• Sonuç bulunamadı

An optofluidic point-of-care device for quantitative investigation of erythrocyte aggregation during coagulation

N/A
N/A
Protected

Academic year: 2021

Share "An optofluidic point-of-care device for quantitative investigation of erythrocyte aggregation during coagulation"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

An

optofluidic

point-of-care

device

for

quantitative

investigation

of

erythrocyte

aggregation

during

coagulation

Ziya

Isiksacan

a

,

Nurcan

Hastar

a

,

Ozcan

Erel

b

,

Caglar

Elbuken

a,∗

aUNAM-NationalNanotechnologyResearchCenterandInstituteofMaterialsScienceandNanotechnology,BilkentUniversity,06800,Ankara,Turkey bDepartmentofClinicalBiochemistry,SchoolofMedicine,YildirimBeyazitUniversity,06800,Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received22June2018

Receivedinrevisedform8August2018 Accepted9August2018

Availableonline17August2018 Keywords: Coagulation Erythrocyteaggregation Fibrinogen Optofluidic Lab-on-a-chip

a

b

s

t

r

a

c

t

Coagulation, the process leading toclot formation with the interplay of blood constituents, is a self-regulatingmechanism,requiringattentiveandperiodicmonitoringfornumerousclinicalcases. Erythrocyteaggregation(EA)isacharacteristicbehaviouroferythrocytesformingreversibleclumps especiallyinvitroatlowshearrates.TheeffectofEAduringcoagulationisoverlookedinwholeblood (WB)clottingassays,andtherelationshipbetweenthetwomechanismsisnotwellunderstood.We presentanoptofluidicpoint-of-caredeviceenablingquantitativeinvestigationofEAfrom50␮lWB dur-ingthecoagulationprocess.NotonlydidweexplainthecoagulationmechanismconsideringEA,but wealsodemonstratedcoagulationtimemeasurementfromopticalEAanalysis.Thedeviceconsistsof adisposablecartridgeandahandheldanalyzercontainingapinchvalveforfluidmotionandopticsfor transmittedlightmeasurement.Followingthesampleintroductionandcessationofthevalveoperation, theopticalsignalisthelowestduetoshear-inducedcelldisaggregation.Then,thesignalincreasesdue toEAuntilreachingapeak,indicatingbloodclotting.Theworkingprinciplewasproventhroughclinical testsforprothrombintimemeasurement.Inadditiontorevealingtherelationbetweencoagulationand aggregation,thisdeviceispromisingforrapidWBcoagulationtimemeasurement.

©2018ElsevierB.V.Allrightsreserved.

1. Introduction

Bloodcoagulationisaprocessinvolvingtheinteractionof vari-ousplasmaproteins,coagulationfactors,andplateletstoeventually formstablefibrinstrandsforthepreventionofhemorrhage[1].This processconsistsoftwopathways,namedintrinsicandextrinsic, whicharetriggeredbydifferentactivators,butleadtoacommon pathway.Thecommonpathwayendswiththeconversionof fib-rinogensintofibrinclots[2].Invitromeasurementofcoagulation timeisrequiredforindividualswhoareunderoperational evalu-ation[3,4].Also,patientswhoarediagnosedwithorhavetherisk forcoagulationdisorders,embolism,stroke,heartattack,andother cardiovasculardiseases(CVD)needcoagulationtimemeasurement [5,6]. Anticoagulanttherapy, theprescription ofblood-thinning medication,isthecommonstrategytocombatcoagulationrelated disordersandtoregulateclottingstatusofpatients[7].The tra-ditionalapproach forcoagulationtime monitoringistheuseof benchtopinstrumentsinclinicalsettings.Thisnecessitates peri-odichospitalvisits,whichisgenerallycostlyandtime-consuming.

∗ Correspondingauthor.

E-mailaddress:elbuken@unam.bilkent.edu.tr(C.Elbuken).

Itisevenpotentiallylife-threateningifhospitalvisitisdelayed.This isespeciallyaconcernforpatientsreceivinganticoagulanttherapy asthemedicationshavenarrowtherapeuticwindows[8].

Theuseofpoint-of-care(POC)technologiesforcoagulationtime measurementaimstoalleviatethedrawbacksoftheconventional equipment[9].Thereareportablecoagulationanalyzersinthe mar-ketthat facilitate self-monitoringand reduceturnaroundtimes [10].Thesedevicesemployvariousmeasurementprinciplessuch asoptical(e.g.,detectionofchangeofparticleoscillationfrequency bylightreflection),mechanical(e.g.,viscositychangedetectionby cantileverormagnetposition),orelectrochemical(e.g., ampero-metricdetectionusingsubstratemolecules)[11].Fromafinance pointofview,thehighpricetagforboththemaindevice(purchased once)andthedisposabletest cartridges(purchased repeatedly; generallyhavingcomplicatedfabrication)isa drawback.Health insurances in many countries(e.g.,theauthors’countryof ori-gin)donotcoverthepurchaseofsuchcostlyequipmentforhome use.Thisplacessuchdevicesbeyondthereachofmanypeople who,therefore,visithospitals/anticoagulationclinicsforperiodic tests.Therearealsostudiesintheliteratureusingmicrosystems technologyforcoagulationtimemeasurement.Examplesinclude paper-based[12],cantilever-based[13],impedimetric[14],quartz crystalmicrobalance(QCM)[15],surfaceplasmonresonance(SPR)

https://doi.org/10.1016/j.sna.2018.08.007

(2)

Z.Isiksacanetal./SensorsandActuatorsA281(2018)24–30 25

[16],migrationdistance-based[17],andelastometry-based[18]. The practical issues associated with these studies are limited quantitativemeasurement,dependencetocleanroomfabrication, need for electronic integration, set-up complications, necessity forplasmaseparation,standardization,andviscositydependency, respectively,hinderingtheiradaptabilityascommontechniques. The two biological samples analyzed with these platforms are wholeblood(WB)andplasma.TheuseofWBforcoagulationassays offersease-of-use,lowsamplerequirement,andshortturnaround timesincomparisontotheuseofplasma.Ontheotherhand, cur-rentWBcoagulationassaysfallshortofunderstandingtheeffect oferythrocyteaggregation(EA),whichisaninherentmechanism affectingtheassaykinetics.Herein,weexploredthisintricate rela-tionship between coagulationand EA using a real-time optical analysisdevice.

Erythrocytes constitute reversible face-to-face aggregates understationaryconditionsoratlowshearratesinblood[19,20]. Theaggregation oferythrocytes is governedby cellularsurface properties (e.g., surface charge), plasma protein concentrations (e.g., fibrinogen),and shear rate that can disaggregatethe cell clumpsonce appliedabovea threshold[19].Normally, erythro-cytesstaydispersedinvivoduetotheshearratecreatedbyblood flow, butinadequate shearresultsinaggregation related disor-derssuch as hypertension and sepsis [21,22]. Measurement of erythrocyteaggregabilityis,therefore,ofclinicalvalue.Theinvitro measurementsareperformedbyaggregometersthatemploya vari-etyofmechanicalmeansforcelldisaggregationandphotometric methodsfor lightquantification [23–25]. Severalattempts have previouslybeenmadetomonitorcoagulationthroughthe aggrega-tionphenomenon[26–29].However,thefundamentalmechanisms for therelationship between coagulationand aggregation have remainedunclear,andthestudieslackedclinicalverifications.

Wepresentaportablelab-on-a-chip(LOC)deviceforthe opti-calanalysisoftheEAkineticsduringthecoagulationprocess.The deviceisemployedfortwomainpurposes:(i)measuring coagu-lationtimefromadropofWB(50␮l)inlessthan2minusingEA and(ii)demonstratingthepresence/effectofEAinacoagulating bloodtounderstandthefundamentalrelationshipbetweenthese twomechanisms.Thedeviceis usedforprothrombintime (PT) measurement.Themeasurementprincipleisbasedontheoptical investigationofEAduringcoagulationbyilluminatingtheblood samplewithnear-infraredlightandrecordingthetransmittedlight intensity.Weexplainedtheinterrelationbetweenthesetwo phys-iologicalphenomena,coagulationandEA,whichhavelongbeen studiedindependentlyofeachother.Microscopyobservations dur-ingthecoagulationprovidedin-depthunderstandingoftheactual physicalcorrespondenceoftheopticalmeasurementsignals, sup-portingtheresultsobtainedfromourplatform.In addition,the clinicaltestsallowedcomparisonofthedevicewithaconventional benchtopequipment, which showedthe potentialof thestudy beyondresearchlaboratories.

2. Experimentalsection

2.1. Materials

EthicalapprovalswereattainedfromtheEthicsCommitteesof bothBilkentandYildirimBeyazitUniversities.Priorinformed con-sentwasobtainedfromthevolunteerswhosehealthconditions wereunknowntous.21volunteers(11males,10females)were chosen,ensuringthatawidePTrangewascovered.3mlvenous WB wasacquiredfromthevolunteers intosodiumcitrate con-tainingvacuumtubes, andalltheexperimentswereperformed at37◦Cwithinthesamedayofblooddraw.Thebenchtop equip-mentavailableinthehospitalfortheconventionalmeasurements

wasSysmexCA-1500System(Siemens,Germany).ThromborelS HumanThromboplastin(Siemens,Germany)reagentwasusedfor thePTtests.7.6mgThromborelSHumanThromboplastinis dis-solvedin100␮ldeionized(DI)waterbygentlemixingat24◦C. 25␮ldissolvedreagentispipettedintothecartridgeswhichare thenkeptat−80◦Cfor2h.Thereagentsinthecartridgesarethen lyophilizedinafreeze-dryer(Labconco,US)for6h.Following,the cartridgesarestoredat4◦Cwithadesiccatorandusedwithin6h. Human fibrinogen conjugate labeled with Alexa Fluor 488 (MolecularProbes,US)waspreparedbyreconstitutingthesupplied samplein0.1Msodiumbicarbonate(pH8.3)atroomtemperature. Thestocksolutionisdividedintoaliquotsandstoredat−20◦C.Prior touse,thesolutionisbroughttoroomtemperature.Therequired amount(1␮l,2␮l,3␮l,or4␮l)isthengentlymixedwith100␮l WBandkeptintactatroomtemperaturefor30min.

70kDa dextran is purchased from Sigma-Aldrichand stored atroomtemperature.Threemicrocentrifugetubesarefilledwith 200␮lWB.ToprepareWBsampleswith5mg/ml,10mg/ml,and 15mg/mldextranconcentrations,1mg,2mg,and3mgdextranare addedtothetubesanddissolvedbygentlemixing.

2.2. Cartridgefabrication

The cartridge design was drawn using a CAD software (Autodesk,AutoCAD2016).For initialprototyping,thecartridge wasfabricatedoutofpolymethylmethacrylate(PMMA)usingCO2 ablation[30].Followingsuccessfultests,ametalmoldwasmadefor thefinaldesign,andcartridgesweremass-producedoutof poly-carbonate(PC)usinginjectionmoldingtominimizechip-to-chip variations.Wehave twocartridgedesigns.Fortheoptical mea-surements,thecartridgehasasinglechannelof1mmdepth(d), 1mmwidth(w),and50mmlength(l)withaninletandoutlet.For simultaneousopticalmeasurementsandmicroscopicobservations, thecartridgehastwoadjacentchannels(adeepand ashallow) sharingasingleinletandoutlet.Here,opticalmeasurementsare performedinthedeepchannel(1mmdepth).Sincesmallchannel depthsarerequiredforcleartop-viewmicroscopicobservationof individualcellsduetothehighpopulationoferythrocytesinWB (around5million/␮l)[31],theshallowchannel(150␮mdepth)is employedtovisualizetheerythrocytesduringtheoptical measure-ments.Toapplythesameshearrateonthecellsinbothchannel segmentsduringthedisaggregationphase,thefollowingequation shouldbesatisfiedbasedontheHagen-Poiseuillelaw:wdeepddeep2 =wshallowdshallow2.Sinceddeep=1mmanddshallow=150␮m,welet wdeep =1mmandwshallow =40mm.Also,consideringthe dimen-sionsofthedevice,weletldeep =50mmandlshallow =10mm. 2.3. Measurementplatform

TheplatformisillustratedinFig.1.Itconsistsofasingle-use transparentcartridgeandaportableanalyzer.Thecartridge con-tainsasinglechannelwithadepthandwidthof1mm.Thisdeep channelallowsintenseinteractionbetweentheerythrocytesand theincidentlight.Theanalyzerconsistsoffourmodules:(I) car-tridgefixationmodule,(II)shearforceexertionmodule,(III)optical measurementmodule,and(IV)electroniccontrolmodule.Thefirst moduleisablackPMMAbasedcartridgeholderemployedtotightly fixthecartridgeonceinsertedintotheanalyzer.Thisholderalso blocksthetransmissionofthebackgroundlighttothe photodetec-tor,causedbyambientlighting.Thesecondmoduleisasolenoid pinchvalve(EW-98302-06,Cole-Parmer,US)thatisprogrammed togenerate 10s-longbackand forth motionof theblood sam-pleinthecartridge.Themovementsofthesamplewithastroke distance of5mmexert a shear rateonthe erythrocytesabove thethresholdforcompleteerythrocytedisaggregation.Inaddition tothedisaggregationofthecellclusters,thesemotionsfacilitate

(3)

Fig.1. a.Schematicillustrationandb.photographyofthemeasurementplatform. Thecoagulationactivatorislyophilizedinthecartridge.Thepinchvalve disaggre-gatestheerythrocyteclustersandmixeswholebloodwiththeactivatorreagent.The LEDilluminatesthesample,andthephotodetectorrecordsthetransmittedlight.

homogenous mixing of theblood sample with thecoagulation activatorreagentlyophilizedin thecartridge.Themeasurement principleisbasedontheopticalinvestigationoftheerythrocyte aggregationduringthecoagulationonset. Theoptical measure-mentmodule,therefore,consistsofalight-emittingdiode(LED) (VSMG2700,Vishay,US)andaphotodetector(VEMT4700,Vishay, US).TheLED illuminatestheblood sample inthenear-infrared bandwith830nmwavelength,atwhichhemoglobinand there-foreWBabsorptionisminimum,whereastransmissionoflightis enhanced[31,32].Thephotodetectorcollectsthelighttransmitted throughthebloodsample.Theelectroniccontrolmoduleconsists ofaprintedcircuitandamicroprocessor(IOIO-OTG,SparkFun,US). Thecircuitcomprisesatransistorfunctioningasaswitchtocontrol thepinchvalve,atemperaturecontrollertofixthetesttemperature at37◦C,andatransimpedanceamplifier–lowpassfilterpairfor thecurrent-to-voltageconversionofthephotodetectoroutput.The microprocessorcontrolstheassayparametersthrougha custom-developedJava-basedsoftwaretosettheLEDintensity,shearforce exertiontime,temperature,andthetotaltestduration.

3. Resultsanddiscussion

3.1. Opticalanalysisoferythrocyteaggregation

A cartridgetakes 50␮l citrated WB that startsto coagulate onlywhen mixed withan activatorreagent. The initial experi-mentwascarriedoutusingcitratedWBwithoutusinganyreagent inthecartridge.Followingtheintroductionofthebloodsample tothechannel,thesolenoidpinchvalvewasoperatedfor10sto completelydisaggregatetheerythrocyteclusters.Then,thevalve operationwas terminated to letthe erythrocytes re-aggregate.

Fig.2. a.Measurementofthetransmittedsignalintensityofthewholebloodsample usingthecoagulationplatformwhenthecartridgewastestedwithoutanactivator reagentandwithPTreagent.Theinsetshowstheschematiccartridgeanda pho-tographyofthelyophilizedreagentwithinthechannel.b.Thetransmittedsignal intensitywhenhumanthromboplastinwaslyophilizedpriortothetest.Thesignal profileisdividedintofourphases,andthemaximumintensitylevelcorrespondsto thecoagulationtime.

Duringthisre-aggregationprocess,theLEDilluminatedtheblood sample while the photodetectormeasured the intensityof the transmittedlight.TheblacksignalprofileinFig.2ashowsthe mea-suredsignalintensityforthiscase.Attheendofthepinchvalve operation(time:0ths),theerythrocytesarealldispersed.Since eachindividualcellservesasascatteringsource,theintensityisat thelowest.Astimeprogresses,erythrocytesaggregate,and, there-fore,thesignalintensityincreasesuntilcompleteaggregationofthe erythrocytes.Withthecompleteaggregation,thesignalintensity staysconstant.

Thecoagulationcascadeconsistsofanintrinsicandan extrin-sicpathwaydirectingtoacommonpathwaythatendswiththe formationoffibrin clots.The latteristriggeredbytissue factor, andprothrombintime(PT)isusedfortheevaluationofthe extrin-sicpathway.Humanthromboplastinwaslyophilizedinacartridge totriggertheextrinsicpathwayforPTmeasurement.Fig.2aalso shows the measured signalintensity for this case (red signal). Here,thesignalintensityincreasesuntila maximumvalueand decreasesback.Ontheotherhand,forthecartridgewithoutany activatorreagent,thesignalintensitycontinuouslyincreasesdue

(4)

Z.Isiksacanetal./SensorsandActuatorsA281(2018)24–30 27

Fig.3.Theroleoffibrinogenincoagulationandaggregation.Fourwholeblood sam-pleswithvaryingfluorescencelabeledfibrinogenconcentrationswerepreparedand introducedtocartridgeswithhumanthromboplastin.a.Thesample-filledcartridges wereobservedusingfluorescencemicroscopyat40×.Theilluminatingregions cor-respondtofibrinnetworksformedbecauseofcoagulation.b.Thesample-filled cartridgesweretestedusingtheplatform.Theinsetshowstheinitial10sforeach case.Therateofaggregationincreaseswiththeincreasingfibrinogenconcentration.

totheaggregationoferythrocytes(blacksignal).Bothcaseswere repeatedthreetimes,andonlyonetestwasshownhereforeach casesincetheothershadthesametrend.Itshouldalsobenoted thattheabsorption/transmissionspectraofboththecoagulating andnon-coagulatingWBaredeterminedbytheerythrocytesinthe near-infraredband[33–35].It,therefore,impliesthatthe coagula-tionprocessaffectstheaggregationoftheerythrocytes,whichcan opticallybeobservedfromtherecordedsignalprofile.

Fig.2bshowsthesignalprofileobtainedwhenhuman thrombo-plastinislyophilizedinthecartridge.Thissignalisdividedintofour distinctphases.Theinitialphasecorrespondstothe10s-longvalve operationthatinducesshearrateonthecellsfordisaggregation. Attheendofthisphase,thesignalintensityisatitslowest, con-firmingthecompletedisaggregation.Followingthisphase,phase-1 witnessesanincreaseinthesignalintensityforaround30s.Like thenocoagulationcase,thisincreaseisduetotheaggregationof theerythrocytes.Nomoreincreasebeyondthemaximumintensity isthenobserved.Thisiscausedbytheformationoffibrinclots pre-ventingfurtherclumpingoftheerythrocytesand,therefore,ends

Fig.4.Theemploymentofdextrantofacilitatetheaggregationprocessinphase-1 forthecoagulatingbloodsample.a.Fourwholebloodsampleswithvaryingdextran concentrationswerepreparedandintroducedtohumanthromboplastinlyophilized cartridges.Also,wholebloodsamplewithnodextranwasintroducedtoanempty cartridge.Opticalmeasurementswereperformedwiththeplatform.b.Initial10s oftheopticalsignalsgiveninparta.

theaggregationprocess.Thetimecorrespondingtothemaximum intensityisnamedasTmax.Thesignalintensitydecreasesin phase-2duetotheclotcontraction,aprocessthattakesplacerightafter theclotformation[36,37].Followingtheendofphase-2,thesignal intensityshowsaconstanttrendinphase-3,suggestingthatthe clotiscompletelystabilized.

3.2. Roleoffibrinogenincoagulationandaggregation

Whennoactivatorreagentwasusedinthecartridge,theblood sampledoesnotcoagulatebutonlyexperienceserythrocyte aggre-gation.Theclumpingoftheerythrocytesprogressivelydecreases thesurfaceareaofthecells,resultinginanongoingincreasein thetransmittedsignalintensity.Whenhumanthromboplastinwas usedinthecartridgetotriggerthecoagulation,weobservea sim-ilarincreasingtrendintheopticalsignalintensityuntilreachinga peakpoint.

Referringtotheinitial∼30softheredandblacksignalsinFig.2a, atthestart,thesignalintensitiesarethesame(atthelowest)due tothepriorvalveoperation.Then,duringphase-1,thereisa

(5)

dif-Fig.5.ComparisonoftheplatformwiththeconventionalequipmentforPTmeasurement.a.Comparisonwithn=21wholebloodsamples.Goodnessofthefitis0.97using linearregression.b.Repeatabilityanalysiswithn=6samples.Eachsampleistestedthreetimes.Errorbarsindicatestandarddeviations.

ferenceintheintensityincrease,thereforeintheaggregationrate, betweenthesetwocases.Whenthecartridgeisfreeofany activa-tor,theaggregationrateofthesample(black)ishigherthanthatof thecoagulatingsample(red).Thisismainlyduetothefibrinogen activityinthesamples.

Fibrinogen,aglycoproteininplasma,playsanintegralpartinthe coagulationprocess[2].Itisconvertedtoafibrousproteinnamed fibrintoformstableclots.FibrinogenalsotakesroleduringEAandis themostessentialplasmaproteinforthisprocess[38,39]. Accord-ingtothebridgingmodel,fibrinogenproteinsadsorbonthecell surfacesbringingadjacenterythrocytesincontact[40].

Toshowtheequallykeyroleoffibrinogenincoagulationand aggregation,fluorescentlabeledhumanfibrinogenwasemployed. FourWBsampleswithdifferentfibrinogenconcentrationswere prepared(seeMaterials). Eachsamplewasintroducedtoa car-tridgewithhumanthromboplastin,andtheopticalmeasurements were performed. Following the measurements, the cartridges wereobservedunderanuprightfluorescencemicroscope(Zeiss, Germany) at40× magnification. Fig.3a shows the microscopic imagesfor the four samples.The fluorescence regions in each imageare thefibrin networks lighting updue tothe polymer-izeddye-labeledfibrinogens.Asthefibrinogenconcentrationin WBincreasedfrom1%upto4%,thefluorescenceilluminationarea alsoproportionallyincreased.Itsuggeststhatwiththeincreasing fibrinogenconcentration,morefibrinogenstookpartinthe coag-ulationprocess,and,therefore,morefibrinstrandswereformed. Fig.3bshowstheopticalsignalintensitiesofthefourblood sam-plesmeasuredwiththeanalyzer.Theinsetshowstheinitial10s followingthecompletedisaggregation.Asthefibrinogen concen-trationincreases,therateofincreaseinintensity,namelytherate ofaggregation,alsoincreases.Itimpliesthattheadditionofmore fibrinogensfacilitatestheaggregationoferythrocytes.

Whenthereisnoactivatorinthecartridge,thebloodsample doesnotcoagulate,andweobserveonlytheaggregationofthe erythrocytes(blacksignal,Fig.2a).Here,fibrinogensonlytakerole duringtheaggregationprocess.Ontheotherhand,thepresenceof theactivatorinthecartridgetriggersthecoagulationcascade(red signal,Fig.2a).Inthiscase,fibrinogensaresimultaneouslyappealed totakepartinthecoagulationandtheaggregationprocesses.This splitstheirenergytotwodistinctrolesthatwouldotherwiseplay roleonlyinEA.Sincefibrinogenconcentrationsforbothcasesare thesameatthestart,thenumberoffibrinogenstakingpartinthe

aggregationprocessand/orthefibrinogens’aggregationefficiency decreaseforthecoagulatingbloodsampleinphase-1.

Tofurtherconfirmthesefindings,weemployedanEAinducer molecule, dextran[41], toenhancethe aggregationratethat is affectedbythe fibrinogensengagedin thecoagulationprocess. Firstly,citratedWBwithnodextranwasintroducedtoanempty cartridge,andopticalmeasurementwasperformedwiththe ana-lyzer.AsshowninFig.4a(blacksignal),thereisalwaysanincrease inintensityduetouninterruptedEA.Secondly,wepreparedfour WB samples with dextran concentrations of 0mg/ml, 5mg/ml, 10mg/ml,and15mg/ml(seeMaterials).CitratedWBwithno dex-tranwasintroducedtoacartridgehavinghumanthromboplastin. Inthiscase(redsignal,Fig.4a),theintensityincreasewasobserved withamuchlowerratecomparedtothefirstcase.Then,citrated WB samples with differentdextran concentrations were intro-duced to human thromboplastin lyophilized cartridges. Fig. 4a showsthesignalintensitiesofthemeasurementsforallthecases, andFig.4billustratesthefirst10sofeachsignalforeaseof compar-ison.Theseresultsshowthatthepresenceofdextransupportsthe aggregationprocessandincreasestheaggregationrateinphase-1. Asshown inFig.4b,higherdextranconcentrationincreasesthe aggregationrateand, therefore,compensatesfor thefibrinogen deficiencyofthecoagulatingsamples.

3.3. Comparativecoagulationtimemeasurements

Forthecoagulatingbloodsample,thetransmittedsignal inten-sityinitiallyincreasesduetoEAandreachesamaximumintensity value.ThetimewhenthesignalisatthepeakisnamedasTmax. Theobservationthat theintensity ofthenon-coagulating sam-pleincreasesbutthatofthecoagulatingsampledoesnotbeyond TmaxproposesthattheEAinthecoagulatingsamplestopsatTmax. Inotherwords,nofurtheraggregationatandbeyondTmaxstops furtherintensityincrease.Wesuggestthatthereasonpreventing furtheraggregationisthefibrinstrandsthatwrapupthe erythro-cytesandformtheclottingatTmax.Therefore,Tmaxisthetimewhen thebloodcoagulationoccurs.

ToverifythatTmaxisindeedanindicationofthecoagulation time,specificallyprothrombintime(PT),comparativetestswere performedatahospital.First,thePTvaluesof21volunteerWB sam-plesweremeasuredusingtheconventionalgoldstandardmethod. Afterwards,50␮l from each WB sample wasintroducedinto a

(6)

Z.Isiksacanetal./SensorsandActuatorsA281(2018)24–30 29

cartridge,andoptical measurementswereperformedusing our analyzer.Tmaxvalues weremeasuredfromthetransmitted sig-nalintensitiesusingapeakdetectionalgorithminMATLAB.Fig.5a showstheregressionanalysisforthecomparisonofthe conven-tionallymeasuredPTvalues(x-axis)andtheTmaxvaluesmeasured byour system(y-axis).A linearfit was usedto findthelinear equationfortheTmax,andthecorrelationcoefficient(R2)ofthe regressionfitwascalculatedas97%,demonstratingthehigh corre-lationbetweenthemeasurementplatforms.Then,6WBsamples withPTsinbetween10–15,15–20,20–25,25–30,30–35,35–40s rangeswerechosen.Thesamplesweretestedthreetimeswiththe analyzerforrepeatabilityanalysis,andthreeTmaxvaluesforeach volunteersamplewereaveraged.Fig.5bshowsthemeanand stan-darddeviation(SD)oftheaveragedTmaxvaluesmeasuredbyour system(y-axis).TheSDforthesampleinthehealthyrangewas around2.5s,whereasitwasaround4sfortheothersamples.These regression andrepeatability analyseswerepromising for initial point-of-carePTmeasurements,and theplatformshasa poten-tialforcommercializationafterclinicaltrialsforbothvenipuncture (venous)andfingerprick(capillary)samples.

3.4. Simultaneousopticalmeasurementandmicroscopic observation

We also aimed to observe a blood sample under an opti-calmicroscopewhile measuringtheopticaltransmissionsignal todemonstratetheactualphysical correspondence ofthe opti-calsignals.Twocartridgeswereemployedfortheobservationof erythrocytesforcoagulatingandnon-coagulatingbloodsamples as schematicallyshown in Fig. 6a inset. These cartridges were uniquelyfabricatedtomonitortheerythrocytesinreal-timeunder amicroscopefromtheshallowchannelsegmentaswellas simul-taneously obtaining optical transmission signal from the deep channelsegment.SincetheerythrocytepopulationinWBishigh, dilutedWB (hematocrit:5%)wasused todistinguishindividual cellswithinthesample.Wepreferredlowerconcentrationhuman thromboplastin(19g/l)asanactivatorreagentforaslower coagu-lationprocesstohavemoredetailedcellvisualization.4␮lreagent solutionwasaddedintotheinletofoneofthecartridges.Toensure thesamedilutionratio,4␮lPBSwasaddedintotheinletofthe othercartridge.Followingtheintroductionofthereagentsolution orPBS,thebloodsamplesweregentlymixedwiththereagentsfor 3sattheinletsandpipettedintothecartridgesforreal-time obser-vationunderamicroscopeat40xmagnificationduringtheoptical measurements.

The “no coagulation” case in Fig. 6b represents the non-coagulatingbloodsample,whereasthe“coagulation”caseinFig.6b representsthecoagulatingbloodsample.Attime:0min,thecells werealldisaggregatedinbothcases.Atthe“nocoagulation”case, theerythrocytesstartedtopartiallyaggregateastimepassed,and theycompletelyaggregatedattime:6minduetonointernal(e.g., coagulation)orexternal(e.g.,shearrate)interventiononthem.At the“coagulation”case,theerythrocytesstartedtoaggregatewitha lowerrate,comparedtothe“nocoagulation”case,duetotheonset ofthecoagulation.Theaggregationprocesswasclearlyobserved fromthe0thmin(b1)tothe3rdmin(b2).Then,aggregationhardly progressed,and,finally,thecellswereallpackedatthe6thmin (b3).Thisdemonstratesthatthecoagulatingbloodsample coagu-latedatthe6thmin.ThiswasalsoverifiedinFig.6ashowingthe transmittedsignalintensityforthecoagulatingbloodsamplethat reachesitsmaximuminaround350s(Tmax=350s).

Fig.6.a.Measurementofthetransmittedsignalintensityforacoagulatingwhole bloodusingthepoint-of-careplatform.Themaximumsignalintensityisreachedin 6min.Theinsetistheschematicrepresentationofthesimultaneousoptical mea-surementandmicroscopicobservation.b.Real-timetop-viewobservationofthe non-coagulating(a1–a3)andcoagulating(b1–b3)bloodsamplesunderanoptical

microscope.Erythrocytescompletelyaggregateintheformersampleattheendof the6thminwithoutanyinterruption.Erythrocytespartiallyaggregateinthelatter sample,followedbythepreventionoftheaggregationduetothecoagulationofthe sample.

4. Conclusion

Wepresentedaportablelab-on-a-chipdevicethatenables opti-calinvestigationofEAduringcoagulationfordemonstratingthe interrelation betweenaggregationand coagulationprocessesas wellasmeasuringWBcoagulationtimeusinganovel methodol-ogyemployingEAmechanism.Thedeviceopticallyinvestigatesthe aggregationoftheerythrocytesandextractsthetimeforthe forma-tionoffibrinnetworkshencethetimeofcoagulation.Theassaywas showntoberesponsivetotheevaluationoftheextrinsicpathwayof thecoagulationcascade(prothrombintime).Itrequiresonly50␮l WBandiscompletedinlessthan5min.Thetestresults demon-stratedthehighcorrelationoftheplatformwithaconventional benchtopequipment.Theroleoffibrinogenproteinsinthe aggre-gationandcoagulationprocessesandthereforeonthemeasured opticalsignalswasshownthroughfluorescenceimagingoflabeled fibrinstrandsaswellasusingdextranasanaggregationinducerin thebloodsamples.Thissample-in-result-outplatformisa poten-tialcandidateforperiodic,facile,low-cost,rapid,andlowsample

(7)

volumemeasurementofcoagulationtimeforbothlab-basedand point-of-careuse.

Acknowledgements

The authors thank Hazal Isiksacan, Abtin Saateh, Alper Demir, and Pinar Beyazkilic for their help in figures, fluores-cence microscopy, clinical tests, and manuscript proofreading, respectively. Ziya Isiksacan is supported by ASELSAN Graduate ScholarshipforTurkishAcademicians.Theauthorsacknowledge supportfromTheScientificandTechnologicResearchCouncilof Turkey(TUBITAKprojectno.213S127).

References

[1]B.Furie,B.C.Furie,Themolecularbasisofbloodcoagulation,Cell53(1988) 505–518.

[2]J.Antovic,M.Blomb ¨ack,EssentialGuidetoBloodCoagulation,JohnWiley& Sons,2013.

[3]P.Toulon,Y.Ozier,A.Ankri,M.-H.Fléron,G.Leroux,C.M.Samama, Point-of-careversuscentrallaboratorycoagulationtestingduring haemorrhagicsurgery.Amulticenterstudy,Thromb.Haemost.101(2009) 394–401.

[4]S.A.Kozek-Langenecker,Perioperativecoagulationmonitoring,BestPract. Res.Clin.Anaesthesiol.24(2010)27–40.

[5]G.Lowe,A.Rumley,Therelevanceofcoagulationincardiovasculardisease: whatdothebiomarkerstellus?Thromb.Haemost.112(2014)860–867.

[6]R.Mathews,R.M.Issac,Bleedingandcoagulationdisorders,in:Clin.Pathways Emerg.Med.,SpringerIndia,NewDelhi,2016,pp.417–428.

[7]B.Collins,C.Hollidge,Antithromboticdrugmarket,Nat.Rev.DrugDiscov.2 (2003)11–12.

[8]K.Chaudhari,B.Hamad,B.aSyed,Antithromboticdrugsmarket,Nat.Rev. DrugDiscov.13(2014)571–572.

[9]Z.Isiksacan,M.T.Guler,A.Kalantarifard,M.Asghari,C.Elbuken,Lab-on-a-chip platformsfordiseasedetectionanddiagnosis,in:Biosens.Nanotechnol,John Wiley&Sons,Inc,Hoboken,NJ,USA,2017,pp.155–181.

[10]W.S.Baker,K.J.Albright,M.Berman,H.Spratt,P.A.Mann,J.Unabia,J.R. Petersen,ClinicaChimicaActaPOCTPTINR—isitadequateforpatientcare? AcomparisonoftheRochecoaguchekXSvs.StagoStarvs.SiemensBCSin patientsroutinelyseeninananticoagulationclinic,Clin.Chim.Acta472 (2017)139–145.

[11]L.F.Harris,V.Castro-Lopez,A.J.Killard,Coagulationmonitoringdevices:past, present,andfutureatthepointofcare,TrAC-TrendsAnal.Chem.50(2013) 85–95.

[12]H.Li,D.Han,G.M.Pauletti,A.J.Steckl,Bloodcoagulationscreeningusinga paper-basedmicrofluidiclateralflowdevice,LabChip14(2014)4035–4041.

[13]F.Padovani,J.Duffy,M.Hegner,Microrheologicalcoagulationassayexploiting micromechanicalresonators,Anal.Chem.89(2017)751–758.

[14]K.F.Lei,K.H.Chen,P.H.Tsui,N.M.Tsang,Real-timeelectricalimpedimetric monitoringofbloodcoagulationprocessundertemperatureandhematocrit variationsconductedinamicrofluidicchip,PLoSOne8(2013).

[15]M.Andersson,J.Andersson,A.Sellborn,M.Berglin,B.Nilsson,H.Elwing, Quartzcrystalmicrobalance-withdissipationmonitoring(QCM-D)forreal timemeasurementsofbloodcoagulationdensityandimmunecomplement activationonartificialsurfaces,Biosens.Bioelectron.21(2005)79–86.

[16]K.M.Hansson,K.Johansen,J.Wetterö,G.Klenkar,J.Benesch,I.Lundström,T.L. Lindahl,P.Tengvall,Surfaceplasmonresonancedetectionofblood

coagulationandplateletadhesionundervenousandarterialshearconditions, Biosens.Bioelectron.23(2007)261–268.

[17]M.T.Guler,Z.Isiksacan,M.Serhatlioglu,C.Elbuken,Self-powereddisposable prothrombintimemeasurementdevicewithanintegratedeffervescent pump,SensorsActuatorsBChem.273(2018)350–357.

[18]R.J.Luddington,Thrombelastography/thromboelastometry,Clin.Lab. Haematol.27(2005)81–90.

[19]O.K.Baskurt,HandbookofHemorheologyandHemodynamics,IOSPress, 2007.

[20]O.K.Baskurt,M.Uyuklu,S.Ozdem,H.J.Meiselman,Measurementofredblood cellaggregationindisposablecapillarytubes,Clin.Hemorheol.Microcirc.47 (2011)295–305.

[21]O.K.Baskurt,A.Temiz,H.J.Meiselman,Redbloodcellaggregationin experimentalsepsis,J.Lab.Clin.Med.130(1997)183–190.

[22]O.K.Baskurt,H.J.Meiselman,Erythrocyteaggregation:basicaspectsand clinicalimportance,Clin.Hemorheol.Microcirc.53(2013)23–37.

[23]O.K.Baskurt,M.Uyuklu,M.R.Hardeman,H.J.Meiselman,Photometric measurementsofredbloodcellaggregation:lighttransmissionversuslight reflectance,J.Biomed.Opt.14(2009)54044.

[24]O.K.Baskurt,M.Uyuklu,S.Ozdem,H.J.Meiselman,Measurementofredblood cellaggregationindisposablecapillarytubes,Clin.Hemorheol.Microcirc.47 (2011)295–305.

[25]E.Hysi,R.K.Saha,M.C.Kolios,Ontheuseofphotoacousticstodetectred bloodcellaggregation,Biomed.Opt.Express3(2012)2326–2338.

[26]P.Riha,F.Liao,J.F.Stoltz,Theeffectofrouleauxformationonblood coagulation,Clin.Hemorheol.Microcirc.17(1997)341–346.

[27]H.Lim,J.Nam,S.Xue,S.Shin,Measurementofbloodcoagulationwith consideringRBCaggregationthroughamicrochip-basedlighttransmission aggregometer,Clin.Hemorheol.Microcirc.47(2011)211–218.

[28]K.-H.Nam,E.Yeom,H.Ha,S.J.Lee,Simultaneousmeasurementofredblood cellaggregationandwholebloodcoagulationusinghigh-frequency ultrasound,UltrasoundMed.Biol.38(2012)468–475.

[29]D.Sakota,R.Kosaka,M.Nishida,O.Maruyama,Opticalaggregometryofred bloodcellsassociatedwiththeblood-clottingreactioninextracorporeal circulationsupport,J.Artif.Organs19(2016)241–248.

[30]Z.Isiksacan,M.T.Guler,B.Aydogdu,I.Bilican,C.Elbuken,Rapidfabricationof microfluidicPDMSdevicesfromreusablePDMSmoldsusinglaserablation,J. Micromech.Microeng.35008(2016)9.

[31]F.Lang,M.Föller,Erythrocytes,ImperialCollegePress,2012.

[32]M.Uyuklu,M.Canpolat,H.J.Meiselman,O.K.Baskurt,Wavelengthselectionin measuringredbloodcellaggregationbasedonlighttransmittance,J.Biomed. Opt.16(2011)117006.

[33]Z.Isiksacan,O.Erel,C.Elbuken,Aportablemicrofluidicsystemforrapid measurementoferythrocytesedimentationrate,LabChip16(2016) 4682–4690.

[34]F.A.Greko,Reflectancespectroscopyofclottingblood,Arch.Pathol.Lab.Med. 128(2004)173–180.

[35]B.Linnemann,J.Schwonberg,H.Mani,S.Prochnow,E.Lindhoff-Last, Standardizationoflighttransmittanceaggregometryformonitoring antiplatelettherapy:anadjustmentforplateletcountisnotnecessary,J. Thromb.Haemost.6(2008)677–683.

[36]V.Tutwiler,R.I.Litvinov,A.P.Lozhkin,A.D.Peshkova,T.Lebedeva,F.I. Ataullakhanov,K.L.Spiller,D.B.Cines,J.W.Weisel,Kineticsandmechanicsof clotcontractionaregovernedbythemolecularandcellularcompositionof theblood,Blood127(2016)149–159.

[37]W.A.Lam,O.Chaudhuri,A.Crow,K.D.Webster,T.-D.Li,A.Kita,J.Huang,D.A. Fletcher,Mechanicsandcontractiondynamicsofsingleplateletsand implicationsforclotstiffening,Nat.Mater.10(2011)61–66.

[38]N.Maeda,T.Shiga,Oppositeeffectofalbuminontheerythrocyteaggregation inducedbyimmunoglobulinGandfibrinogen,Biochim.Biophys.Acta855 (1986)127–135.

[39]N.Maeda,M.Seike,T.Nakajima,Y.Izumida,M.Sekiya,T.Shiga,Contribution ofglycoproteinstofibrinogen-inducedaggregationoferythrocytes,Biochim. Biophys.Acta1022(1990)72–78.

[40]S.Chien,K.M.Jan,Redcellaggregationbymacromolecules:rolesofsurface adsorptionandelectrostaticrepulsion,J.Supramol.Struct.1(1973)385–409.

[41]Z.Isiksacan,M.Asghari,C.Elbuken,Amicrofluidicerythrocytesedimentation rateanalyzerusingrouleauxformationkinetics,Microfluid.Nanofluid.21 (2017)44.

Biographies

ZiyaIsiksacanisaPh.D.candidateattheUNAMMaterialsScienceand

Nanotechnol-ogyProgramatBilkentUniversity.HereceivedhisM.S.degreefromTheUniversityof Edinburgh(UK).Hisresearchinterestsareinthefieldofmicrofluidics,optofluidics, point-of-carediagnostics,andbioelectronics.

NurcanHastarreceivedherM.S.degreetheUNAMMaterialsScienceand

Nano-technologyProgramatBilkentUniversity.Herresearchinterestsareinthefieldof molecularbiologyandmicrofluidiccellculturing.

OzcanErelisaProfessoratYildirimBeyazitUniversityMedicalSchool.Heisthe

HeadofDepartmentofMedicalBiochemistryLaboratory.Hisresearchinterestsare inthefieldofclinicalbiochemistryanddiagnostics.

CaglarElbukenisanAssistantProfessoratBilkentUniversity,National

Nano-technologyResearchCenter.Hisresearchinterestsincludelab-on-a-chipdevices, dropletmicrofluidics,andsensingtechnologiesforportableapplications.

Şekil

Fig. 2. a. Measurement of the transmitted signal intensity of the whole blood sample using the coagulation platform when the cartridge was tested without an activator reagent and with PT reagent
Fig. 3. The role of fibrinogen in coagulation and aggregation. Four whole blood sam- sam-ples with varying fluorescence labeled fibrinogen concentrations were prepared and introduced to cartridges with human thromboplastin
Fig. 5. Comparison of the platform with the conventional equipment for PT measurement
Fig. 6. a. Measurement of the transmitted signal intensity for a coagulating whole blood using the point-of-care platform

Referanslar

Benzer Belgeler

The study originated from a need to investigate the Strategy of Interi- orization applied by Federal Government of Brazil and United Nations agencies to help the Venezuelans

In this study, anesthesia induction in all three groups was performed with IV propofol administered to dogs premedicated with midazolam, and general anesthesia

Halk şairi, destan anlatıcısı, ağıt toplayıcısı “Aşık Kemal", köy köy, kahve kahve, kasaba kasaba, dağ ova dolaşır, destan anlatır, ağıt toplarken bir

In terms of ROA, Capital Adequacy, Asset Quality, Management Quality, Earning Ability and Interest rate played an important role on the efficiency of banks. The Earning

Our study aimed to test the susceptibilities of 50 Candida species isolated from blood cultures against anidulafungin, micafungin, caspofungin, flucytosine,

coefficient of variation that measured from the experiments when the colored noise model not included in the stochastic of the HH equation (without colored

The existence of the epsilon values when the input current is higher than ( 7 ) makes the neuron react better and have higher coefficient of variation compare to the case when the

KARAMANLICA BİR NEVŞEHİR SALNAMESİ’NE (1914) GÖRE HACI BEKTAŞ VELİ DERGÂHI.. Mustafa