• Sonuç bulunamadı

NEW WEIGHTED INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE CONVEX FUNCTIONS

N/A
N/A
Protected

Academic year: 2021

Share "NEW WEIGHTED INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE CONVEX FUNCTIONS"

Copied!
19
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Volume 40(1) (2016), Pages 15–33.

NEW WEIGHTED INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE CONVEX FUNCTIONS

M. Z. SARIKAYA1 AND S. ERDEN2

Abstract. In this paper, we establish several new weighted inequalities for some twice differentiable mappings that are connected with the celebrated Hermite-Hadamard type and Ostrowski type integral inequalities. Some of the new inequal-ities are Hermite-Hadamard-type inequalinequal-ities involving fractional integrals. The results presented here would provide extensions of those given in earlier works.

1. Introduction

Definition 1.1. The function f : [a, b] ⊂ R → R, is said to be convex if the following inequality holds

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y)

for all x, y ∈ [a, b] and λ ∈ [0, 1]. We say that f is concave if (−f ) is convex.

The following inequality is well known in the literature as the Hermite-Hadamard integral inequality (see, [6]):

f a + b 2  ≤ 1 b − a Z b a f (x)dx ≤ f (a) + f (b) 2 ,

where f : I ⊂ R → R is a convex function on the interval I of real numbers and a, b ∈ I with a < b.

A largely applied inequality for convex functions, due to its geometrical significance, is Hadamard’s inequality, (see [4, 5, 18–23]) which has generated a wide range of directions for extension and a rich mathematical literature.

In 1938, the classical integral inequality established by Ostrowski [8] as follows:

Key words and phrases. Hermite-Hadamard inequality, Ostrowski inequality, Trapezoid inequality, convex function, Hölder inequality, Rieman-Liouville integrals.

2010 Mathematics Subject Classification. Primary: 26D07. Secondary: 26D15. Received: July 15, 2015.

Accepted: November 28, 2015.

(2)

Theorem 1.1. Let f : [a, b]→ R be a differentiable mapping on (a, b) whose derivative f0 : (a, b)→ R is bounded on (a, b), i.e., kf0k = sup

t∈(a,b) |f0(t)| < ∞. Then, the inequality holds: f (x) − 1 b − a b Z a f (t)dt ≤ " 1 4 + (x − a+b2 )2 (b − a)2 # (b − a) kf0k

for all x ∈ [a, b]. The constant 1/4 is the best possible.

Inequality (1.1) has wide applications in numerical analysis and in the theory of some special means; estimating error bounds for some special means, some mid-point, trapezoid and Simpson rules and quadrature rules, etc. Hence inequality (1.1) has attracted considerable attention and interest from mathematicans and researchers. Due to this, over the years, the interested reader is also refered to [1–3, 7, 9–16] for integral inequalities in several independent variables. In addition, the current approach of obtaining the bounds, for a particular quadrature rule, have depended on the use of Peano kernel. The general approach in the past has involved the assumption of bounded derivatives of degree greater than one.

In this study, using functions whose twice derivatives absolute values are convex, we obtain new weighted inequalities that are connected with the celebrated Hermite-Hadamard type and Ostrowski type integral inequalities. In addition, we obtain new inequalities of Hermite-Hadamard type and Ostrowski type involving fractional integrals.The results presented here would provide extensions of those given in earlier works.

2. Main Results

Throughout this section, let us define the S(α; w, f ) operator as follows:

S(α; w, f ) =     x Z a (u − x) w (u) du   α −   x Z b (u − x) w (u) du   α f 0 (x) + α     x Z a (u − x) w (u) du   α−1  x Z a w (u) du   −   x Z b (u − x) w (u) du   α−1  x Z b w (u) du    f (x) + α (α − 1)    x Z a   t Z a (u − t) w (u) du   α−2  t Z a w (u) du   2 f (t)dt

(3)

+ b Z x   t Z b (u − t) w (u) du   α−2  t Z b w (u) du   2 f (t)dt    − α   x Z a   t Z a (u − t) w (u) du   α−1 w (t) f (t) dt + b Z x   t Z b (u − t) w (u) du   α−1 w (t) f (t) dt  .

In order to prove our main results we need the following lemma.

Lemma 2.1. Let f : I ⊂ R → R be twice differentiable function on I◦, a, b ∈ I◦ with a < b, f00 is absolutely continuous on [a, b] and let w : [a, b] → R be nonnegative and continuous on [a, b]. Then the following identity holds:

(2.1) S(α; w, f ) = b Z a Pw(x, t) f00(t) dt, where Pw(x, t) :=            t R a (u − t) w (u) du α , a ≤ t < x, t R b (u − t) w (u) du α , x ≤ t ≤ b, for α ≥ 1.

Proof. By integration by parts, we have the following identity: b Z a Pw(x, t) f00(t) dt = x Z a   t Z a (u − t) w (u) du   α f00(t) dt + b Z x   t Z b (u − t) w (u) du   α f00(t) dt =   t Z a (u − t) w (u) du   α f0(t) x a + α x Z a   t Z a (u − t) w (u) du   α−1  t Z a w (u) du  f 0 (t) dt

(4)

+   t Z b (u − t) w (u) du   α f0(t) b x + α b Z x   t Z b (u − t) w (u) du   α−1  t Z b w (u) du  f 0 (t) dt =     x Z a (u − t) w (u) du   α −   x Z b (u − t) w (u) du   α f 0 (x) + α        t Z a (u − t) w (u) du   α−1  t Z a w (u) du  f (t) x a + x Z a  (α − 1)   t Z a (u − t) w (u) du   α−2  t Z a w (u) du   2 −   t Z a (u − t) w (u) du   α−1 w (t)  f (t) dt +   t Z b (u − t) w (u) du   α−1  t Z b w (u) du  f (t) b x + b Z x  (α − 1)   t Z b (u − t) w (u) du   α−2  t Z b w (u) du   2 −   t Z b (u − t) w (u) du   α−1 w (t)  f (t) dt    =     x Z a (u − x) w (u) du   α −   x Z b (u − x) w (u) du   α f 0 (x) + α     x Z a (u − x) w (u) du   α−1  x Z a w (u) du   −   x Z b (u − x) w (u) du   α−1  x Z b w (u) du    f (x)

(5)

+ α (α − 1)    x Z a   t Z a (u − t) w (u) du   α−2 ×   t Z a w (u) du   2 f (t)dt + b Z x   t Z b (u − t) w (u) du   α−2  t Z b w (u) du   2 f (t)dt    − α   x Z a   t Z a (u − t) w (u) du   α−1 w (t) f (t) dt + b Z x   t Z b (u − t) w (u) du   α−1 w (t) f (t) dt  ,

which is the required identity in (2.1) and the proof is completed.  Remark 2.1. Under the same assumptions of Lemma 2.1 with α = 1, then the following identity holds: S(1; w, f ) =   b Z a (u − x) w (u) du  f0(x) +   b Z a w (u) du  f (x) − b Z a w (t) f (t) dt, which was proved by Sarikaya and Yaldiz in [16].

Definition 2.1. Let f ∈ L1[a, b]. The Riemann-Liouville integrals Ja+α f and Jb−α f of order α > 0 with a ≥ 0 are defined by

Ja+α f (x) = 1 Γ(α) Z x a (x − t)α−1f (t)dt, x > a, and Jb−α f (x) = 1 Γ(α) Z b x (t − x)α−1f (t)dt, x < b,

respectively. Here, Γ(α) is the Gamma function and Ja+0 f (x) = Jb−0 f (x) = f (x). Corollary 2.1. Under the same assumptions of Lemma 2.1 with w(s) = 1, then the following identity holds:

S(α; 1, f ) =  −1 2 α h (a − x)2α− (b − x)2αif0(x) + α  −1 2 α−1 h (a − x)2α−1− (b − x)2α−1if (x) (2.2)

(6)

+αΓ(2α) 2  −1 2 α−2 h Jx−2α−1f (a) + Jx+2α−1f (b)i. Remark 2.2. If we take x = a+b2 in (2.2), we get

a+b 2 Z a   t Z a (u − t) du   α f00(t) dt + b Z a+b 2   t Z b (u − t) du   α f00(t) dt = α  −1 2 α−1 (b − a)2α−1 22α−2 f ( a + b 2 ) +αΓ(2α) 2  −1 2 α−2 J2α−1 (a+b 2 )− f (a) + J2α−1 (a+b 2 )+ f (b)  .

Theorem 2.1. Let f : I ⊂ R → R be twice differentiable function on I◦, a, b ∈ I◦ with a < b, f00 is absolutely continuous on [a, b] and let w : [a, b] → R be nonnegative and continuous on [a, b]. If |f00| is convex on [a, b] then for all x ∈ [a, b], the following inequalities hold: |S(α; w, f )| ≤ kwk α [a,x],∞ 2α(b − a) × (b − a)(x − a) 2α+1 2α + 1 − (x − a)2α+2 2α + 2  |f00(a)| + (x − a) 2α+2 2α + 2 |f 00 (b)|  + kwk α [x,b],∞ 2α(b − a) (2.3) × (b − x) 2α+2 2α + 2 |f 00 (a)| + (b − a)(b − x) 2α+1 2α + 1 − (b − x)2α+2 2α + 2  |f00(b)|  ≤ kwk α [a,b],∞ 2α(b − a)  (b − a)(x − a)2α+1 2α + 1 + (b − x)2α+2− (x − a)2α+2 2α + 2  |f00(a)| + (b − a)(b − x) 2α+1 2α + 1 + (x − a)2α+2− (b − x)2α+2 2α + 2  |f00(b)|  , where α ≥ 1 and kwk= sup

t∈[a,b]

|w(t)|.

Proof. We take the absolute value of (2.1). Using bounded of the mapping w, we find that |S(α; w, f )| ≤ b Z a |P (x, t)| |f00(t)| dt = x Z a   t Z a (t − u) w (u) du   α |f00(t)| dt

(7)

+ b Z x   b Z t (u − t) w (u) du   α |f00(t)| dt ≤ kwk α [a,x],∞ 2α x Z a (t − a)2α|f00(t)| dt + kwk α [x,b],∞ 2α b Z x (b − t)2α|f00(t)| dt.

Since f00(t) is convex on [a, b] = [a, x] ∪ [x, b], we have (2.4) f00 b − t b − aa + t − a b − ab  ≤ b − t b − a f 00 (a) + t − a b − a f 00 (b) . From (2.4), it follows that

|S(α; w, f )| ≤ kwk α [a,x],∞ 2α(b − a) x Z a (t − a)2αh(b − t) f 00 (a) + (t − a) f 00 (b) i dt +kwk α [x,b],∞ 2α(b − a) b Z x (b − t)2αh(b − t) f 00 (a) + (t − a) f 00 (b) i dt = kwk α [a,x],∞ 2α(b − a)  (b − a)(x − a)2α+1 2α + 1 − (x − a)2α+2 2α + 2  |f00(a)| +(x − a) 2α+2 2α + 2 |f 00 (b)|  +kwk α [x,b],∞ 2α(b − a)  (b − x)2α+2 2α + 2 |f 00 (a)| + (b − a)(b − x) 2α+1 2α + 1 − (b − x)2α+2 2α + 2  |f00(b)| 

and because of kwk[a,x],∞ ≤ kwk[a,b],∞ and kwk[x,b],∞ ≤ kwk[a,b],∞, we obtain |S(α; w, f )| ≤ kwk α [a,b],∞ 2α(b − a)  (b − a)(x − a)2α+1 2α + 1 + (b − x)2α+2− (x − a)2α+2 2α + 2  f 00 (a) + (b − a)(b − x) 2α+1 2α + 1 + (x − a)2α+2− (b − x)2α+2 2α + 2  f 00 (b)  ,

which completes the proof. 

Remark 2.3. Under the same assumptions of Theorem 2.1 with α = 1, then the following inequality holds:

|S(1; w, f )| ≤ kwk[a,b],∞ 2 (b − a)  (b − a)(x − a)3 3 + (b − x)4− (x − a)4 4  f 00 (a) + (b − a)(b − x) 3 3 + (x − a)4 − (b − x)4 4  f 00 (b)  , which was proved by Sarikaya and Yaldiz in [16].

(8)

Corollary 2.2. Under the same assumptions of Theorem 2.1 with w(s) = 1, then the following inequality holds:

|S(α; 1, f )| ≤ 1 2α(b − a)  (b − a)(x − a)2α+1 2α + 1 + (b − x)2α+2− (x − a)2α+2 2α + 2  f 00 (a) + (b − a)(b − x) 2α+1 2α + 1 + (x − a)2α+2− (b − x)2α+2 2α + 2  f 00 (b)  . (2.5)

Remark 2.4. If we take α = 1 in (2.5), we get  a + b 2 − x  f0(x) + f (x) − 1 b − a b Z a f (t) dt ≤ 1 2 (b − a)2 " (b − a)(x − a) 3 3 + (b − x)4− (x − a)4 4 ! f 00 (a) + (x − a) 4− (b − x)4 4 + (b − a) (b − x)3 3 ! f 00 (b) # , which is proved by Sarikaya and Yaldiz in [16].

Corollary 2.3. Under the same assumptions of Theorem 2.1 with w(s) = 1 and x = a+b2 , then we have

α  −1 2  α−1(b − a) 2α−1 22α−2 f ( a + b 2 ) + αΓ(2α) 2  −1 2 α−2 h J2α−1a+b 2 − f (a) + J2α−12+b 2 + f (b)i ≤ (b − a) 2α+1 (2α + 1)23α+1 h f 00 (a) + f 00 (b) i . (2.6)

Remark 2.5. If we take α = 1 in (2.6), we obtain f a + b 2  − 1 b − a b Z a f (t) dt ≤ (b − a) 2 24 f00(a) + f00(b) 2 ! , which is proved by Sarikaya and Yildirim in [17].

Corollary 2.4. Under the same assumptions of Theorem 2.1 with f00(a) = f00(b) in (2.3), then the following inequalities hold:

|S(α; w, f )| ≤ 1 (2α + 1)2α h kwkα[a,x],∞(x − a)2α+1+ kwkα[x,b],∞(b − x)2α+1i f 00 (a) ≤ kwk α [a,b],∞ (2α + 1)2α (x − a) 2α+1 + (b − x)2α+1 f 00 (a) .

Theorem 2.2. Let f : I ⊂ R → R be twice differentiable function on I◦, a, b ∈ I◦ with a < b, f00 is absolutely continuous on [a, b] and let w : [a, b] → R be nonnegative

(9)

and continuous on [a, b]. If |f00|q is convex on [a, b], q > 1, then for all x ∈ [a, b], the following inequalities hold:

|S(α; w, f )| ≤ kwk α [a,x],∞(x − a) 2α+1p(b − a)1q (2αp + 1) 1 p × " (b − a)2− (b − x)2 2 f 00 (a) q + (x − a) 2 2 f 00 (b) q# 1 q + kwk α [x,b],∞(b − x) 2α+1p(b − a)1q (2αp + 1) 1 p × " (b − x)2 2 f 00 (a) q +(b − a) 2− (x − a)2 2 f 00 (b) q# 1 q ≤ kwk α [a,b],∞ 2α(b − a)1q (2αp + 1) 1 p ×    (x − a)2α+p1 " (b − a)2− (b − x)2 2 f 00 (a) q + (x − a) 2 2 f 00 (b) q# 1 q + (b − x)2α+1p " (b − x)2 2 f 00 (a) q +(b − a) 2− (x − a)2 2 f 00 (b) q# 1 q    ,

where α ≥ 1, 1p + 1q = 1, and kwk= sup t∈[a,b]

|w(t)|.

Proof. We take absolute value of (2.1). Using Holder’s inequality, we find that

|S(α; w, f )| ≤ x Z a   t Z a (t − u) w (u) du   α |f00(t)| dt + b Z x   b Z t (u − t) w (u) du   α |f00(t)| dt ≤ kwk α [a,x],∞ 2α x Z a (t − a)2α|f00(t)| dt + kwk α [x,b],∞ 2α b Z x (b − t)2α|f00(t)| dt ≤ kwk α [a,x],∞ 2α   x Z a (t − a)2αpdt   1 p  x Z a |f00(t)|qdt   1 q

(10)

+kwk α [x,b],∞ 2α   b Z x (b − t)2αpdt   1 p  b Z x |f00(t)|qdt   1 q . Since f00(t) q

is convex on [a, b] = [a, x] ∪ [x, b], we have (2.7) f00 b − t b − aa + t − a b − ab  q ≤ b − t b − a f 00 (a) q + t − a b − a f 00 (b) q . From (2.7), it follows that

|S(α; w, f )| ≤ kwk α [a,x],∞ 2α (x − a)2α+1p (2αp + 1)1p   x Z a  b − t b − a f 00 (a) q + t − a b − a f 00 (b) q dt   1 q +kwk α [x,b],∞ 2α (b − x)2α+1p (2αp + 1)1p   b Z x  b − t b − a f 00 (a) q + t − a b − a f 00 (b) q dt   1 q = kwk α [a,x],∞ 2α(b − a)1q (x − a)2α+1p (2αp + 1)1p × " (b − a)2− (b − x)2 2 f 00 (a) q +(x − a) 2 2 f 00 (b) q# 1 q + kwk α [x,b],∞ 2α(b − a)1q (b − x)2α+1p (2αp + 1)1p × " (b − x)2 2 f 00 (a) q +(b − a) 2 − (x − a)2 2 f 00 (b) q# 1 q

and because of kwk[a,x],∞≤ kwk[a,b],∞ and kwk[x,b],∞ ≤ kwk[a,b],∞. Hence, the proof is

complete. 

Remark 2.6. Under the same assumptions of Theorem 2.2 with α = 1, then the following inequality holds:

|S(1; w, f )| ≤ kwk[a,b],∞ 2 (b − a)1q (2p + 1) 1 p ×    (x − a)2+1p " (b − a)2− (b − x)2 2 f 00 (a) q + (x − a) 2 2 f 00 (b) q# 1 q + (b − x)2+1p " (b − x)2 2 f 00 (a) q + (b − a) 2 − (x − a)2 2 f 00 (b) q# 1 q    ,

(11)

which is given by Sarikaya and Yaldiz in [16].

Corollary 2.5. Under the same assumptions of Theorem 2.2 with w(s) = 1, then the following inequality holds:

|S(α; 1, f )| ≤ 1 2α(b − a)1q (2αp + 1) 1 p ×    (x − a)2α+p1 " (b − a)2− (b − x)2 2 f 00 (a) q + (x − a) 2 2 f 00 (b) q# 1 q (2.8) + (b − x)2α+1p " (b − x)2 2 f 00 (a) q +(b − a) 2 − (x − a)2 2 f 00 (b) q# 1 q    .

Remark 2.7. If we take α = 1 in (2.8), we get  a + b 2 − x  f0(x) + f (x) − 1 b − a b Z a f (t) dt ≤ 1 2 (b − a)1+1q (2p + 1) 1 p ×    (x − a)2+p1 " (b − a)2− (b − x)2 2 f 00 (a) q + (x − a) 2 2 f 00 (b) q# 1 q + (b − x)2+1p " (b − x)2 2 f 00 (a) q +(b − a) 2 − (x − a)2 2 f 00 (b) q# 1 q    , which is given by Sarikaya and Yaldiz in [16].

Corollary 2.6. Under the same assumptions of Theorem 2.2 with w(s) = 1 and x = a+b2 , then, we have

α  −1 2 α−1 (b − a)2α−1 22α−2 f  a + b 2  + αΓ(2α) 2  −1 2 α−2 J2α−1 (a+b 2 )− f (a) + J2α−1 (a+b 2 )+ f (b)  ≤ (b − a) 2α+1 (2αp + 1)1p23α+1 (2.9) ×    " 3 f00(a) q + f00(b) q 4 #1q + " f00(a) q + 3 f00(b) q 4 #1q   .

(12)

Remark 2.8. If we take α = 1 in (2.9), we obtain f a + b 2  − 1 b − a b Z a f (t) dt ≤ (b − a) 2 16 (2p + 1)p1    " 3 f00(a) q + f00(b) q 4 #1q + " f00(a) q + 3 f00(b) q 4 #1q   ,

which is proved by Sarikaya and Yildirim in [17].

Theorem 2.3. Let f : I ⊂ R → R be twice differentiable function on I◦, a, b ∈ I◦ with a < b, f00 is absolutely continuous on [a, b] and let w : [a, b] → R be nonnegative and continuous on [a, b]. If |f00|q is convex on [a, b], q > 1, then for all x ∈ [a, b], the following inequalities hold:

|S(α; w, f )| ≤ (b − a) 1 q 2α(2αp + 1)1p h kwkαp[a,x],∞(x − a)2αp+1+ kwkαp[x,b],∞(b − x)2αp+1i 1 p × " f00(a) q + f00(b) q 2 #1q ≤ kwk α [a,b],∞(b − a) 1 q 2α(2αp + 1)1p (x − a)2αp+1 + (b − x)2αp+11p (2.10) × " f00(a) q + f00(b) q 2 #1q ,

where α ≥ 1, 1p + 1q = 1, and kwk= sup t∈[a,b]

|w(t)|.

Proof. We take absolute value of (2.1). Using Holder’s inequality, we find that

|S(α; w, f )| ≤ b Z a |P (x, t)| |f00(t)| dt ≤   x Z a   t Z a (t − u) w (u) du   αp dt + b Z x   b Z t (u − t) w (u) du   αp dt   1 p ×   b Z a |f00(t)|qdt   1 q

(13)

≤" kwk αp [a,x],∞ 2αp (x − a)2αp+1 2αp + 1 + kwkαp[x,b],∞ 2αp (b − x)2αp+1 2αp + 1 #1p ×   b Z a |f00(t)|qdt   1 q .

From (2.7), it follows that

|S(α; w, f )| ≤" kwk αp [a,x],∞ 2αp (x − a)2αp+1 2αp + 1 + kwkαp[x,b],∞ 2αp (b − x)2αp+1 2αp + 1 #1p ×   b Z a  b − t b − a f 00 (a) q + t − a b − a f 00 (b) q dt   1 q = (b − a) 1 q 2α(2αp + 1)p1 h kwkαp[a,x],∞(x − a)2αp+1+ kwkαp[x,b],∞(b − x)2αp+1i 1 p × " f00(a) q + f00(b) q 2 #1q

and because of kwk[a,x],∞≤ kwk[a,b],∞ and kwk[x,b],∞ ≤ kwk[a,b],∞. Hence, the proof is

complete. 

Remark 2.9. Under the same assumptions of Theorem 2.3 with α = 1, then the following inequality holds:

|S(1; w, f )| ≤ kwk[a,b],∞(b − a) 1 q 2 (2p + 1)1p (x − a)2p+1 + (b − x)2p+1 1 p × " f00(a) q + f00(b) q 2 #1q

which is proved by Sarikaya and Yaldiz in [16].

Corollary 2.7. Under the same assumptions of Theorem 2.3 with w(s) = 1, then the following inequality holds:

|S(α; 1, f )| ≤ (b − a) 1 q 2α(2αp + 1)1p (x − a)2αp+1 + (b − x)2αp+1 1 p × " f00(a) q + f00(b) q 2 #1q . (2.11)

(14)

Remark 2.10. If we take α = 1 in (2.11), we get  a + b 2 − x  f0(x) + f (x) − 1 b − a b Z a f (t) dt ≤ (x − a) 2p+1 + (b − x)2p+1 1 p 2 (b − a)1p(2p + 1) 1 p " f00(a) q + f00(b) q 2 #1q .

Corollary 2.8. Under the same assumptions of Theorem 2.3 with w(s) = 1 and x = a+b2 , then we have

α  −1 2 α−1 (b − a)2α−1 22α−2 f  a + b 2  + αΓ(2α) 2  −1 2 α−2 J2α−1 (a+b 2 )− f (a) + J2α−1 (a+b 2 )+ f (b)  (2.12) ≤ (b − a) 2α+1 (2αp + 1)1p23α " f00(a) q + f00(b) q 2 # . Remark 2.11. If we take α = 1 in (2.12), we obtain

f a + b 2  − 1 b − a b Z a f (t) dt ≤ (b − a) 2 8 (2p + 1)1p " f00(a) q + f00(b) q 2 #1q , which is proved by Sarikaya and Yildirim in [17].

Corollary 2.9. Under the same assumptions of Theorem 2.3 with f00(a) q

= f00(b) q in (2.10), then the following inequality holds:

|S(α; w, f )| ≤ (b − a) 1 q f00(a)(2αp + 1)1p h kwkαp[a,x],∞(x − a)2αp+1+ kwkαp[x,b],∞(b − x)2αp+1i 1 p ≤ kwk α [a,b],∞(b − a) 1 q 2α(2αp + 1)1p f 00 (a) (x − a) 2αp+1 + (b − x)2αp+11p.

Theorem 2.4. Let f : I ⊂ R → R be twice differentiable function on I◦, a, b ∈ I◦ with a < b, f00 is absolutely continuous on [a, b] and let w : [a, b] → R be nonnegative and continuous on [a, b]. If |f00|q is convex on [a, b], q ≥ 1, then for all x ∈ [a, b], the following inequalities hold:

|S(α; w, f )| ≤ kwk α [a,x],∞(x − a) 2α+1 22α(2α + 1)1p(b − a) 1 q × (b − a) + (2α + 1) (b − x) (2α + 1) (2α + 2) f 00 (a) q +(x − a) 2α + 2 f 00 (b) q1q

(15)

+ kwk α [x,b],∞(b − x) 2α+1 22α(2α + 1)1p (b − a) 1 q × (b − a) + (2α + 1) (x − a) (2α + 1) (2α + 2) f 00 (b) q +(b − x) 2α + 2 f 00 (a) q1q ≤ kwk α [a,b],∞ 22α(2α + 1)1p(b − a) 1 q (2.13) ×  (x − a)2α+1 (b − a) + (2α + 1) (b − x) (2α + 1) (2α + 2) f 00 (a) q +(x − a) 2α + 2 f 00 (b) q1q + (b − x)2α+1 × (b − a) + (2α + 1) (x − a) (2α + 1) (2α + 2) f 00 (b) q +(b − x) 2α + 2 f 00 (a) q1q) ,

where α ≥ 1, 1p + 1q = 1, and kwk= sup t∈[a,b]

|w(t)|.

Proof. We take absolute value of (2.1). Because of 1p + 1

q = 1, α  1 p + 1 q  can be written instead of α. Using Holder’s inequality and the convexity of f0

q , we find that |S(α; w, f )| ≤   x Z a   t Z a (t − u) w (u) du   α dt   1 p ×   x Z a   t Z a (t − u) w (u) du   α |f00(t)|qdt   1 q +   b Z x   b Z t (u − t) w (u) du   α dt   1 p ×   b Z x   b Z t (u − t) w (u) du   α |f00(t)|qdt   1 q .

From (2.7), it follows that

|S(α; w, f )| ≤ kwk α [a,x],∞ 22α (x − a)2α+1 2α + 1 !1p

(16)

×   x Z a (t − a)2α b − t b − a f 00 (a) q + t − a b − a f 00 (b) q dt   1 q +kwk α [x,b],∞ 22α (b − x)2α+1 2α + 1 !1p ×   b Z x (b − t)2α b − t b − a f 00 (a) q + t − a b − a f 00 (b) q dt   1 q = kwk α [a,x],∞ 22α(b − a)1q (x − a)2α+1 2α + 1 !p1 × " (b − a)(x − a) 2α+1 2α + 1 − (x − a)2α+2 2α + 2 ! f 00 (a) q +(x − a) 2α+2 2α + 2 f 00 (b) q# 1 q + kwk α [x,b],∞ 22α(b − a)1q (b − x)2α+1 2α + 1 !1p × " (b − a)(b − x) 2α+1 2α + 1 − (b − x)2α+2 2α + 2 ! f 00 (b) q +(b − x) 2α+2 2α + 2 f 00 (a) q# 1 q = kwk α [a,x],∞(x − a) 2α+1 22α(2α + 1)p1 (b − a) 1 q × (b − a) 2α + 1 − (x − a) 2α + 2  f 00 (a) q + (x − a) 2α + 2 f 00 (b) q1q + kwk α [x,b],∞(b − x) 2α+1 22α(2α + 1)1p(b − a) 1 q × (b − a) 2α + 1 − (b − x) 2α + 2  f 00 (b) q +(b − x) 2α + 2 f 00 (a) q1q

and because of kwk[a,x],∞ ≤ kwk[a,b],∞ and kwk[x,b],∞ ≤ kwk[a,b],∞, therefore, the proof

(17)

Corollary 2.10. Under the same assumptions of Theorem 2.4 with α = 1, then the following inequality holds:

|S(1; w, f )| ≤ kwk[a,b],∞ 4 · 31p(b − a) 1 q ( (x − a)3 4b − a − 3x 12 f 00 (a) q +(x − a) 4 f 00 (b) q1q + (b − x)3 3x − 4a + b 12 f 00 (b) q +(b − x) 4 f 00 (a) q1q) .

Corollary 2.11. Under the same assumptions of Theorem 2.4 with w(s) = 1, then the following inequality holds:

|S(α; 1, f )| ≤ 1 22α(2α + 1)1p(b − a) 1 q × ( (x − a)2α+1 (b − a) + (2α + 1) (b − x) (2α + 1) (2α + 2) f 00 (a) q + (x − a) 2α + 2 f 00 (b) q1q (2.14) + (b − x)2α+1 (b − a) + (2α + 1) (x − a) (2α + 1) (2α + 2) f 00 (b) q +(b − x) 2α + 2 f 00 (a) q1q ) . Corollary 2.12. If we take α = 1 in (2.14), we get

 a + b 2 − x  f0(x) + f (x) − 1 b − a b Z a f (t) dt ≤ 1 4 · 31p(b − a) 1 q+1 ( (x − a)3 4b − a − 3x 12 f 00 (a) q + (x − a) 4 f 00 (b) q1q + (b − x)3 3x − 4a + b 12 f 00 (b) q +(b − x) 4 f 00 (a) q1q) .

Corollary 2.13. Under the same assumptions of Theorem 2.4 with w(s) = 1 and x = a+b2 , we obtain α  −1 2 α−1 (b − a)2α−1 22α−2 f  a + b 2  + αΓ(2α) 2  −1 2 α−2 J2α−1 (a+b 2 )− f (a) + J2α−1 (a+b 2 )+ f (b) 

(18)

≤ (b − a) 2α+1 (2α + 1)1p24α+1+ 1 q (  (2α + 3) (2α + 1) (2α + 2) f 00 (a) q + 1 2α + 2 f 00 (b) q1q +  (2α + 3) (2α + 1) (2α + 2) f 00 (b) q + 1 2α + 2 f 00 (a) q1q) .

Corollary 2.14. Under the same assumptions of Corollary 2.13 with α = 1, then we have f a + b 2  − 1 b − a b Z a f (t) dt ≤ (b − a) 2 21q+5× 3 1 p    " 5 f00(a) q + 3 f00(b) q 12 #1q + " 3 f00(a) q + 5 f00(b) q 12 #1q   . References

[1] F. Ahmad, N. S. Barnett and S. S. Dragomir, New weighted Ostrowski and Cebysev type inequalities, Nonlinear Anal. 71(12), (2009), 1408–1412.

[2] F. Ahmad, A. Rafiq and N. A. Mir, Weighted Ostrowski type inequality for twice differentiable mappings, Glob. J. Pure Appl. Math 2(2) (2006), 147–154.

[3] N. S. Barnett and S. S. Dragomir, An Ostrowski type inequality for double integrals and appli-cations for cubature formulae, Soochow J. Math. 27(1) (2001), 109–114.

[4] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11(5) (1998), 91–95.

[5] J. Deng and J. Wang, Fractional Hermite-Hadamard inequalities for (α, m)-logarithmically convex functions, J. Inequal. Appl. 2013(364) (2013), 1–11.

[6] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.

[7] S. Hussain, M. A. Latif and M. Alomari, Generalized duble-integral Ostrowski type inequalities on time scales, Appl. Math. Lett. 24(8) (2011), 1461–1467.

[8] A. M. Ostrowski, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Inte-gralmitelwert, Comment. Math. Helv. 1938(10) (1938), 226–227.

[9] A. Qayyum, A weighted Ostrowski-Grüss type inequality and applications, in: Proceeding of the World Cong. on Engineering, 2009, pp. 1–9.

[10] A. Rafiq and F. Ahmad, Another weighted Ostrowski-Grüss type inequality for twice differentiable mappings, Kragujevac J. Math. 31 (2008), 43–51.

[11] M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae LXXIX(1) (2010), 129–134.

[12] M. Z. Sarikaya, On the Ostrowski type integral inequality for double integrals, Demonstratio Math. XLV(3) (2012), 533–540.

[13] M. Z. Sarikaya and H. Ogunmez, On the weighted Ostrowski type integral inequality for double integrals, Arab. J. Sci. Eng. ASJE. Math. 36(6) (2011), 1153–1160.

[14] M. Z. Sarikaya and S. Erden, On the weighted integral inequalities for convex function, Acta Univ. Sapientiae Math. 6(2) (2014), 194–208.

[15] M. Z. Sarikaya and S. Erden, On the Hermite-Hadamard-Fejer type integral inequality for convex function, Turkish J. Anal. Number Theory 2(3) (2014), 85–89.

(19)

[16] M. Z. Sarikaya and H. Yaldiz, Some inequalities associated with the probability density function, Submited 2014.

[17] M. Z. Sarikaya and H. Yildirim, Some new integral inequalities for twice differentiable convex mappings, Nonlinear Anal. Forum 17 (2012), 1–14.

[18] J. Wang, X. Li, M. Feckan and Y. Zhou, Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal. 92(11) (2013), 2241–2253. [19] C.-L. Wang and X.-H. Wang, On an extension of Hadamard inequality for convex functions,

Chin. Ann. Math. 1982(3) (1982), 567–570.

[20] S. Wasowicz and A. Witkonski, On some inequality of Hermite-Hadamard type, Opuscula Math. 32(2) (2012), 591–600.

[21] S.-H. Wu, On the weighted generalization of the Hermite-Hadamard inequality and its applica-tions, Rocky Mountain J. Math. 39(5) (2009), 1741–1749.

[22] B.-Y. Xi and F. Qi, Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacet. J. Math. Stat. 42(3) (2013), 243–257.

[23] B.-Y. Xi and F. Qi, Hermite-Hadamard type inequalities for functions whose derivatives are of convexities, Nonlinear Funct. Anal. Appl. 18(2) (2013), 163–176.

1

Department of Mathematics, Faculty of Science and Arts, University of Düzce

E-mail address: sarikayamz@gmail.com

2

Department of Mathematics, Faculty of Science,

University of Bartın

Referanslar

Benzer Belgeler

Analysis of variance (ANOVA) results of total color change (ΔE*) values of samples applied with acetic acid, ammonia, hydrogen peroxide and sodium silicate at different

The comparison results of the Duncan test on the factor levels of moisture content, type of varnish, thermal processing temperature, and thermal processing time,

The aim of this study was to investigate the effect of the Tinuvin derivatives widely used as UV stabilizers in the plastics industry on EPDM rubber.. The EPDM rubber plates

RBSÖ açısından benlik saygısı, anne-baba ilgisi ve babayla ilişki hasta grubunda kontrol grubuna göre daha düşük iken, eleştiriye duyarlılık, depresif

In diabetic aorta, the relaxation response to acetyl- choline (Ach) was found to be significantly decreased compared with control subjects, and resveratrol treatment reversed this;

Bu romanda önermek istediğim, sizin okur katında çok güzel algıladığınız, tıpkı bu roman yazarının bunu oluştururken bir şeyle­ re şöyle bakması gibi sen bu

Sayısal örnek için seçilen bir taşıyıcı sistem modeli, x ve y yönünde dört açıklıklı, zemin+dört katlı üç boyutlu çerçeve sistem olup,

Bu oluşturulan serilerden her birinden 9 adet (150x150x150 mm) küp numuneler hazırlanmıştır. İkinci aşamada ise maksimum agrega çapı 4, 8, 16 mm olan beton karışımlarla