• Sonuç bulunamadı

Self immolative dioxetane based chemiluminescent probe for H2O2 detection

N/A
N/A
Protected

Academic year: 2021

Share "Self immolative dioxetane based chemiluminescent probe for H2O2 detection"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

B:

Chemical

j ourn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / s n b

Self

immolative

dioxetane

based

chemiluminescent

probe

for

H

2

O

2

detection

Ozlem

Seven

a

,

Fazli

Sozmen

b

,

Ilke

Simsek

Turan

a,∗

aUNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,Ankara06800,Turkey bDepartmentofNanotechnologyEngineering,CumhuriyetUniversity,Sivas58140,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received30May2016

Receivedinrevisedform7September2016 Accepted20September2016

Availableonline20September2016 Keywords: Hydrogenperoxide Self-immolation 1,2-dioxetanes Chemosensors Chemiluminescence

a

b

s

t

r

a

c

t

ChemiluminescentdetectionofH2O2hasbeenachievedbyusingselfimmolativedioxetanebasedprobe whichenablesthesignalamplificationviadisassemblyoftwochemiluminogenicmodulesatthesame timeinresponsetosingleanalyte.UpontreatmentoftheprobewithH2O2,boronateesterwas depro-tectedsubsequentlytotriggerthedecompositionof1,2-dioxetaneringviaCIEELmechanismwhich resultsinlightemissionasaselectivesignofH2O2.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Asa relativelymildreactiveoxygenspecies(ROS),hydrogen peroxide(H2O2)isrecognizedas amessengermoleculein var-ioussignalingprocesses therewithalitis alsoincludedin many biologicalprocesseslikebiosynthesis,immuneresponseandcell signaling[1–3].Additionally,inmanyenzymaticreactions,H2O2is alsoproducedasabyproduct.Ontheotherhand,likeotherreactive oxygenspecies,excessiveproductionofH2O2cancauseoxidative stresswhichbringsaboutthedevelopmentofmanydiseasessuch asAlzheimer’sdisease,Parkinson’sdisease,cardiovasculardisease andHuntington’sdisease[4–6].Inotherwords,intermsof bene-ficialsignalingprocessesandharmfuloxidativestressproperties, thereisadelicatebalancefortheamountsofROS.Thisbalance isdisruptedinfavorofoxidativestresswithaging[7,8].So,the determinationofthesespecieswillallowustoidentifythe pro-duction,accumulation,traffickingofROSandalsorelateddiseases. Therefore,developmentofanalyticaltechniquesforselectiveand sensitivedetectionofH2O2isurgentlyneededinahigh-throughput fashion.Intheliterature,therearemanyproposalsforthe detec-tionofH2O2byusingchromogenicandfluorogenicprobes[9–13]. Asnewinsightsintotheopticalsensingsystems, chemilumines-cence(CL)basedoneswouldbepromisingduetotheirsuperior

∗ Correspondingauthor.

E-mailaddress:ilke.simsek@bilkent.edu.tr(I.SimsekTuran).

advantagessuchasoperationalsimplicity,costeffectiveness,rapid andhighsensitivity ofthetarget,beingfree frominterferences causedbylightscatteringandreducedbackgroundnoisedueto theabsenceofphotonicexcitation[14–16].InCLbasedsystems, lightemissionisobtainedasaresultofspecificchemicalreaction whichis uniquetotheanalyteof interest.Duetotheemission oflight uponinteractionwiththeanalyteofinterest,CLisalso acceptedascoldlight.Asaresult,chemiluminescencebased sen-sorisdesigned totransform chemicalinformation intoauseful signalasalightemission. Althoughchemiluminescencesensors haveshorterlifetimescomparedtofluorescencesensors,they fre-quentlyhavelowerbackgroundemissionthatmakestheCLasa powerfulanalyticaltechniqueofferinghighsensitivity,wide lin-earrangeandsimpleinstrumentation[17,18].Although,thereare afewreportsforthechemiluminescencebaseddetectionofH2O2

[19,20],untilnow,tothebestofourknowledge,noreportsbased onthechemiluminescencebaseddetectionofH2O2byusing 1,2-dioxetanebasedself-immolativesystemshavebeenpublished.

As a chemiluminogenic unit, our choice was a stable 1,2-dioxetanes which is a four-membered cyclic peroxide usually implicated asthe reactiveintermediates in bioluminescenceas wellasoxalateesters,luminolandacridiniumesters[21–23].Use of1,2-dioxetane derivativesaschemiluminogenicunit isa very promisingalternativestrategysinceitoffersdirect chemilumino-genicresponsewhichcanbetriggeredbythecleavageofachemical bondundermildreactionconditionsspecifictotheanalyteof inter-est[24–26].Thedecompositionof1,2-dioxetanesthat produces

http://dx.doi.org/10.1016/j.snb.2016.09.120

(2)

chemiluminescenceisprobablyoneofthemostinterestingtype of chemical reactionsand therefore it hasbeen focus of many chemical and biological research[27,28].The decomposition of 1,2-dioxetanesisinitiatedwiththeremovaloftriggeringmoiety whichresultsintwomainproducts,oneofwhichisformedinthe excitedstateundergoinganelectrontransferaccordingtoCIEEL (Chemically InitiatedElectron ExchangeLuminescence) mecha-nismandeventuallyrelaxesradiatively withapeakemissionat 466nmwhichdependsonthestructureofthe1,2-dioxetanes.The chemicallyinitiateddecompositionmechanismof1,2-dioxetanes isgenerally triggeredwitha catalyst suchas abaseor ametal ion. Until now, designed chemiluminogenic agents rely onthe decompositionofsinglesubstituted1,2-dioxetanesupon interac-tionwiththesingleanalyte[17,29–33].However,self-immolation enablesthefragmentationoflargemoleculesleadingtothe for-mationofmultipleexcitedstateanionsuponinteractionwiththe singleanalytewhichcouldleadtovaluablesignalamplificationin chemosensorstargetingreactiveanalyteswhenusedjudiciously [34–36].

Herein, we design and synthesize 1,2-dioxetane based self immolative chemiluminogenic probe for H2O2. We wanted to incorporatea self immolativelinker totriggertwo chemilumi-nescenceprocessesatthesametime,inresponsetosingleH2O2 mediateddeprotectionevent.Self-immolationoftheprobewas ini-tiatedwiththedeprotectionoftheboronateestergroupleadingto lightemission.Untilnow,tothebestofourknowledge,noreports forchemiluminescentdetectionofH2O2byusingaself immola-tive1,2-dioxetanebasedsensorshavebeenpublished.Thisfinding mayserveasaplatformforfutureH2O2sensorapplications.This studyprovidesanewinsightintoapplicationsof chemilumines-cencebasedsensors.

2. Materialsandmethods

2.1. Materials

Spectrophotometricgradesolventswereusedforspectroscopy experiments.Flashcolumnchromatography(FCC)wasperformed byusingaflashgradesilicagel(MerckSilicaGel60(40–63␮m)). Reactions were monitoredby thin layerchromatography (TLC) usingprecoatedsilicagelplates(MerckSilicaGelPF-254), visu-alizedbyUV–vislight.Allorganicextractsweredehydratedover anhydrousNa2SO4 andconcentratedbyusingrotaryevaporator beforebeingsubjected toFCC. Allotherchemicalsand solvents weresuppliedfromcommercialsourcesandusedasreceived. 2.2. Intsruments

1HNMRand13CNMRspectrawererecordedonBruker Spec-trospinAvanceDPX400spectrometerusingCDCl3asthesolvent. Chemicalshiftsvalues arereportedinppm from tetramethylsi-laneasinternalstandard. Spinmultiplicitiesarereportedasthe following:s(singlet),d(doublet),m(multiplet).HRMSdatawere acquiredonanAgilentTechnologies6530Accurate-MassQ-TOF LC/MS.ChemiluminescencemeasurementsweredoneonaVarian Eclipsespectrofluorometer.ApHmeter(Oakton,manufacturedby Eutechinstruments)wasusedtodeterminethepH.

2.3. Synthesisofcompounds 2.3.1. Synthesisofcompound(8)

Compound7(0.191g,0.555mmol)andcompound4(0.150g, 0.555mmol) were dissolved in acetone. K2CO3 (0.105g, 0.761mmol) and catalytic amount of 18-crown-6 was added toreactionmixturewhich wasrefluxedfor6h.Theprogressof thereactionwasmonitoredbyTLC.Whenstartingmaterialwas

consumed,mixture wasdilutedwithdiethyl etherand washed withsaturatedNH4Clsolution.Afterwashingwithbrine,combined organicphasesweredriedoveranhydrousNa2SO4.Afterremoval ofthesolvent,theresiduewaspurifiedbysilicagelflashcolumn chromatography using EtOAc/Hexane (1:5, v/v) as the eluent. Compound8wasobtainedascolorlesswaxyoil(0.212g,78%).1H NMR(400MHz,CDCl3)ı7.85(d,J=7.7Hz,2H),7.47(d,J=7.7Hz, 2H),7.27(t,J=7.7Hz,1H),6.90-6.95(m,3H),5.12(s,2H),3.30(s, 2H),3.27(s,1H),2.63(s,1H),1.74-1.99(s,1H),1.37(s,12H).13C NMR(100MHz,CDCl3)ı158.5,143.3,140.2,136.8,135.0,131.6, 135.0,131.6,128.9,126.5,122.2,115.6,114.1,83.8,69.8,57.7,39.2, 39.0, 37.2,32.2, 30.2,28.3, 24.8ppm.MS(TOF- ESI):m/z:Calcd for C31H39BO4: 486.30505 [M+H]+, Found: 486.30941 [M+H]+, =−8.97ppm.

2.3.2. Synthesisofprobe1

Compound 8 (0.070g, 0.144mmol) was dissolved in DCM. Methyleneblue(5mg)wasaddedtothereactionmixturewhich was irradiated while oxygen gas was passing through it. The progressofthereactionwasmonitoredbyTLC.WhenTLCshowed nostartingmaterial,themixturewasconcentratedundervacuo andtheresiduewassubjectedtothesilicagelflashcolumn chro-matographybyusingDCMastheeluent. Probe1wasobtained as whitesolid (0.061g,81%).1H NMR (400MHz,CDCl 3)ı 7.83 (d, J=7.9Hz, 2H),7.45(d, J=7.9Hz, 2H), 7.13–7.39(m, br,3H), 7.02–7.05(m,1H),5.18(s,2H),3.23(s,3H),3.02(s,1H),2.09(s, 1H),1.42-1.89(m,12H),1.36(s,12H).13CNMR(100MHz,CDCl 3)ı 139.9,136.1,135.0,129.2,126.4,116.4,112.0,95.4,83.8,69.9,49.9, 36.4,34.6,33.0,32.8,32.3,31.6,26.0,25.8,24.8ppm. 2.3.3. Synthesisofcompound(9)

2,6-Bis(hydroxymethyl)-p-cresol (1.0g, 5.95mmol) was dis-solved in DMF and cooledto 0◦C by using ice-bath. Imidazole (0.809g,11.9mmol)wasaddedtoreactionmixtureat0◦C.After 30min,tert-butyldimethylsilylchloride(1.820g,11.9mmol)was added toreactionmixture which waslefttostir atroom tem-peraturefor12h.Whenstartingmaterialwasconsumed,mixture wasdilutedwithdiethyletherandwashedwithsaturatedNH4Cl solution.Afterwashingwithbrine,combinedorganicphaseswere driedover anhydrousNa2SO4.Afterremovalofthesolvent,the residue waspurified bysilicagelflash columnchromatography using EtOAc/Hexane (1:5, v/v) as the eluent. Compound 9 was obtained as colorless waxy oil(2.1g, 89%).1H NMR (400MHz, CDCl3)ı8.04(s,1H),6.93(s,1H),4.85(s,4H),0.97(s,12H),0.15 (s,6H).13C NMR(100MHz, CDCl

3)ı150.9,128.2,126.2,125.7, 63.0, 64.8, 25.8,20.6, 18.3, −5.4ppm. MS(TOF–ESI): m/z:Calcd forC21H40O3Si2:419.24082[M+Na]+,Found:419.24523[M+Na]+, =−10.52ppm.

2.3.4. Synthesisofcompound(10)

Compound 9 (0.50g, 1.26mmol) and compound 7 (0.433g, 1.26mmol)weredissolvedinacetone.K2CO3(0.209g,2.52mmol) andcatalyticamountof18-crown-6wasaddedtoreaction mix-turewhichwasrefluxedfor6h.Theprogressofthereactionwas monitoredbyTLC.Whenstartingmaterialwasconsumed,mixture wasdilutedwithdiethyletherandwashedwithsaturatedNH4Cl solution.Afterwashingwithbrine,combinedorganicphaseswere driedover anhydrousNa2SO4.Afterremovalofthesolvent,the residue waspurified bysilicagelflash columnchromatography usingEtOAc/Hexane(1:5, v/v)astheeluent.Compound10 was obtainedascolorlesswaxyoil(0.718g,93%).1HNMR(400MHz, CDCl3)ı7.97(d,J=7.7Hz,2H),7.54(d,J=7.7Hz,2H),7.30(s,2H), 5.02(s,2H),4.82(s,4H),2.45(s,3H),1.45(s,12H),1.04(s,12H), 0.19(s,6H).13CNMR(100MHz,CDCl

3)ı151.2,140.8,135.1,133.8, 133.6,128.0,127.0,83.8, 76.2, 63.1, 60.4,26.0, 24.9, 21.2, 18.4,

(3)

−5.1ppm.MS(TOF-ESI):m/z:CalcdforC34H57BO5Si2:634.37661 [M+Na]+,Found:635.37999[M+Na]+,=−11.3ppm.

2.3.5. Synthesisofcompound(11)

Compound10(0.287g,0.468mmol)wasdissolvedinmethanol andcatalyticamountofp-toluenesulfonicacidwasaddedto reac-tion mixture which was stirred at room temperature for 2h. TheprogressofthereactionwasmonitoredbyTLC.When start-ingmaterialwasconsumed,mixturewasdilutedwithDCMand washedwithsaturatedNaHCO3solution.Afterwashingwithbrine, combined organic phases were dried over anhydrous Na2SO4. Afterremovalof thesolvent,theresidue waspurified by silica gelflashcolumnchromatographyusingDCMastheeluent. Com-pound11wasobtainedascolorlesswaxyoil(0.176g,98%).1HNMR (400MHz,CDCl3)ı7.83(d,J=7.8Hz,2H),7.39(d,J=7.8Hz,2H), 7.30(s,2H),7.12(s,2H),4.85(s,2H),4.60(s,4H),3.12(s,br,2H), 2.28(s,3H),1.37(s,12H).13CNMR(100MHz,CDCl

3)ı152.2,140.0, 135.1,134.2,133.8,129.3,127.1,83.9,76.6,60.4,24.8,20.8ppm.MS (TOF-ESI):m/z:CalcdforC22H29BO5:406.20366[M+Na]+,Found: 406.20562[M+Na]+,=−4.83ppm.

2.3.6. Synthesisofcompound(12)

Compound11(0.40g,1.04mmol)wasdissolvedindryTHFand mixturewascooledto0◦Cbyusingice-bath.Diisopropylamine (1.21mL,8.0mmol)andpyridine(0.05mL)wereaddedtoreaction mixtureunderAr.p-nitrochloroformate(0.897g,4.16mmol) dis-solvedindryTHFwasaddeddropwisetoreactionmixtureunder Arat 0◦C. The progressof thereaction wasmonitoredbyTLC. Whenstartingmaterialwasconsumed,mixturewasdilutedwith DCMandwashedwithsaturatedNaH4Clsolution.Afterwashing withbrine,combinedorganicphasesweredriedoveranhydrous Na2SO4.Afterremovalofthesolvent,theresiduewaspurifiedby silicagelflashcolumnchromatographyusingDCM/Hexane(3:1, v/v)astheeluent.Compound12wasobtainedascolorlesswaxy oil(0.580g,78%).1HNMR(400MHz,CDCl 3)ı8.26(d,J=9.1Hz, 4H),7.86(d,J=7.8Hz,2H),7.50(d,J=7.8Hz,2H),7.36(s,2H),7.32 (d,J=9.1Hz,4H),5.36(s,4H),5.08(s,2H),2.40(s,3H),1.39(s,12H). 13CNMR(100MHz,CDCl 3)ı155.4,154.5,152.3,145.4,139.6,135.1, 134.8,132.7,128.1,126.7,126.1,125.2,121.7,115.6,84.0,66.2,24.8, 20.7ppm.MS(TOF-ESI):m/z:CalcdforC36H35BN2O13:736.21607 [M+Na]+,Found:736.21755[M+Na]+,=−1.94ppm.

2.3.7. Synthesisofcompound(13)

Compound12(0.03g,0.420mmol)wasdissolvedindryDCM. DMAP(0.123g,1.0mmol)wasaddedtoreactionmixtureunderAr. Compound4(0.272g,1.0mmol)dissolvedindryDCMwasadded dropwisetothereactionmixturewhichwasstirredatroom tem-peratureovernight.Theprogressofthereactionwasmonitored byTLC.Whenthestarting materialwasconsumed,themixture wasconcentratedundervacuoandtheresiduewassubjectedto thesilicagelflashcolumnchromatographyusingEtOAc/Hexane (1:10,v/v)astheeluent.Compound13wasobtainedaswhitesolid (0.258g,63%).1HNMR(400MHz,CDCl 3)ı7.87(d,J=8.0Hz,2H), 7.51(d,J=7.9Hz,2H),7.34-7.38(m,4H),7.22(m,2H),7.36(s,2H), 7.15(m,2H),7.08-7.11(m,2H),5.34(s,4H),5.06(s,2H),3.31(s, 3H),3.26(s,2H),2.67(s,2H),2.39(s,3H),1.80-1.99(m,28H),1.37 (s,12H).13CNMR(100MHz,CDCl 3)ı154.1,153.5,150.9,142.5, 139.7,137.1,135.1,132.7,132.2,128.9,128.5,127.1,126.9,121.7, 119.9,83.8,57.9,39.2,39.1,37.1,32.1,30.2,28.2,24.8,20.8ppm. MS(TOF-ESI):m/z:CalcdforC60H69BO11:1062.45505[M+Na]+, Found:1062.45455[M+Na]+,=10.12ppm.

2.3.8. Synthesisofprobe2

Synthesisofprobe2wasachievedbyusingsameprocedureas inprobe1startingwithcompound14(0.128g,0.13mmol).Probe 2wasobtainedaswhitesolid(0.122g,90%).1HNMR(400MHz,

CDCl3)ı8.14(d,J=9.0Hz,1H),7.86(d,J=8.2Hz,2H),7.51-7.45(m, 6H),7.36(s,2H),7.22(d,J=8.2Hz,2H),6.91(d,J=9.0Hz,1H),5.33 (s,4H),5.05(s,2H),3.23(s,3H),3.05(s,2H),2.39(s,3H),2.15(s, 2H),1.90-1.47(m,28H),1.37(s,12H).13CNMR(100MHz,CDCl 3)ı 154.1,153.4,151.1,139.6,135.1,134.6,132.3,129.3,128.4,127.0, 126.1,122.1,115.6,111.5,95.5,83.9,65.7,50.6, 39.3,36.3,34.7, 33.1,32.8,32.2,31.6,31.5,25.9,25.8,24.8,20.8ppm.

3. Resultsanddiscussions

OurstrategyreliesontheselectiveH2O2mediateddeprotection ofboronateesterswhichleadstotheformationofm-oxybenzoate anionasaresultofthedecompositionoftheprobes1and2.So, we designed and synthesizedtwo different probes1 and 2 for comparison.Inthecaseofprobe1whichisthereferenceprobe, singleanalyteleadstoformationofunamplifiedchemiluminogenic responsewhereas inthecaseof probe2which istheamplifier probe,disassemblyoftheselfimmolativemoleculeupon interac-tionwithsingleH2O2leadstocompletefragmentationandthusin turn,signalamplificationisachieved.

3.1. Synthesisofprobes

Compounds1–4and 5–7forthesynthesis ofprobe 1and 2 wereprepared according totheliterature [37,38].To that end, thesynthesisof triggeringmoietywasstarted withthe protec-tionof4-formylphenylboronicacid.Formylgroupwasreduced toobtaincompound6whichisfurtherconvertedintoiodinated form7.Meanwhile,3-hydroxybenzaldehydewasreactedwith ben-zoyl chloride and resulting phenyl ester 1 was converted into dimethylacetalderivative2subsequenttotheconversionofthis intophosphonatederivative3 viaArbuzovreaction.Compound 3 wasreactedwith2-adamantanone tocomplete thesynthesis of chemiluminescenceprecursor, compound 4which is further reacted with compound 7 to complete the synthesis of probe 1.Theselfimmolativelinkerwasprepared accordingtoShabat andco-workers[39,40].Triggeringmoietywasintroducedtoself immolativecoregroupwhich wasobtainedbythesilyl protec-tionof2,6-bis(hydroxymethyl)-p-cresol.Constructionofthetarget compoundscontinuedwiththeincorporationofcarbonategroups intothesilyldeprotectedcompound11.Chemiluminogenicunits wereassembled bythereaction ofactivatedlinkerwiththe 3-hydroxyphenylmoietyofthereportercompound4.Inthefinalstep, theelectron-richenoletherswereefficientlyphotooxygenatedto yield1,2-dioxetanederivativesasprobe1andprobe2(Scheme1). 3.2. Chemiluminescencemeasurements

InordertodeterminetheH2O2sensingcapabilitiesofprobe1 and2,asolutionofH2O2wasaddedinportions(50␮M–2.5mM) andaftereachaddition,theCLspectrawererecorded.Asexpected, both probe 1 and 2 showed increase in CL response (CL on-mode) after each addition depending on the decomposition of boronategroupandformationofthephenolate ion.Verybright bluechemiluminescenceisobtaineduponadditionofH2O2 and largerconcentrationsleadtomoreintenseluminescence(Fig.1).

Dataprovideclearevidencethatprobe2amplifiesthe chemi-luminogenicsignalquartertimesmoreaccordingtoprobe1and senses theloweramount ofH2O2 (Fig.2).The detectionlimits werecalculatedas75␮Mforprobe2(␴=0,007887,m=314,36). For probe 1, the detection limit was determined as 240␮M (␴=0,020766,m=258,55)inDMSOand0.67mMinDMSO/NaHCO3 (140mM,90/10,pH8.3).So,probe2hadmorelightemissiondueto thepresenceofthetwo1,2-dioxetanegroups.Inotherwords,the more1,2-dioxetanemodulesmeanslargerproductionofexcited stateintermediate,whichmeansenhancedCLintensity.

(4)

Scheme1.SynthesisofselfimmolativedioxetanebasedCLH2O2probes1and2.(TEA:triethylamine,DMAP:4-dimethylaminopyridine,LDA:Lithiumdiisopropylamide,

TMS-Cl:trimethylsilylchloride,p-TsOH:p-toluene-sulfonicacid,TBDMS-Cl:tertbutyldimethylsilylchloride,DIPEA:N,N-diisopropylethylamine).

Fig.1.Chemiluminescenceresponseofprobes1(A)and2(B)inthepresenceofincreasingH2O2concentrationswherein1–50equiv.in(A)and0,25to50equiv.in(B).Probe

concentrationis50␮M.SpectrawereacquiredinDMSO/NaHCO3(140mM,90/10,pH8.3)forbothprobesandalldatawereobtainedafterincubationwithH2O2at25◦Cfor

(5)

Fig.2.Comparisonofchemiluminescenceresponseofprobe1and2inthe pres-enceofincreasingH2O2concentrationswherein1to50equiv.inprobe1and0,25

to50equiv.inprobe2.Probeconcentrationis50␮M.Spectrawereacquiredin DMSO/NaHCO3(140mM,90/10,pH8.3)forbothprobesandalldatawereobtained

afterincubationwithH2O2at25◦Cfor30s.

WealsostudiedtheoptimalbufferratiosforCLresponse of probe2atdifferentpercentagesofbuffer(NaHCO3,140mM,90/10, pH8.3)inDMSO(Fig.3).TheCLintensitiesdecreasedwith increas-ing bufferpercentages due tothe possibility of protonation of phenoxideionwhichpreventschargetransferfromphenoxideion to1,2-dioxetanegroup.Spectroscopiccharacterizationofprobe1 wasgiveninSupplementarymaterial.

3.3. Selectivityoverotherrelatedspecies

Further,theselectivityof probe 2 for otherreactiveoxygen specieswasalsoinvestigated.Tothatend,selectivityofprobe2 towardvariousreactiveoxygenspeciesliketert-butyl hydroperox-ide(TBHP),hypochlorite(OCl−),superoxide(O2−),hydroxylradical (•OH),tert-butoxyradical(.OtBu)aredeterminedaccordingtothe literature[41]anddisplayedinFig.4.Thus,treatmentoftheprobe 2witha numberofpotentialcompetitorROSdoesnotresulted inanyluminescence.CLdataprovideclearevidencethat ampli-fier2offerverygoodselectivityforH2O2.Nootherspecieswas abletodecomposetheboronategroups;as aresultnochanges intheCLspectrawereobserved(Fig.4).Digitalphotographsof thesolutionsshowtheselectivityofchemiluminescentamplifier probe2underambientlight(Fig.5).H2O2inDMSO-buffermixture elicitsclearresponsewithluminescenceintensityreflectingH2O2 concentration.

3.4. Proposeddecompositionmechanism

Allexperimentsareincompleteagreementwiththefollowing mechanismsdescribedinScheme2.Wehaveproposedthat chemi-luminescent disassembly of the amplifier probe was preceded viahydroboration-oxidationreactionbetweenH2O2andboronate esterleadingtoformationofphenoxideionandthus,releasesthe

Fig.3.Chemiluminescenceresponseofprobe2atdifferentpercentagesofbuffer (NaHCO3,140mM,90/10,pH8.3)inDMSO.Probeconcentrationis50␮M.Alldata

wereobtainedafterincubationwithH2O2at25◦Cfor30s.

Fig.4. Chemiluminescenceresponsesof50␮Mprobe2tovariousreactiveoxygen species(ROS).SpectrawereacquiredinDMSO/NaHCO3(140mM,90/10,pH8.3)for

bothprobesandalldatawereobtainedafterincubationwiththeappropriateROS at25◦Cfor30s.Datashownarefor10mMforO2,250␮MforallotherROS.

tert-butylhydroperoxide(TBHP),andhypochlorite(OCl−)weredeliveredfrom30%,70%,

and5%aqueoussolutions,respectively.Superoxide(O2−)wasaddedassolidKO2.

Hydroxylradical(.OH)andtert-butoxyradical(OtBu)weregeneratedbyreaction

of2.5mMFe2+with250␮MH

2O2or250␮MTBHP,respectively.

activatedcoremoleculeA.Subsequentdissociationofthe inter-mediatecompoundAleadstotheformationofactivatedformof 1,2-dioxetaneBduetothepKaofthemedium.Phenoxideionof 1,2-dioxetaneBtransferselectrontoO–Oofdioxetanetoinitiateits decompositionforthegenerationofexcitedm-oxybenzoateanion Cwhileitrelaxesbacktogroundstate,resultingintheemissionof photonasshowninScheme2.

4. Conclusion

In summary, we demonstrated that multiple chemilumino-genic groups canbetriggeredby usingself-immolativelinkers. Thisapproachoffersachemicalavenueforenhancingthesignal producedinresponsetoagivenanalyte.Wehavedescribedthe synthesis and CL propertiesof self immolativeprobe 2 for the selectivedetectionofH2O2.UpontreatmentofprobewithH2O2, deprotectionofboranatesubsequentlytriggerthedecomposition of1,2-dioxetaneringviaintramolecularchargetransferduetothe negativelychargedphenolategroups.Thisdecompositionresultsin formationofCLasasignalofH2O2.Probe2hasfulfilledtheH2O2 detectioninahighlyselectivemanner.Webelievethatthisstudy islikelytoprovidenewinsightsintothedevelopmentof chemi-luminescencebasedH2O2sensorsandbrightchemiluminescence oftheprobe2orstructurallyrelatedderivativescouldprovidea promisingalternative.

Fig.5.Thedigitalphotographshowingtotheselectivechemiluminescentresponse ofprobe2underambientlight.

(6)

Scheme2.ProposedchemiluminescentdecompositionprocesscatalysedbyH2O2forprobe2.

Acknowledgment

TheauthorsthankProfessorDr.EnginU.Akkayaforfruitful dis-cussions.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.snb.2016.09.120.

References

[1]A.Matsuzawa,K.Saegusa,T.Noguchi,C.Sadamitsu,H.Nishitoh,S.Nagai,S. Koyasu,K.Matsumoto,K.Takeda,H.Ichijo,ROS-dependentactivationofthe TRAF6-ASK1-p38pathwayisselectivelyrequiredforTLR4-mediatedinnate immunity,Nat.Immunol.6(2005)587–592.

[2]Q.Li,M.M.Harraz,W.Zhou,L.N.Zhang,W.Ding,Y.Zhang,T.Eggleston,C. Yeaman,B.Banfic,J.F.Engelhardt,Nox2andRac1regulateH2O2-dependent

recruitmentofTRAF6toendosomalinterleukin-1receptorcomplexes,Mol. Cell.Biol.26(2006)140–154.

[3]S.G.Rhee,H2O2,anecessaryevilforcellsignaling,Science312(2006)

1882–1883.

[4]A.M.Shah,K.M.Channon,Freeradicalsandredoxsignallingincardiovascular disease,Heart90(2004)486–487.

[5]K.J.Barnham,C.L.Masters,A.I.Bush,Neurodegenerativediseasesand oxidativestress,Nat.Rev.DrugDiscov.3(2004)205–214.

[6]J.R.Connor(Ed.),MetalsandOxidativeDamageinNeurologicalDisorders, PlenumPress,NewYork,1997.

[7]T.Finkel,N.J.Holbrook,ReviewarticleOxidants,oxidativestressandthe biologyofageing,Nature408(2000)239–247.

[8]K.B.Beckman,B.N.Ames,Thefreeradicaltheoryofagingmatures,Physiol. Rev.78(1998)547–581.

[9]H.Maeda,Y.Fukuyasu,S.Yoshida,M.Fukuda,K.Saeki,H.Matsuno,Y. Yamauchi,K.Yoshida,K.Hirata,K.Miyamoto,Fluorescentprobesfor hydrogenperoxidebasedonanon-oxidativemechanism,Angew.Chem.Int. Ed.43(2004)2389–2391.

[10]L.-C.Lo,C.-Y.Chu,Developmentofhighlyselectiveandsensitiveprobesfor hydrogenperoxide,Chem.Commun.(2003)2728–2729.

[11]S.A.Nu ˜nez,K.Yeung,N.S.Fox,S.T.Phillips,Astructurallysimple

self-immolativereagentthatprovidesthreedistinct,simultaneousresponses perdetectionevent,J.Org.Chem.76(2011)10099–10113.

[12]D.Srikun,E.W.Miller,D.W.Domaille,C.J.Chang,AnICT-basefapproachto ratiometricfluorescenceimagingofhydrogenperoxideproducedinliving cells,J.Am.Chem.Soc.130(2008)4596–4597.

[13]X.Li,X.Gao,W.Shi,H.Ma,Designstrategiesforwater-solublesmall molecularchromogenicandfluorogenicprobes,Chem.Rev.114(2013) 590–659.

[14]L.J.Kricka,Chemiluminescenceandbioluminescence,Anal.Chem.67(1999) 499–502.

[15]J.A.Richard,L.Jean,C.Schenkels,M.Massonneau,A.Romieu,P.Y.Renard, Self-cleavablechemiluminescentprobessuitableforproteasesensing,Org. Biomol.Chem.7(2009)2941–2957.

[16]L.Yang,G.Guan,S.Wang,Z.Zhang,Nano-anatase-enhancedperoxyoxalate chemiluminescenceanditssensingapplication,J.Phys.Chem.C116(2012) 3356–3362.

[17]M.Matsumoto,Advancedchemistryofdioxetane-basedchemiluminescent substratesoriginatingfrombioluminescence,J.Photochem.Photobiol.C: Photochem.Rev.5(2004)27–53.

[18]M.L.Grayeski,Chemiluminescenceanalysis,Anal.Chem.59(1987) 1243A–1256A.

[19]H.Akhavan-Tafti,R.Eickholt,K.Lauwers,R.Handley,US2004/0166539A1, filedFeb.20,2003andissuesAug26,2004.

[20]H.Akhavan-Tafti,R.Eickholt,K.Lauwers,R.Handley,US2004/0171098A1, filedFeb20,2003andissuedSep02,2004.

[21]X.Li,Z.Zhang,L.Tao,M.Gao,Sensitiveandselectivechemiluminescence assayforhydrogenperoxideinexhaledbreathcondensateusing nanoparticle-basedcatalysis,SpectroChim.ActaA107(2013)311–316.

[22]D.Lee,S.Khaja,J.C.Velasquez-Castano,M.Dasari,C.Sun,J.Petros,W.R. Taylor,N.Murthy,Invivoimagingofhydrogenperoxidewith chemiluminescentnanoparticles,Nat.Mater.6(2007)765–769.

[23]M.Sekiya,K.Umezawa,A.Sato,D.Citteri,K.Suzuki,Anovelluciferin-based brightchemiluminescentprobeforthedetectionofreactiveoxygenspecies, Chem.Commun.(2009)3047–3049.

[24]M.Matsumoto,N.Watanabe,N.Hoshiya,H.K.Ijuin,Colormodulationfor intramolecularcharge-transfer-inducedchemiluminescenceof 1,2-dioxetanes,Chem.Rec.8(2008)213–228.

[25]M.Tanimura,N.Watanabe,H.K.Ijuin,M.Matsumoto,Base-induced chemiluminescentdecompositionofbicyclicdioxetanesbearinga

(benzothiazol-2-yl)-3-hydroxyphenylgroup:aradiationlesspathwayleading tomarkeddeclineofchemiluminescenceefficiency,J.Org.Chem.77(2012) 4725–4731.

[26]A.P.Schaap,S.D.Gagnon,Chemiluminescencefromaphenoxide-substituted 1,2-dioxetane:amodelforfireflybioluminescence,J.Am.Chem.Soc.104 (1982)3504–3506.

[27]L.F.M.L.Ciscato,D.Weiss,R.Beckert,W.J.Baader,Fenchylsubstituted 1,2-dioxetanesasanalternativetoadamantylderivativesforbioanalytical applications,J.Photochem.Photobiol.A218(2011)41–47.

[28]J.-A.Richard,L.Jean,A.Romieu,M.Massonneau,P.N.Fraissignes,P.-Y.Renard, Chemiluminescentprobefortheinvitrodetectionofproteaseactivity,Org. Lett.9(2007)4853–4855.

[29]I.S.Turan,O.Yilmaz,B.Karatas,E.U.Akkaya,Asensitiveandselective chemiluminogenicprobeforpalladium,RSCAdv.5(2015)34535–34540.

[30]I.S.Turan,F.Sozmen,Achromogenicdioxetanechemosensorforhydrogen sulfideandpHdependentoff-onchemiluminescenceproperty,Sens. ActuatorsB201(2014)13–18.

[31]I.S.Turan,E.U.Akkaya,Chemiluminescencesensingoffluorideionsusinga self-immolativeamplifier,Org.Lett.16(2014)1680–1683.

[32]J.Cao,J.Campbell,L.Liu,R.P.Mason,A.R.Lippert,Invivochemiluminescent imagingagentsfornitroreductaseandtissueoxygenation,Anal.Chem.88 (2016)4995–5002.

[33]J.Cao,R.Lopez,J.M.Thacker,J.Y.Moon,C.Jiang,S.N.S.Morris,J.H.Bauer,P. Tao,R.P.Masonc,A.R.Lippert,ChemiluminescentprobesforimagingH2Sin

livinganimals,Chem.Sci.6(2015)1979–1985.

[34]M.Avital-Shmilovici,D.Shabat,Self-immolativedendrimers:adistinctive approachtomolecularamplification,SoftMatter6(2010)1073–1080.

[35]E.Sella,A.Lubelski,J.Klafter,D.Shabat,Two-componentdendriticchain reactions:experimentandtheory,J.Am.Chem.Soc.132(2010)3945–3952.

[36]A.Sagi,R.Weinstein,N.Karton,D.Shabat,Self-immolativepolymers,J.Am. Chem.Soc.130(2008)5434–5435.

[37]C.A.Roeschlaub,P.G.Sammes,UseoftheWadsworth-Emmonsreactionfor preparinghinderedvinylethersandrelated1,2-dioxetanes,J.Chem.Soc. PerkinTrans.1(2000)2243–2248.

[38]E.Sella,D.Shabat,Dendriticchainreaction,J.Am.Chem.Soc.131(2009) 9934–9936.

[39]M.Avital-Shmilovici,D.Shabat,Dendriticchainreaction:responsiverelease ofhydrogenperoxideupongenerationandenzymaticoxidationofmethanol, Bioorg.Med.Chem.18(2010)3643–3647.

[40]E.Sella,D.Shabat,Self-immolativedendriticprobefordirectdetectionof triacetonetriperoxide,Chem.Commun.(2008)5701–5703.

(7)

[41]E.W.Miller,A.E.Albers,A.Paralle,E.Y.Isacoff,C.J.Chang,Boronate-based fluorescentprobesforimagingcellularhydrogenperoxide,J.Am.Chem.Soc. 127(2005)16652–16659.

Biographies

OzlemSevenPhDisapostdoctoralresearcherinUNAM-NationalNanotechnology

ResearchCenteratBilkentUniversity,Ankara,Turkey.In2010,shecompletedher postdoctoralworksinChemistryDepartmentatMiddleEastTechnicalUniversity (METU),AnkaraTurkey.SheearnedherDoctoraldegree(2007)andM.Sc.degree (2003)fromSolarEnergyInstituteatEgeUniversity,Izmir,Turkey.Sheearned herB.Sc.degree(2001)inchemistryeducationfromDokuzEylulUniversity,Izmir, Turkey.Herresearchinterestsarephotocatalyticreactions,photodynamictherapy, syntheticchemistry,chemiluminescenceandenergytransfercassettes.

Fazli SozmenPhDis an Associate Professor inNanotechnology Eng. Dept. at

CumhuriyetUniversity(Sivas,Turkey).Heearnedhis Doctoral,M.Sc.andB.Sc.

degreesinchemistryfromAkdenizUniversityin2012,2005and2002,respectively. Hiscurrentresearchisfocusedonthedevelopmentofnovelfunctional nanomateri-alsandtheirapplications,lightharvestingsupramolecularsystems,photodynamic therapy,self-assembledfunctionalsystemsandmolecularsensors.HisPh.D. the-siswasonthesynthesisofnewBODIPYderivativesincludingterpyridineand phenantroline,preparationoftheirmetallosupramolecularcomplexesandenergy transfer.

IlkeSimsekTuranPhDisapostdoctoralresearcherinUNAM-National

Nanotech-nologyResearchCenter atBilkentUniversity,Ankara,Turkey.She earnedher DoctoraldegreeinMaterialScienceandNanotechnologyfromBilkentUniversityin 2014.SheearnedherM.Sc.degreeinchemistryfromMETUin2009andB.Sc.degree inchemistryeducationfromMETUin2007.Herresearchinterestandexperience aredevelopmentofnovelchemiluminescentcompounds,photodynamictherapy, molecularsensorsandmolecularlogicgates.

Şekil

Fig. 1. Chemiluminescence response of probes 1 (A) and 2 (B) in the presence of increasing H 2 O 2 concentrations wherein 1–50 equiv
Fig. 2. Comparison of chemiluminescence response of probe 1 and 2 in the pres- pres-ence of increasing H 2 O 2 concentrations wherein 1 to 50 equiv

Referanslar

Benzer Belgeler

and because it was a nasty, nosy noise, they just drew noses for the N-sound, till they were tired (29); and they drew a picture of the big lake-pike’s mouth for the greedy Ga-sound

Prognostic value of evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke.. Prognostic

The T-test results show significant differences between successful and unsuccessful students in the frequency of using the six categories of strategies except

Because every method produces a different number of output data from feature extraction process, the number of neurons in the input layer of the neural network was different for

He completed his primary and secondary school education in Famagusta Cyprus and in 2008 he graduated from the Eastern Mediterranean University faculty of Archeology and Art

The adsorbent in the glass tube is called the stationary phase, while the solution containing mixture of the compounds poured into the column for separation is called

• The Rashidun army was the primary military body of the Muslims during the Muslim conquests of the 7th century, serving alongside the Rashidun navy.. • The three most

Doğum ağırlığı, sütten kesme ağırlığı, anne sütü, ergin inek bedeni ile ilgili masrafların da dahil olduğu hayvan başına diğer hayvanlardan farklılığın dolar