• Sonuç bulunamadı

View of Study of A Class Of Multivalent Functions Defined By Dziak - Srivastava Operat With Application On Fractional Calculus

N/A
N/A
Protected

Academic year: 2021

Share "View of Study of A Class Of Multivalent Functions Defined By Dziak - Srivastava Operat With Application On Fractional Calculus"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Study of A Class Of Multivalent Functions Defined By Dziak - Srivastava Operat With

Application On Fractional Calculus

Ameen Khlaif Sachit, Rafid Habib Buti

1Babil Education Directorate ,Babil , Iraq. Ameenaltaa198315@gmail.com

2Department of Mathematics and Computer Applications, College of Sciences, University of Al-Muthanna,

Samawa, Iraq. sci.rafid@mu.edu.iq

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 16 April 2021

Abstract: In the this paper we introduced a class of Multivalent functions with negative coefficients defined by Dziak-Srivastava operator and some application of Fractional Calculus , we obtain some theorems of this class.

Mathematics subject classification:30C45.

Keywords: multivalent Function , Distortion Theorems, Dziak-Srivastava linear operator, Fractional Calculus. 1- Introduction :

Let

K

denote the class of functions of the form :

 + =

+

=

1

,

)

(

p n n n p

z

a

z

z

f

p

 IN

=

1

,

2

,...

(1) which are analytic and multivalent in the open unit disk

:

1

.

=

z

C

z

U

Let

K

*p a subclass of

K

consisting of function of the form:

 + =

=

1

,

)

(

p n n n p

z

a

z

z

f

a

n

0

,

p

 IN

=

1

,

2

,...

.

(2)

For

1

,

2

,...,

m

C

and

1

,

2

,...,

k

 C

0

,

1

,

2

,...

,

the generalized hypergeometric function m

F

k

1

,...,

m

;

1

,...,

k

;

z

is defined by : k m

F

 + =

=

1 1 1 1 1

)

...(

)

(

)

...(

)

(

;

,...,

;

,...,

p n n n k n n m n k m

z

z

(3)

(

m

k

+

1

,

m

,

k

N

0

=

0

,

1

,

2

,...

)

,

where

( )

x

n is the pochhammer symbol defined by :

1

n

=

0

=

n

x)

(

(4)

x

(

x

+

1

)...(

x

+

n

1

)

n 

IN

Dziok and Srivastava consider in [6] a linear operator under the multivalent analytic functions * * 1 1 ,

:

)

,...

;

,...,

(

m k p p k m p

K

K

DS

defined by the Hadamard product:

=

h

p

(

1

,...,

m

;

1

,...

k

;

z

)

*

f

(

z

),

(5) where

h

p

(

1

,...,

m

;

1

,...,

k

;

z

)

=

z

mp

F

k

(

1

,...,

m

;

1

,...,

k

;

z

)

(2)

 + =

=

1 1 1 ,

.

!

)

...(

)

(

)

...(

)

(

)

)(

(

p n n n n k n n m n p k m p

a

z

n

z

z

f

DS

(6)

Definition 1: A function

f

(z

)

defined by (2) be in the class

)

,

,

,

,

,

,

,

(

A

B

D

p

K

if it satisfies the condition

(

)

,

1

)

1

(

)

)(

(

)

)

)(

(

(

)

1

(

)

)(

(

)

1

)(

1

(

, , , 2

D

z

f

DS

z

f

DS

z

p

z

f

DS

z

B

A

k m p k m p k m p



(7) where

0

1

,

0

1

,

0

 

1

,

0

1

,

0

A

,

B

,

D

1

,

p 

IN

,

U

z 

.

(

1

− D

)

1

.

2. Main Result

In the next theorem, we obtain a necessary and sufficient condition for functions to be in the class

)

,

,

,

,

,

,

,

(

A

B

D

p

K

.

Theorem1: Let the function

f

(

z

)

K

p*is in class

K

(

,

,

,

,

A

,

B

,

D

,

p

)

if and only if

1

(

1

).

!

)

...(

)

(

)

...(

)

(

1

)

(

)

1

)(

1

(

1 1 1

D

a

n

p

n

B

A

n

n n k n n m n p n

+

 + =



(8)

The result (8) is sharp

Proof: Let the inequality (8) holds true. Let

z

=

1

.

Then

(

(

)(

)

)

(

1

)

(

(

)(

)

)

(

)(

)

(

1

)

)

1

)(

1

(

A

B



z

2

DS

pm,k

f

z



p

z

DS

mp,k

f

z

DS

pm,k

f

z

D

(

1

)

!

)

...(

)

(

)

...(

)

(

!

)

...(

)

(

)

...(

)

(

)

(

)

1

)(

1

(

1 1 1 1 1 1

D

z

a

n

z

z

a

n

p

n

n

B

A

n n n k n n m n p n p n n n k n n m n p n

=

 + =  + =



(

1

)

!

)

...(

)

(

)

...(

)

(

!

)

...(

)

(

)

...(

)

(

)

(

)

1

)(

1

(

1 1 1 1 1 1

D

z

a

n

z

z

a

n

p

n

n

B

A

n n p n n k n n m n p n n n k n n m n p n

+

+

 + =  + =



(

1

(

1

))

0

.

!

)

...(

)

(

)

...(

)

(

1

)

(

)

1

)(

1

(

1 1 1

+

 + =

D

a

n

p

n

n

B

A

n n k n n m n p n



Hence by the principle of maximum modulus

f

(

z

)

K

(

,

,

,

,

A

,

B

,

D

,

p

)

. Conversely, assume that

(

)

)

1

(

)

)(

(

)

)

)(

(

(

)

1

(

)

)(

(

)

1

)(

1

(

, , , 2

D

z

f

DS

z

f

DS

z

p

z

f

DS

z

B

A

k m p k m p k m p



(3)

.

1

)

1

(

!

)

...(

)

(

)

...(

)

(

!

)

...(

)

(

)

...(

)

(

)

(

)

1

)(

1

(

1 1 1 1 1 1

=

 + =  + =

D

z

a

n

z

z

a

n

p

n

n

B

A

n n n k n n m n p n p n n n k n n m n p n



Since

Re(

z 

)

z

for all

z

, we have

,

1

)

1

(

!

)

...(

)

(

)

...(

)

(

!

)

...(

)

(

)

...(

)

(

)

(

)

1

)(

1

(

Re

1 1 1 1 1 1





 + =  + =

D

z

a

n

z

z

a

n

p

n

n

B

A

n n n k n n m n p n p n n n k n n m n p n



we choose the values of

z

on the real axis and letting

z

1

-, we obtain

1

(

1

).

!

)

...(

)

(

)

...(

)

(

1

)

(

)

1

)(

1

(

1 1 1

D

a

n

p

n

B

A

n

n n k n n m n p n

+

 + =



Finally , sharpness follows if we take

.

!

)

...(

)

(

)

...(

)

(

1

)

(

)

1

)(

1

(

)

1

(

1

)

(

1 1 n n k n n m n p

z

n

p

n

n

B

A

D

z

z

f



+

=

(9)

The proof is complete.

Corollary 1: Let

f

(

z

)

K

(

,

,

,

,

A

,

B

,

D

,

p

)

. Then

.

!

)

...(

)

(

)

...(

)

(

1

)

(

)

1

)(

1

(

)

1

(

1

1 1

n

p

n

n

B

A

D

a

n k n n m n n



+

(10)

The equality in (10) is attained for the function f given by (9).

3.Application of fractional calculus with Hypergeometric functions

The hypergeometric functions connected with positive and negative coefficients and by applying fractional calculus techniques is of great interest. Such type of study was carried out by various mathematicians, like, Aouf, Shamandy and Yassen [1], Cho and Aouf [5] ,Reddy and padmanabhan [7], Atshan [2], Atshan, Kulkani and Murugusundaramoorthy [4], Atshan and Kulkarni [3] who obtained several growth and distortion properties of functions in the class of operators of fractional integral and fractional derivative.

We need the following definitions given by H.M. Srivastava and S.Owa [8]. Definition 2: The fractional integral of order

(

0

<

)

is defined by

=

z z

dt

t

z

t

f

z

f

D

0

(

)

1

,

)

(

)

(

1

)

(

(11)

where

f

(z

)

is an analytic function in a simply connected region of z-plane containing the origin and the multiplicity of

(

z

t

)

−1 is removed by required log

(

z −

t

)

to be real when

(

z −

t

)

>0.

(4)

Definition 3: The fractional derivative of order

(

0

<

1

)

is defined by

=

z z

dt

t

z

t

f

dz

d

z

f

D

0

(

)

,

)

(

)

1

(

1

)

(

(12)

where

f

(z

)

is as in Definition 2 and the multiplicity of

(

z

− )

t

− is removed like Definition 2.

Definition 4: [Under the conditions of Definition 3] the fractional derivative of order

j

+

( =

j

0

,

1

,

2

,...)

is defined by

(

)

D

f

(

z

).

dz

d

z

f

D

j z j j z  

=

+

From Definition 2 and 3 by applying a simple calculation, we get

 + = + + −

+

+

+

+

+

+

=

1

,

)

(

)

(

)

1

(

)

1

(

)

(

p n n n p z

a

z

p

n

p

n

z

p

p

z

f

D

  

(13)

 + = − −

+

+

+

+

=

1

.

)

(

)

(

)

1

(

)

1

(

)

(

p n n n p z

a

z

p

n

p

n

z

p

p

z

f

D

  

(14)

Now, we introduce a new fractional calculus is fractional calculus (fractional derivative and fractional integral) of order

.

Definition 5: The fractional derivative of order

(

=

1

,

2

,...)

is defined by

− − +

=

z z

u

z

f

u

du

dz

d

z

f

D

0 1 1

,

)

(

)

(

)

(

)

1

(

)

(

  

(15)

where

f

(z

)

is an analytic function in a simply connected region of z-plane containing the origin and the multiplicity of

(

u

z

)

−−1is removed by requiring log

(

u −

z

)

to be real when

(

u −

z

)

>

0

.

Definition 6: The fractional integral of order

(

=

1

,

2

,...)

is defined by

(

)

− −

=

z z

f

z

u

z

f

u

du

D

0

(

)

,

)

1

(

)

1

(

)

(

  

(16)

where

f

(z

)

is an analytic function in a simply connected region of z-plane containing the origin and the multiplicity of

(

u

− )

z

− is removed by requiring log

(

u −

z

)

to be real when

(

u −

z

)

>

0

.

Lemma 1: Let

f

(

z

)

K

*p

.

Then

 + = +

+

=

+

=

1 1

)

(

)

1

(

)

(

!

)

(

)

1

(

)

(

)

(

p n n n p z

a

z

n

p

p

n

z

z

f

D

z

p

p

z

G

  . (17) Proof:

=

 + = − − +

du

u

a

u

z

u

dz

d

z

f

D

p n n n p z z 1 1 0 1

)

(

)

(

)

1

(

)

(

  

(5)



=

 − − + = − − − − − − +

z

u

u

du

a

z

u

u

du

dz

d

z n o p n n p z 1 1 1 1 1 0 1

)

(

)

1

(

)

(

)

1

(

)

(

)

1

(

    

.

)

(

!

)

(

)

1

(

1 1 1 − −  + = − −

+

=

n n p n p

z

a

n

n

p

p

z

Hence

.

)

(

)

1

(

)

(

!

)

(

1 n n p n p

z

a

n

p

p

n

z

z

G

+

=

 + =

In particular, when p=1, then

.

)

(

)

1

(

!

)

(

2 n n n

z

a

n

n

z

z

G

=

 = Lemma 2: Let

f

(

z

)

K

*p

.

Then

 + = − −

+

+

+

=

+

+

=

1 1

)

2

(

)

1

(

)

2

(

!

)

(

)

1

(

)

2

(

)

(

p n n n p z

a

z

n

p

p

n

z

z

f

D

z

p

p

z

F

  . (18)

Proof of Lemma 2 is similar to that of Lemma1 and hence details are omitted. In the next, we obtain distortion theorems for the class

K

(

,

,

,

,

A

,

B

,

D

,

p

)

.

Theorem 2: Let

f

(z

)

defined by (2) be in the class

K

(

,

,

,

,

A

,

B

,

D

,

p

)

. Then

(19) ) ...( ) ( ) ...( ) ( 1 ) 1 ( ) 1 )( 1 ( ) ( ) 1 2 ( )! 1 ))( 1 ( 1 ( ) 1 ( ) 2 ( 2 ) ( ) 1 ( ) 1 ( 1 1 1 1 1 1 1 + + + + + + + − −  − +  + − − − +   +  +  − +  p p k p p m p p z z p B A p p p D p p z z f D z p p             and

.(20) ) ...( ) ( ) ...( ) ( 1 ) 1 ( ) 1 )( 1 ( ) ( ) 1 2 ( )! 1 ))( 1 ( 1 ( ) 1 ( ) 2 ( 2 ) ( ) 1 ( ) 1 ( 1 1 1 1 1 1 1 + + + + + + + − −  − +  + − − − +   −  +  − +  p p k p p m p p z z p B A p p p D p p z z f D z p p            

The inequalities in (19) and (20) are attained for the function

1 1 1 1 1 1 1

)

...(

)

(

)

...(

)

(

1

)

1

(

)

1

)(

1

(

)!

1

))(

1

(

1

(

)

(

+ + + + +

+

+

+

=

p p k p p m p p

z

p

B

A

p

D

z

z

f



. (21)

(6)

.

)

...(

)

(

)

...(

)

(

1

)

1

(

)

1

)(

1

(

)!

1

))(

1

(

1

(

1 1 1 1 1 1 1 + + + +  + =

+

+

+

p k p p m p n p n

p

B

A

p

D

a



(22) By Definition 4, we have

 + = − −

+

+

+

+

=

1

,

)

(

)

(

)

1

(

)

1

(

)

(

p n n n p z

a

z

p

n

p

n

z

p

p

z

f

D

  

and

)

23

(

,

)

,

,

(

)

1

(

)

(

)

1

(

)

(

)

(

)

1

(

)

1

(

1 1 n n p n p n n p n p z

a

z

z

n

p

a

z

p

p

n

p

p

n

z

z

f

D

z

p

p

 

=

+

+

+

+

=

+

+

 + =  + = where

.

)

1

(

)

(

)

1

(

)

(

)

,

,

(

+

+

+

+

=

p

p

n

p

p

n

p

n

We know that

(

n

,

p

,

)

is a decreasing function of n and

0

<

.

)

(

)

1

2

(

)

1

(

)

2

(

2

)

,

,

1

(

)

,

,

(

p

p

p

p

p

p

p

n

+

+

=

+

So by using (22) and (23), we have

n p n p p z f z z p p z a D z p p

 + = + +  +  +  − +  1 1 ) , , 1 ( ) ( ) 1 ( ) 1 (

 

,

)

...(

)

(

)

...(

)

(

1

)

1

(

)

1

)(

1

(

)

(

)

1

2

(

)!

1

))(

1

(

1

(

)

1

(

)

2

(

2

1 1 1 1 1 1 1 + + + + +

+

+

+

+

+

+

p p k p p m p p

z

p

B

A

p

p

p

D

p

p

z



which gives (19); we also have

n p n p p z f z z p p z a D z p p

 + = + +  −  +  − +  1 1 ) , , 1 ( ) ( ) 1 ( ) 1 (

 

,

)

...(

)

(

)

...(

)

(

1

)

1

(

)

1

)(

1

(

)

(

)

1

2

(

)!

1

))(

1

(

1

(

)

1

(

)

2

(

2

1 1 1 1 1 1 1 + + + + +

+

+

+

+

+

p p k p p m p p

z

p

B

A

p

p

p

D

p

p

z



which gives (20).

Theorem 3: Let

f

(z

)

defined by (2) be in the class

K

(

,

,

,

,

A

,

B

,

D

,

p

)

. Then

,(24) ) ...( ) ( ) ...( ) ( 1 ) 1 ( ) 1 )( 1 ( ) ( ) 1 2 ( )! 1 ))( 1 ( 1 ( ) 1 ( ) 2 ( 2 ) ( ) 1 ( ) 1 ( 1 1 1 1 1 1 1 + + + + + − − + + − −  + +  + − − + +   +  +  + +  p p k p p m p p z z p B A p p p D p p z z f D z p p             and

(7)

.(25) ) ...( ) ( ) ...( ) ( 1 ) 1 ( ) 1 )( 1 ( ) ( ) 1 2 ( )! 1 ))( 1 ( 1 ( ) 1 ( ) 2 ( 2 ) ( ) 1 ( ) 1 ( 1 1 1 1 1 1 1 + + + + + − − + + − −  + +  + − − + +   −  +  + +  p p k p p m p p z z p B A p p p D p p z z f D z p p            

The inequalities in (24) and (25) are attained for the function

f

(z

)

given by (21).

Proof: By Definition 4, we have

 + = + + −

+

+

+

+

+

+

=

1

,

)

(

)

(

)

1

(

)

1

(

)

(

p n n n p z

a

z

p

n

p

n

z

p

p

z

f

D

  

and

)

26

(

,

)

,

,

(

)

1

(

)

(

)

1

(

)

(

)

(

)

1

(

)

1

(

1 1

 + =  + = − −

=

+

+

+

+

+

+

=

+

+

+

p n n n p n n p n p z

a

z

z

n

p

a

z

p

p

n

p

p

n

z

z

f

D

z

p

p

  where

.

)

1

(

)

(

)

1

(

)

(

)

,

,

(

+

+

+

+

+

+

=

p

p

n

p

p

n

p

n

We know that

(

n

,

p

,

)

is a decreasing function of n and

.

)

(

)

1

2

(

)

1

(

)

2

(

2

)

,

,

1

(

)

,

,

(

0

p

p

p

p

p

p

p

n

+

+

+

+

=

+

Hence by using (22) and (26), we have

n p n p p z f z z p p z a D z p p

 + = + − − + + +  + +  1 1 ) , , 1 ( ) ( ) 1 ( ) 1 (

 

,

)

...(

)

(

)

...(

)

(

1

)

1

(

)

1

)(

1

(

)

(

)

1

2

(

)!

1

))(

1

(

1

(

)

1

(

)

2

(

2

1 1 1 1 1 1 1 + + + + +

+

+

+

+

+

+

+

+

p p k p p m p p

z

p

B

A

p

p

p

D

p

p

z



which gives (24) ; we also have

n p n p p z f z z p p z a D z p p

 + = + − − + +  + +  1 1 ) , , 1 ( ) ( ) 1 ( ) 1 (

 

,

)

...(

)

(

)

...(

)

(

1

)

1

(

)

1

)(

1

(

)

(

)

1

2

(

)!

1

))(

1

(

1

(

)

1

(

)

2

(

2

1 1 1 1 1 1 1 + + + + +

+

+

+

+

+

+

+

p p k p p m p p

z

p

B

A

p

p

p

D

p

p

z



which gives (25).

Theorem 4: Let

f

(z

)

defined by (2) be in the class

K

(

,

,

,

,

A

,

B

,

D

,

p

)

Then

, ) ...( ) ( ) ...( ) ( 1 ) 1 ( ) 1 )( 1 ( ) ( )) 1 ( 1 ( )! 1 )( 1 ( ) ( 1 1 1 1 1 1 1 + + + + + + + − − − − − + + +  p p k p p m p p z p B A p D p p z z G



 (27) and

(8)

. ) ...( ) ( ) ...( ) ( 1 ) 1 ( ) 1 )( 1 ( ) ( )) 1 ( 1 ( )! 1 )( 1 ( ) ( 1 1 1 1 1 1 1 + + + + + + + − − − − − + + −  p p k p p m p p z p B A p D p p z z G         (28)

The inequalities in (27) and (28) are attained for the function

f

(z

)

given by (21). Proof: From (17) , we have ( ) ( , , ) ,

1 n n p n p z a p n z z G = −

 + = where

)

(

)

1

(

)

(

!

)

,

,

(

+

=

n

p

p

n

p

n

, we know that

.

)

(

)

1

(

)

,

,

1

(

)

,

,

(

0

+

=

+

p

p

p

p

p

n

So by using (22) and (17), we get

. ) ...( ) ( ) ...( ) ( 1 ) 1 ( ) 1 )( 1 ( ) ( )) 1 ( 1 ( )! 1 )( 1 ( ) ( 1 1 1 1 1 1 1 + + + + + + + − − − − − + + +  p p k p p m p p z p B A p D p p z z G         Similarity, we get

. ) ...( ) ( ) ...( ) ( 1 ) 1 ( ) 1 )( 1 ( ) ( )) 1 ( 1 ( )! 1 )( 1 ( ) ( 1 1 1 1 1 1 1 + + + + + + + − − − − − + + −  p p k p p m p p z p B A p D p p z z G        

Theorem 5: Let

f

(z

)

defined by (2) be in the class

K

(

,

,

,

,

A

,

B

,

D

,

p

)

Then

, ) ...( ) ( ) ...( ) ( 1 ) 1 ( ) 1 )( 1 ( ) 2 ( )) 1 ( 1 ( )! 1 )( 1 ( ) ( 1 1 1 1 1 1 1 + + + + + + + − − − + − − + + +  p p k p p m p p z p B A p D p p z z F



 (29) and

. ) ...( ) ( ) ...( ) ( 1 ) 1 ( ) 1 )( 1 ( ) 2 ( )) 1 ( 1 ( )! 1 )( 1 ( ) ( 1 1 1 1 1 1 1 + + + + + + + − − − + − − + + −  p p k p p m p p z p B A p D p p z z F



 (30)

The inequalities in (29) and (30) are attained for the function f(z) given by (21).

Proof: From (18), we have

(

)

(

,

,

)

,

1 n n p n p

z

a

p

n

z

z

F

 + =

=

(9)

where

,

)

2

(

)

1

(

)

2

(

!

)

,

,

(

+

+

+

=

n

p

p

n

p

n

we know that

0

<

.

)

2

(

)

1

(

)

,

,

1

(

)

,

,

(

+

+

=

+

p

p

p

p

p

n

So by using (22) and (18), we have

.

)

...(

)

(

)

...(

)

(

1

)

1

(

)

1

)(

1

)

2

(

))

1

(

1

(

)!

1

)(

1

(

)

(

1 1 1 1 1 1 1 + + + + +

+

+

+

+

+

+

p p k p p m p p

z

p

B

A

p

D

p

p

z

z

F



Similarity , we get

.

)

...(

)

(

)

...(

)

(

1

)

1

(

)

1

)(

1

)

2

(

))

1

(

1

(

)!

1

)(

1

(

)

(

1 1 1 1 1 1 1 + + + + +

+

+

+

+

+

p p k p p m p p

z

p

B

A

p

D

p

p

z

z

F



REFERENCES

1. M.K. Aouf, A. Shamandy and M.F. Yassen, Some applications of fractional calculus operators to

certain subclass of univalent functions, SOOCHOW JOURNAL OF MATHEMATICS, 21(1) (1995) ,

139-144.

2. W.G. Atshan, Fractional calculus on a subclass of spial-like functions defined by Komatu

operator,Int. Math. Forum,3(32) (2008) ,1581-1594.

3. W.G. Atshan and S.R. Kulkarni, Application of Fractional derivatives and hypergeometric functions

to multivalent analytic functions, Far East J. Math. Sci, 27(2) (2007), 277-294.

4. W.G.Atshan, S.R. Kulkarni and G.Murugusundaramoorthy, Application of fractional calculus on

certain class of p-valent functions with negative coefficients defined by Ruscheweyh derivative,Int.J.

of Math.Analysis,1(22) (2007), 1089-1101.

5. N.E. Cho and M.K. Aouf , Some applications of fractional calculus operators to a certain subclass of

analytic functions with negative coefficients, Tr.J. Math. ,20 (1996), 553-562.

6. J. Dziok and H.M. Srivastava, Class of analytic functions associated with the generalized

hypergeometric function, Appl. Math. Comput, 103 (1999), 1-13.

7. G.L. Reddy and K.S. Padmanabhan , Some properties of fractional integrals and derivatives of

univalent functions, Indian J. pure appl. Math.16(3) (1985) , 291-302.

8. H.M. Srivastava and S. Owa, (Editors) , Current Topics in Analytic Function Theory, World Scientific, Singapore, (1992).

Referanslar

Benzer Belgeler

[r]

Due to interest and time constraint, we shall dissect the Laplace equation in their in two polar coordinates of cylindrical and spherical systems, in order to uncover some special

Çalışmada, Atatürk Üniversitesi, Atatürk Üniversitesi Edebiyat Fakültesi ve Atatürk Üniversitesi Merkez Kütüphanesi hakkında kısaca bilgi verildikten sonra, Atatürk

Bu çalışmada genel olarak bilgi politikası kavramı, tanımı, unsurları ve tarihsel gelişimine kısa bir giriş yapıldıktan sonra Amerika Birleşik Devletleri (ABD), bilgi

derece b-spline eğriler gösteriliyor Üçüncü data set için, önerilen metot, centripetal metoda göre, 3. ve 5.derece eğrilerde

Bunun için elde edilen gaz-çözelti tepkimelerinde kullanılan deneysel tasarım sonuçları değerlendirilerek, hidroliz tepkimesinin kontrol edilmesi için

Şekil 2.1. Kuvvet ile yer değiştirme arasındaki ilişki ... Biçimlendirilebilir metaller için gerilme-şekil değiştirme eğrisi ... Dengedeki bir cisim ... tt en kesitli

Akciğer rezeksiyonu sonrası komplikasyonların önceden belirlenmesinde merdiven çıkma ve 6-dakika yürüme testlerinin yeri Amaç: Akciğer rezeksiyonlarından sonra kaçınılmaz