• Sonuç bulunamadı

On the applications of hadamard square root and hadamard inverse

N/A
N/A
Protected

Academic year: 2021

Share "On the applications of hadamard square root and hadamard inverse"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Selçuk J. Appl. Math. Selçuk Journal of Vol. 7. No.2. pp. 3-11, 2006 Applied Mathematics

On The Applications Of Hadamard Square Root And Hadamard In-verse

Mehmet Akbulak, Durmu¸s Bozkurt, Ramazan Türkmen, Kenan Kaygısız

Department of Mathematics, Art and Science Faculty, Selcuk University, 42031, Konya, Turkey

e-mail:m akbulak@ selcuk.edu.tr, db ozkurt@ selcuk.edu.tr, rturkm en@ selcuk.edu.tr,kenan2727@ yaho o.com

Summary.In this study, we have established upper and lower bounds for the spectral norm of Hadamard square root and Hadamard inverse of the matrix 121where the matrix 121is Cauchy-Toeplitz matrix. We have also obtained nonzero eigenvalues of the Hadamard product of 121 and 121 where the matrix 121 is Cauchy-Hankel matrix. Finally, we have defined Hadamard condition number for Cauchy-Toeplitz matrix and calculated an upper bound for this condition number.

Key words: Hadamard square root, Hadamard inverse, Hadamard product, Cauchy-Toeplitz matrix, Cauchy-Hankel matrix, condition number.

1. Introduction

Let  = () be  ×  matrix with nonnegative entries. Then the Hadamard square root of  is given by ◦12 = (12

 ). Let  = () be  ×  matrix with all nonzero entries. Then the Hadamard inverse of  is given by ◦−1 = (1)[1].

The well known Frobenius norm of the matrix  is

(1) kk = ⎛ ⎝  X =1  X =1 ||2 ⎞ ⎠ 12 

Also the spectral norm of the matrix  is kk2=

r max 166(

(2)

where  is  ×  and  is the conjugate transpose of the matrix . The following inequality holds:

(2) √1

kk 6 kk26 kk

where k · k is Frobenius norm of the matrix  (see [2]). The maximum column norm 1(·) and the maximum row norm 1(·) of any matrix  are defined by

(3) 1() = max  sX  ||2 and (4) 1() = max  sX  ||2 respectively [3, 4].

Let  = () be  ×  matrix. The 2-minors of the matrix  are defined by  µ     ¶ = ¯ ¯ ¯ ¯   ¯ ¯ ¯ ¯ where    and    and 16     6 . If

 µ     ¶ = ¯ ¯ ¯ ¯   ¯ ¯ ¯ ¯

then the minors are called principal 2-minors of the matrix , where 16   6 .

Let  = () and  = () be  ×  matrices. The Hadamard product of  and  is defined by  ◦  = (). If  =  ◦  then

kk26 1()1()[4]. (1.5) A function Ψ is called a psi (or digamma) function if

Ψ() =  {ln[Γ()]} where Γ() = ∞ Z 0 −−1

(3)

Ψ( ) =   [Ψ()] =   ½  (ln[Γ()]) ¾ 

If  = 0 then Ψ(0 ) = Ψ() ={ln[Γ()]}. On the other hand, if   0,  is any number and  is positive integer, then

lim

→∞Ψ(  + ) = 0[5] The condition number () = kk2

° °−1°°

2of a nonsingular matrix  plays an important role in the numerical solution of linear systems since it measures the sensitivity of the solution of linear systems  =  to the perturbations on  and  where kk2 donetes the spectral norm.

Let  = [1(− )]=1 (6= ), = [−]=0−1 and  = [+]=0−1 be a Cauchy, a Toeplitz and a Hankel matrices, respectively. In general, Cauchy-Toeplitz and Cauchy-Hankel matrices are defined as in the following forms:

= ∙ 1  + ( − ) ¸−1 =0  = ∙ 1  + ( + ) ¸−1 =0

where  6= 0,  and  are some numbers and  is not integer. If we take  = 12 and  = 1, then we get

121= ∙ 1 1 2+  −  ¸−1 =0  121= ∙ 1 1 2+  +  ¸−1 =0  Then the Hadamard inverses of the matrices 121and 121 are

121◦−1 = ∙ 1 + 2 ( − ) 2 ¸−1 =0  121◦−1 = ∙ 1 + 2 ( + ) 2 ¸−1 =0 and the Hadamard square roots of the matrices¯¯121

¯ ¯ and 121are ¯ ¯121 ¯ ¯◦12 = ⎡ ⎣q 1 1 2+ | − | ⎤ ⎦ −1 =0  121◦12 = ⎡ ⎣q 1 1 2+  +  ⎤ ⎦ −1 =0 

(4)

2. Norms Of Hadamard Square Roots And Hadamard Inverses Theorem 1. Let ¯¯121

¯ ¯◦12

be the Hadamard square root of the matrix ¯ ¯121 ¯ ¯. Then ½µ 2 + 1  ¶ ∙ Ψ µ  +3 2 ¶ − 2 +  + 2 ln 2 ¸ +2  ¾12 6°°°¯¯121 ¯ ¯◦12°° ° 2 and ° ° °¯¯121 ¯ ¯◦12°° ° 26 ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 12£Ψ¡3−2 2 ¢ − Ψ¡2−2 ¢ −Ψ¡4− 2 ¢ +8 3−  − 2 ln 2 ¤12   odd 12£Ψ¡1− 2 ¢ + Ψ¡+32 ¢ −2 + ln¡16 2 ¢¤12   even is valid.

Proof. By the definition of the matrix ¯¯121 ¯

¯◦12 and the equality (1), we have ° ° °¯¯121 ¯ ¯◦12°° °2  = 2 + 4 X−1 =1  −  2 + 1 = (2 + 1) ∙ Ψ +3 2− 2 +  + 2 ln 2 ¸ + 2 Then we obtain 1 √  ° ° °121◦12 ° ° ° = ½µ 2 + 1  ¶ ∙ Ψ µ  +1 2 ¶ − 2 ¸ + µ 2 + 1  ¶ ( + 2 ln 2) + 2  ¾12 ≤ °°°121◦12 ° ° ° Now, let us establish the upper bound for

° ° °¯¯121 ¯ ¯◦12°° ° 2. If we take ¯ ¯121 ¯ ¯◦12 =  ◦  such that  = []×=£√2¤× and  =

h 1p1 + 2 | − |i ×, then we get°°°¯¯121 ¯ ¯◦12°° °

2 6 1()1()from (1.5) where 1() and 1() are the maximum row norm and column norm of the matrices  and , respectively.

(5) 1() =

√ 2 and

(5)

1() = v u u u t 2 X =1 1 (1 +  − 2)+  X = 2+1 1 (1 + 2 − ) (6) = 1 2 ∙ Ψ µ 1 −  2 ¶ + Ψ µ  + 3 2 ¶ − 2 − ln µ 16 2 ¶¸12

for  even and

1() = ⎡ ⎣ (X−1)2 =1 1 (−1 + 2 − 2)+  X =+1 2 1 (3 + 2 − 2) ⎤ ⎦ 12 (7) = 1 2 ∙ Ψ µ 3 − 2 2 ¶ − Ψ µ 2 −  2 ¶ − Ψ µ 4 −  2 ¶ +8 3−  − 2 ln 2 ¸12

for  odd. Hence, we establish the upper bound by (5), (6) and (7) for°°°¯¯121 ¯ ¯◦12°°

°2. Thus, we get the results.

Theorem 2. Let 121◦−1 be the Hadamard inverse of the matrix 121. Then r 1 6 3+ 1 126 ° ° °121◦−1 ° ° ° 26 1 6 p 124− 32 holds.

Proof. Firstly, we establish lower bound and secondly, upper bound for the matrices 121◦−1 . By (1), we have (8) °°°121◦−1 °°° 2  = 2 − 1 4 + 1 4 X−1 =1 £ (2 − 2 − 1)(2 + 1)2¤

If we evaluate the sum in the right side of (8), then we get ° ° °121◦−1 ° ° °2  = 1 6 4+ 1 12 2 By the inequality (2), we have

1 √  ° ° °121◦−1 ° ° ° = r 1 6 3+ 1 126 ° ° °121◦−1 ° ° °2

(6)

Secondly, let us establish upper bound. If we take 121◦−1 =  ◦  such that  = [12]×and  = [1 + 2( − )]◦, then we get

1() = 1 2 √  and 1() = " X =1 (2 − 1)2 #12 = µ 4 3 3 −13 ¶12  By the inequality (5), we have

° ° °121◦−1 ° ° ° 26 s 1 4 µ4 3 31 3 ¶ =1 6 p 124− 32 Thus, the proof is completed.

3. Hadamard Condition Number

Definition 3 Let be any matrix. The value kk2 ° °◦−1°°

2is called Hadamard condition number of the matrix  ,denoted by ◦()

Theorem 4. The upper bound of Hadamard condition number of¯¯121 ¯ ¯◦12is ◦³¯¯ 121 ¯ ¯◦12´ ≤ ( £  2 √ 2+ 2¤ £Ψ¡1− 2 ¢ + Ψ¡+32 ¢+ 2 + ln¡162 ¢¤12    £ 2 √ 2+ 5¤ £Ψ¡3−2 2 ¢ − Ψ¡2−2 ¢ − Ψ¡4−2 ¢ +83−  − 2 ln 2¤12   Proof.To prove this theorem it is enough to find upper bound

° ° ° °³¯¯121 ¯ ¯◦12´◦−1°°° ° 2 . If we take³¯¯121 ¯ ¯◦12´◦−1 =  ◦  such that  = []×= £ 1√2¤ ×and  = []×= hp 1 + 2 | − |i ×, then ° ° ° ° ³¯ ¯121 ¯ ¯◦12´◦−1°°° ° 2 6 1()1()

from (5) where 1() and 1() are the maximum row and column norm of the matrices  and , respectively. We get

1() = r

 2 and for even 

(7)

1() = v u u u t 2 X =1 (1 +  − 2) +  X = 2+1 (1 + 2 − ) = r 2+ 2 2 for odd  1() = v u u u t (X−1)2 =1 (−1 + 2 − 2) +  X =+1 2 (3 + 2 − 2) = r 2+ 5 2

Then the upper bound of the spectral norm of³¯¯121 ¯ ¯◦12´◦−1 is ° ° ° °³¯¯121 ¯ ¯◦12´◦−1°°° ° 2 6½ 2 √  + 2   1 2 √ 3+ 5  

Hence, we can write the upper bound for the Hadamard condition number of ¯ ¯121 ¯ ¯◦12 as ◦³¯¯ 121 ¯ ¯◦12´ ≤ ( £  2 √ 2+ 2¤ £Ψ¡1− 2 ¢ + Ψ¡+3 2 ¢ + 2 + ln¡16 2 ¢¤12    £ 2 √ 2+ 5¤ £Ψ¡3−2 2 ¢ − Ψ¡2−2 ¢ − Ψ¡4−2 ¢ +83−  − 2 ln 2¤12   4. An Application Of Hadamard Product

Theorem 5. Let  = 121◦−1 ◦ 121◦−1 . Then nonzero eigenvalues of the matrix  are 12= 2 4 + 3 8 ±  120 p 4105 + 6300 + 1002− 36003− 12804 Proof. First of all, let us show that () = 2. Multiply first row of the matrix  by −42+45 −3 and add to th row of the matrix, where  = 2 3     . Then we get  ∼ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 5 4 − 7 4 − 27 4 − 55 4  9−42 4 0 485 1285 48  1625−16 0 24 64 120  4025−40 .. . ... ... ... . .. ... 0 1 2 3  4 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

(8)

where 1 = 122+  − 24 5   2 = 322+ 32 − 64 5   3 = 602+ 60 − 120 5  and 4= 44+ 43− 122− 4 + 8 5 

Take the multiple −1of second row of the matrix  and add to third row, the multiple −2 add to fourth row, and so on the multiple −−2 and add to th row, where 1= 52 +1= + ( + 3)2  = 1 2      − 3. Then, we have  ∼ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 5 4 − 7 4 − 27 4 − 55 4  9−42 4 0 48 5 128 5 48  162−16 5 0 0 0 0  0 .. . ... ... ... . .. ... 0 0 0 0  0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

Hence () = 2. Therefore, the matrix  has two nonzero eigenvalues. Then the characteristic polynomial of the matrix  is

∆() = + 1−1+ 2−2 where 1 = − 2 = X  µ     ¶    = 1 2  ;    Since 1= − =  X =1 µ 1 4+  ¶ =  4 − ( + 1)2 2 + 1 2 and 2 = X  µ     ¶ = X−1 =1  X =+1 ¯ ¯ ¯ ¯ 1 4+  1 4+  +  2 − 2 1 4+  2 +  − 2 14+  ¯ ¯ ¯ ¯ = 4 6 45 + 5 4 + 4 18 − 3 4 − 132 90

(9)

we have ∆() = + Ã  4− ( + 1)2 2 + 1 2 ! −1 + µ 46 45 + 5 4 + 4 18− 3 4 − 132 90 ¶ −2 If we solve the equation ∆() = 0, then we obtain

= −1=    = 3= 0 and 12= 2 4 + 3 8 ±  120 p 4105 + 6300 + 1002− 36003− 12804 References

1. R. Reams, Hadamard inverses, square roots and product of almost semi definite matrices, Linear Algebra and Its Applications 288 (2000) 35-43 .

2. G. Zielke, Some Remarks on Matrix Norms, Condition Numbers and Error Esti-mates for Linear Equations. Linear Algebra and Its Applications 1988; 110:29-41. 3. R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.

4. R. Mathias, The Spectral Norm of a Nonnegative Matrix, Linear Algebra and Its Applications 131 (1990) 269-284.

5. R. Moenck, On computing closed forms for summations, in: Proceedings of the MACSYMA User’s Conference, 1977 , pp. 225-236. E. E. Tyrtyshnikov.

Referanslar

Benzer Belgeler

First, advertisers are opting to place their ads in only one or two newspapers for any one specific time period, usually one Arabic language daily and/or one English language

They claim that they produce soliton solutions of the nonlocal NLS equation (S-symmetric) but it seems that they are solving the NLS system of equations (1) and (2) rather than

Burada tanıtımını yapacağımız eser, Milli Mücadele döneminin farklı bir kişiliği olarak nitelendirilen ve bugün kendisi hakkında farklı yorumlarda bulunulan,

Yarma deneylerinde kullanılmak üzere boyut değişim aralığı 1/4 olan silindir ve küp numuneler ile birlikte basınç dayanımı, eğilmede çekme dayanımı

Bu araştırmanın amacı; çocuklarda yaratıcılığın en fazla geliştiği dönem olan 5-6 yaş döneminde, hangi etken ve faktörlerin çocukların yaratıcılık düzeylerini

Verilerin birbirleri ile olan ilişkisine bakıldığında, basis ossis sacri’nin transvers çapı (BTÇ), canalis sacralis’in sagittal genişliği (CSSÇ) ve S1-S2 arasındaki

Türk insanı için vatan çok ayrı bir yere sahip olduğu için İbrahim Zeki Burdurlu, pek çok şiirinde, efsanesinde ve romanında Türk insanının vatan, bayrak ve Atatürk

Swap, “belirli bir miktar ve nitelikteki para, döviz, mali araç, alacak, mal gibi varlıklarla yükümlülüklerin, önceden belirlenen fiyat ve koşullara göre, gelecekteki