醫師貼心提醒,女性朋友忙碌之餘勿忽略婦科相關檢查

雙和醫院子宮內膜癌篩檢研究重大突破,臨床實驗準確度高達 95% 雙和醫院副院長賴鴻政教授所率領的研究團隊,歷經 3

To investigate the mechanism of apoptosis induced by nucleosides, it was found that the contents of soluble Fas ligand contents were increased in HepG2 cells following I, U, T, and

Fakat orduda galeyan o kadar kuvvetli ki şaire bir şey yapılmadıktan başka Rüstem Paşa sadaretten azledilip sadaret asker tarafından çok sevilen ikinci vezir

(e) High levels of cyclin D are accumulated in nucleus when p16 is functional and DNA is damaged or replicative senescence occurs (Fig. 8-III-b); (f) Simulation results for CDK4