• Sonuç bulunamadı

The structure, mixing angle, mass and couplings of the light scalar f(0)(500) and f(0)(980) mesons

N/A
N/A
Protected

Academic year: 2021

Share "The structure, mixing angle, mass and couplings of the light scalar f(0)(500) and f(0)(980) mesons"

Copied!
4
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Physics Letters B 781 (2018) 279–282

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

The

structure,

mixing

angle,

mass

and

couplings

of

the

light

scalar

f

0

(

500

)

and

f

0

(

980

)

mesons

S.S. Agaev

a

,

K. Azizi

b

,

c

,

,

H. Sundu

d

aInstituteforPhysicalProblems,BakuStateUniversity,Az-1148Baku,Azerbaijan bDepartmentofPhysics,Doˇgu ¸sUniversity,Acibadem-Kadiköy,34722Istanbul,Turkey

cSchoolofPhysics,InstituteforResearchinFundamentalSciences(IPM),P. O. Box19395-5531,Tehran,Iran dDepartmentofPhysics,KocaeliUniversity,41380 Izmit,Turkey

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received30November2017

Receivedinrevisedform16January2018 Accepted31March2018

Availableonline5April2018 Editor: J.-P.Blaizot

Themixingangle,massandcouplingsofthelightscalarmesons f0(500)and f0(980)arecalculatedin theframeworkofQCDtwo-pointsumruleapproachbyassumingthattheyaretetraquarkswithdiquark– antidiquarkstructures. Themesonsaretreatedasmixturesoftheheavy|H= ([su][¯su¯]+ [sd][¯sd¯])/√2 and light|L= [ud][¯ud¯] scalar diquark–antidiquark components. We extract from corresponding sum rulesthemixingangles

ϕ

H and

ϕ

Lofthesestatesandevaluatethemassesandcouplingsoftheparticles

f0(500)and f0(980).

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Lightscalarmesonsthat resideintheregionm

<

1GeV ofthe mesonspectroscopyaresourcesoflong-standingproblemsforthe conventional quark model. The standard approach when treating mesons as bound states of a quark and an antiquark qq meets

¯

withevident troublesto include f0

(

500

)

and f0

(

980

)

, aswell as

some other lightparticles into thisscheme:There are discrepan-ciesbetweenpredictionsofthismodelforamasshierarchyoflight scalarsandmeasuredmassesoftheseparticles.Therefore,for in-stance,the f0

(

980

)

mesonwasalreadyconsideredasafour–quark

statewithq2q

¯

2content[1].

During passed decades physicists made great efforts to un-derstand features of the light scalar mesons: They were treated as meson–meson molecules [2–5], or considered as diquark– antidiquarkbound states[6,7].These modelsstimulated not only qualitative analysis of the light scalar mesons, but also allowed one to calculate their parameters using different methods. Thus, inRef. [8] masses ofthe f0

(

500

)

, f0

(

980

)

,a0

(

980

)

and K0

(

800

)

mesonswere evaluatedin thecontextof therelativisticdiquark– antidiquark approach and nice agreements with the data were found.Therearegrowingunderstandingthatthemesonsfromthe lightscalars’nonetareexoticparticlesoratleastcontain substan-tialmultiquark components:lattice simulations andexperimental dataseemsupportthesesuggestions.Furtherinformationon

rele-*

Correspondingauthor.

E-mailaddress:kazizi@dogus.edu.tr(K. Azizi).

vanttheoreticalideasandmodels,aswellasonexperimentaldata canbefoundinoriginalandreviewarticles[9–13].

Intensive studiesof thelight scalars astetraquark stateswere carriedoutusingQCDsumrulesmethod[14–22].Essentialpartof these investigations confirmed assignment of thelight scalars as tetraquarkstatesdespitethefactthattoexplainexperimentaldata in some of them authors had to introduce various modifications toapurediquark–antidiquarkpictureandtotreattheparticlesas a mixtureofdiquark–antidiquarkswithdifferentflavor structures [18], or assuperpositions of diquark–antidiquark andqq compo-

¯

nents [20–22]. There was alsothe article(see, Ref. [19]), results ofwhich didnotsupport an interpretationofthe lightscalars as diquark–antidiquarkboundstates.

Asisseen,theoreticalanalysesperformedevenwithinthesame methodleadtodifferentconclusions abouttheinternalstructures ofthemesonsfromthelightscalarnonet.Oneshouldaddtothis picture also large errorsfrom whichsuffer experimental dataon themassesandwidthsoftheseparticles[23] tounderstand diffi-cultyofexistingproblems.

2. Mixingschemes

An approach to the nonet of light scalars as mixtures of tetraquarks belonging to different representations of the color group wasrecentlyproposed inRef.[24].Inaccordancewiththis approachthenonetofthe lightspin-0mesonscan beconsidered as tetraquarks composed of the color (3c) and flavor (3f) an-titripletscalardiquarks.Then,thesetetraquarksintheflavorspace forma nonet ofthe scalar particles 3f

3f

=

8f

1f.In order https://doi.org/10.1016/j.physletb.2018.03.085

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

280 S.S. Agaev et al. / Physics Letters B 781 (2018) 279–282

toembrace thesecond nonetofthescalar mesonsoccupyingthe regionabove 1GeV spin-1diquarksbelongingtothecolor–flavor representation(6c

,

3f) can beused. Thetetraquarks builtofthe spin-1diquarkshavethesameflavorstructureasonesconstructed fromspin-0diquarks,andthereforecanmixwiththem.

InthepresentLetterwe restrictourselvesby consideringonly the first nonet ofthe scalar particles. Therefore, inwhat follows weneglecttheirpossiblemixingwithtetraquarkscomposedofthe spin-1 diquarks. The flavor singlet and octet components of this nonethavethestructures

|

1f

 =

1

3



[

su

][

su

] + [

ds

][

ds

] + [

ud

][

ud

]



,

|

8f

 =

1

6



[

ds

][

ds

] + [

su

][

su

] −

2

[

ud

][

ud

]



,

thatintheexactSUf

(

3

)

symmetrycanbedirectlyidentifiedwith thephysical mesons.Butthe realscalarparticles are mixturesof thesestates, andin thesinglet-octet basis and one-angle mixing schemehavethedecomposition



|

f



|

f





=

U

(θ )



|

1f



|

8f





,

U

(θ )

=



cos

θ

sin

θ

sin

θ

cos

θ



,

(1)

where,forthesakeofsimplicity,wedenote f

=

f0

(

500

)

and f

=

f0

(

980

)

, and

θ

is the corresponding mixing angle. Alternatively,

onecanintroducetheheavy-lightbasis

|

H

 =

1 2



[

su

][

su

] + [

ds

][

ds

]



,

|

L

 = [

ud

][

ud

],

(2)

andforthephysicalmesonsgettheexpansion



|

f



|

f





=

U

(

ϕ

)



|

H



|

L





.

(3)

Here we use

ϕ

as the mixingangle in the heavy-lightbasis. An emerged situation isfamiliar to one from analysisof the mixing problemsinthenonetofthepseudoscalarmesons,namelyinthe

η

η

system[25–27].Theheavy-lightbasisinthecaseunder con-siderationissimilartothequark–flavorbasisemployedthere.The mixinganglesinthetwo basisare connectedbythesimple rela-tion

tan

θ

=

2 tan

ϕ

+

1

tan

ϕ

2

.

(4)

Ingeneral, one mayintroducealso two-anglesmixing scheme ifitleadstoabetterdescriptionoftheexperimentaldata



|

f



|

f





=

U

(

ϕ

H,

ϕ

L

)



|

H



|

L





,

U

(

ϕ

H,

ϕ

L

)

=



cos

ϕ

H

sin

ϕ

L sin

ϕ

H cos

ϕ

L



.

(5)

Thecouplingsinthe f

fsystemcanbedefinedintheform



0

|

Ji

|

f

(

p

)

 =

Fifmf

,



0

|

Ji

|

f

(

p

)

 =

Fifmf

,

i

=

H

,

L

.

(6) We suggest that the couplings followpattern of state mixingin both one- and two-angles scheme. In the general case of two-anglesmixingschemethisimpliesfulfillment oftheequality



FHf FLf FHf FLf



=

U

(

ϕ

H,

ϕ

L

)



FH 0 0 FL



,

(7)

whereFH andFL maybeformallyinterpretedascouplingsofthe “particles”

|

H



and

|

L



.

Currents JH

(

x

)

and JL

(

x

)

inEq.(6) thatcorrespondto

|

H



and

|

L



statesaregivenbytheexpressions

JH

(

x

)

=



dab



dce

2



uTa

(

x

)

C

γ

5sb

(

x

)



uc

(

x

)

γ

5C sTe

(

x

)

+



dTa

(

x

)

C

γ

5sb

(

x

)



dc

(

x

)

γ

5C sTe

(

x

)



,

(8) and JL

(

x

)

=



dab



dce



uaT

(

x

)

C

γ

5db

(

x

)



uc

(

x

)

γ

5Cd T e

(

x

)

,

(9)

wherea

,

b

,

c

,

d and e arecolorindicesandC isthecharge conju-gationoperator.Thentheinterpolatingcurrentsforphysicalstates

Jf

(

x

)

and Jf

(

x

)

taketheforms



Jf

(

x

)

Jf

(

x

)



=

U

(

ϕ

H,

ϕ

L

)



JH

(

x

)

JL

(

x

)



.

(10)

Inthesimplecaseofone-anglemixingschemeEq. (10) transforms tothefamiliarsuperpositions

Jf

(

x

)

=

JH

(

x

)

cos

ϕ

JL

(

x

)

sin

ϕ

,

Jf

(

x

)

=

JH

(

x

)

sin

ϕ

+

JL

(

x

)

cos

ϕ

.

(11)

Thesecurrentsortheirmorecomplicatedformsinthetwo-angles mixingschememaybeusedinQCDsumrulecalculationsto eval-uatethemassesandcouplingsofthemesons f and f.

3. Sumrules

Atthefirststageofourcalculationswederivethesumrulefor themixingangle

ϕ

ofthe f

fsystem.Tothisend,weusethe heavy-lightbasisandone-anglemixingschemeandstartfromthe correlationfunction[28]

(

p

)

=

i

d4xeip·x



0

|

T

{

Jf

(

x

)

Jf†

(

0

)

}|

0

.

(12)

The sumruleobtainedusing

(

p

)

allowustofixthemixing an-gle

ϕ

.In fact,because the currents Jf

(

x

)

and Jf

(

x

)

createonly

|

f



and

|

f



mesons, respectively,aphenomenological expression forthecorrelator



Phys

(

p

)

equalstozero.Thenthesecond ingredi-entofthesumrule,namelyexpressionofthecorrelationfunction calculated in terms of quark–gluon degrees of freedom



OPE

(

p

)

should beequaltozero.Because



OPE

(

p

)

dependsonthemixing angle

ϕ

,itisnotdifficulttofind

tan 2

ϕ

=

2



OPEH L

(

p

)



OPELL

(

p

)

− 

OPEH H

(

p

)

,

(13) where



i j

(

p

)

=

i

d4xeip·x



0

|

T

{

Ji

(

x

)

Jj†

(

0

)

}|

0

.

(14)

Inderiving ofEq. (13) webenefitedfromthefact that



OPEH L

(

p

)

=



OPEL H

(

p

)

,whichcanbeprovedbyexplicitcalculations.After apply-ing the Boreltransformation andperforming requiredcontinuum subtractionsonecanemployittoevaluate

ϕ

.

Having found the mixing angle we proceed andevaluate the spectroscopicparametersofthemesons f and f.Thecorrelation functions



f

(

p

)

=

i

d4xeip·x



0

|

T

{

Jf

(

x

)

Jf †

(

0

)

}|

0

,



f

(

p

)

=

i

d4xeip·x



0

|

T

{

Jf

(

x

)

Jf†

(

0

)

}|

0

,

(15)

(3)

S.S. Agaev et al. / Physics Letters B 781 (2018) 279–282 281

Fig. 1. The tan 2ϕ(a), and the masses mf (b) and mf(c) in the two-angles mixing scheme as functions of the Borel parameter M2at fixed s 0.

are appropriate for thesepurposes and can be utilized to derive therelevant sumrules. Theexpression of



f

(

p

)

interms ofthe physicalparametersofthe f mesonisgivenbythefollowing sim-pleformula



Physf

(

p

)

=



0

|

J

f

|

f

(

p

)



f

(

p

)

|

Jf †

|

0



m2f

p2

+ . . . ,

wherethe dots stand for contributions of the higher resonances andcontinuum states.Usingtheinterpolatingcurrentandmatrix elementsofthe f mesonfromEqs.(11) and(6) itisaeasytaskto showthat



Physf

(

p

)

=

m 2 f m2f

p2

FHcos2

ϕ

+

FLsin2

ϕ

2

+ . . . .

Aftercalculatingthecorrelationfunction



OPEf

(

p

)

andapplyingthe Borel transformation in conjunction with continuum subtraction onegetsthesumrule

m2f

FHcos2

ϕ

+

FLsin2

ϕ

2 em2f/M2

= 

f

(

s0

,

M2

),

(16)

where



f

(

s0

,

M2

)

=

B 

OPEf

(

p

)

istheBoreltransformedand

sub-tractedexpressionof



OPEf

(

p

)

withM2 ands

0 beingtheBoreland

continuum threshold parameters, respectively. Thissum rule and anotherone obtainedfromEq.(16) bymeansofthestandard op-eration d

/

d

(

1

/

M2

)

can be used to evaluate the mass of the f

meson.

Thesimilaranalysisfor fyields

m2f

FHsin2

ϕ

+

FLcos2

ϕ

2 em2f/M 2

= 

f

(

s0

,

M2

).

(17)

FromEqs.(16) and(17) itisalsopossibletoextract

FHcos2

ϕ

+

FLsin2

ϕ

2

and

FHsin2

ϕ

+

FLcos2

ϕ

2

forevaluating ofthe cou-plings FH and FL, but they may suffer fromlarge uncertainties: Weinsteadevaluate FH andFLfromsumrulesforthescalar “par-ticles”

|

H



and

|

L



,usingto thisendcorrelationfunctions



H

(

p

)

and



L

(

p

)

givenbyEq. (15),where Jf

(

x

)

and Jf



(

x

)

arereplaced by JH

(

x

)

and JL

(

x

)

,respectively.

4. Numericalresults

Incalculationsweutilizethelightquarkpropagator

Sabq

(

x

)

=

i

δ

ab

/

x 2

π

2x4

− δ

ab mq 4

π

2x2

− δ

ab



qq



12

+

i

δ

ab

/

xmq



qq



48

− δ

ab x2 192



qgs

σ

Gq

 +

i

δ

ab x2

/

xmq 1152



qgs

σ

Gq



i gsG αβ ab 32

π

2x2



/

x

σ

αβ

+

σ

αβ

/

x



i

δ

ab x2

/

xg2s



qq



2 7776

− δ

ab x4



qq



g2 sG2



27648

+ . . . ,

(18)

andtake intoaccount quark,gluonandmixedoperatorsupto di-mensiontwelve.Thevacuumexpectationsvaluesoftheoperators usedinnumericalcomputationsarewellknown:

qq



= −(

0

.

24

±

0

.

01

)

3 GeV3,

ss



=

0

.

8

qq



,



qgs

σ

Gq



=

m20qq



,



sgs

σ

Gs



=

m20¯ss



,



α

sG2

/

π



= (

0

.

012

±

0

.

004

)

GeV4,



g3sG3



= (

0

.

57

±

0

.

29

)

GeV6,wherem2

0

= (

0

.

8

±

0

.

1

)

GeV2.

TheworkingregionsfortheBorelandcontinuumthreshold pa-rametersarefixedinthefollowingform

M2

= (

1

.

1

1

.

3

)

GeV2

,

s0

= (

1

.

4–1

.

6

)

GeV2

,

(19)

thatsatisfystandardrequirementsofsumrulescomputations.For example,atthelowerlimitoftheBorelparameterthesumofthe dimension-10,11and12termsin



LL

(

s0

,

M2

)

−

H H

(

s0

,

M2

)

does

notexceed5% ofallcontributions.Attheupperboundofthe work-ing windowforM2 thepolecontributiontothesamequantity is larger than 0

.

12 of the whole result, which is typical for multi-quark systems. Variation of the auxiliary parameters M2 and s

0

withintheregions(19),aswellasuncertaintiesoftheotherinput parametersgeneratetheoreticalerrorsofsumrulescomputations. The tan 2

ϕ

extracted using Eq. (13), as is seen from Fig. 1 (a), demonstratesamilddependenceonM2.Asaresult,itisnot diffi-culttoestimatethat

ϕ

= −

27◦

.

66

±

1◦

.

24

.

(20)

This value of

ϕ

in the heavy-light basis is equivalent to

θ

=

33◦

.

00

±

1◦

.

17 inthesinglet-octetbasis.UsingEq.(20) itisnot difficult toevaluate the mesons’ massesinthe one-angle mixing schemethatread

mf

= (

597

±

81

)

MeV

,

mf

= (

902

±

125

)

MeV. (21) Asisseen,the one-anglemixingscheme,iftakeintoaccount the centralvaluesfromEq.(21),doesnotdescribecorrectlythe exper-imental data: it overshoots the mass of the f0

(

500

)

mesonand,

atthesametime,underestimatesthemassofthe f0

(

980

)

meson.

The agreement can be improved by introducing the two mixing angles

ϕ

H and

ϕ

L. It turnsout that to achieve a niceagreement withtheavailableexperimental dataitisenoughto vary

ϕ

H and

ϕ

L withinthelimits(20):

ϕ

H

= −

28◦

.

87

±

0◦

.

42

,

ϕ

L

= −

27◦

.

66

±

0◦

.

31

.

(22) Formf andmf thesumruleswithtwomixingangles

ϕ

H and

ϕ

L leadtopredictions

(4)

282 S.S. Agaev et al. / Physics Letters B 781 (2018) 279–282

mf

= (

518

±

74

)

MeV

,

mf

= (

996

±

130

)

MeV

,

(23) whichare compatiblewithexperimental data.Thetheoretical er-rorsinEq.(23) accumulateuncertainties connectedwith M2 and

s0,aswellasarisingfromotherinputparameters.Thedependence

ofmf andmf on theauxiliary parameters M2 and s0 doesnot

exceed limitsallowed forsuch kindof calculations: In Figs. 1(b) and1(c) weplotmf andmf asfunctionsoftheBorelparameter toconfirmastabilityofcorrespondingsumrules.

In the two-angle mixing scheme the system of the physical particles f

fischaracterizedbyfourcouplings(7).After deter-miningthemixingangles

ϕ

H and

ϕ

L thatfixthematrixU

(

ϕ

H,

ϕ

L

)

, quantitieswhichshouldbefoundfromtherelevantsumrulesare onlythecouplingsFH andFL.Aswehavementionedabovetothis endweconsidertwoadditionalsumrulesby treatingbasicstates

|

H



and

|

L



asreal“particles”andobtain

FH

= (

1

.

35

±

0

.

34

)

·

10−3GeV4

,

FL

= (

0

.

68

±

0

.

17

)

·

10−3GeV4

.

(24)

ThecouplingFH calculatedinthepresentworkiscomparablewith onefoundinRef. [16] usingthesameinterpolatingcurrent(8) and vacuum condensates up to dimension six and is given by FH

=

(

1

.

51

±

0

.

14

)

·

10−3GeV4.

The mixing angles

(

ϕ

H

,

ϕ

L

)

, the masses

(

mf

,

mf

)

and the couplings

(

FH

,

FL

)

completethesetofthespectroscopic parame-tersofthe f0

(

500

)

and f0

(

980

)

mesons.

5. Concludingnotes

The investigation performed in the present Letter has al-lowedustocalculatethemassandcouplingsofthe f0

(

500

)

and f0

(

980

)

mesonsbytreating themasthemixturesofthediquark–

antidiquarks

|

H



and

|

L



.Wehavedemonstratedthatbychoosing the heavy-light basis and mixing angles

ϕ

H

= −

28◦

.

87

±

0◦

.

42 and

ϕ

L

= −

27◦

.

66

±

0◦

.

31 a reasonable agreement with exper-imental data can be achieved even information on the f0

(

500

)

meson suffers from large uncertainties [23]. The assumption on structures of the light mesons made in the present work deter-minesalsotheir possibledecaymechanisms. Indeed,it isknown that the dominant decay channels of the f0

(

500

)

and f0

(

980

)

mesons are f0

(

500

)

π π

and f0

(

980

)

π π

processes. In

ex-perimentsthedecay f0

(

980

)

K K wasseen,aswell.Themixing

of the

|

H



and

|

L



diquark–antidiquark states to formthe physi-cal mesons implies that all of thesedecays can run through the superallowedOkubo–Zweig–Iizuka (OZI)mechanism:Withoutthe mixing the decay f0

(

980

)

π π

can proceed dueto one gluon

exchange, whereas f0

(

980

)

K K is still OZI superallowed

pro-cess[16]. The another problemthat finds its naturalexplanation within the mixing framework is a large difference between the

full widthof themesons f0

(

500

)

and f0

(

980

)

, whichamount to

=

400

700 MeV and

=

10

100MeV [23], respectively. In fact, the strong couplings gf0(500)π π and gf0(980)π π that

deter-minethewidthofthedominantpartialdecays f0

(

500

)

π π

and f0

(

980

)

π π

dependonthemixingangle

ϕ

L intheform g2f0(500)π π

1 sin2

ϕ

L

,

g2f0(980)π π

1 cos2

ϕ

L

.

(25)

Inthemodelunderconsiderationthisdependenceisamainsource thatgeneratesthenumericaldifferencebetweenthepartialwidth ofaforementionedprocesses,andhencebetweenthefullwidthof themesons f0

(

500

)

and f0

(

980

)

.

Analysis of the partial decays of the mesons f0

(

500

)

and f0

(

980

)

,aswellascalculationofthe spectroscopicparameters of

other light scalarmesons deservesfurther detailedinvestigations resultsofwhichwillbepublishedelsewhere.

Acknowledgement

K. A.thanks TÜBITAKforthepartialfinancialsupportprovided underGrantNo.115F183.

References

[1]R.L.Jaffe,Phys.Rev.D15(1977)267.

[2]J.D.Weinstein,N.Isgur,Phys.Rev.Lett.48(1982)659. [3]J.D.Weinstein,N.Isgur,Phys.Rev.D41(1990)2236.

[4]N.N.Achasov,V.V.Gubin,V.I.Shevchenko,Phys.Rev.D56(1997)203. [5]T.Branz,T.Gutsche,V.E.Lyubovitskij,Eur.Phys.J.A37(2008)303.

[6]L.Maiani,F.Piccinini,A.D.Polosa,V.Riquer,Phys.Rev.Lett.93(2004)212002. [7]G.’tHooft,G.Isidori,L.Maiani,A.D.Polosa,V.Riquer,Phys.Lett.B662(2008)

424.

[8]D.Ebert,R.N.Faustov,V.O.Galkin,Eur.Phys.J.C60(2009)273. [9]M.G.Alford,R.L.Jaffe,Nucl.Phys.B578(2000)367.

[10]C.Amsler,N.A.Tornqvist,Phys.Rep.389(2004)61. [11]D.V.Bugg,Phys.Rep.397(2004)257.

[12]R.L.Jaffe,Phys.Rep.409(2005)1.

[13]E.Klempt,A.Zaitsev,Phys.Rep.454(2007)1. [14]J.I.Latorre,P.Pascual,J.Phys.G11(1985)L231. [15]S.Narison,Phys.Lett.B175(1986)88.

[16]T.V.Brito,F.S.Navarra,M.Nielsen,M.E.Bracco,Phys.Lett.B608(2005)69. [17]Z.G.Wang,W.M.Yang,Eur.Phys.J.C42(2005)89.

[18]H.X.Chen,A.Hosaka,S.L.Zhu,Phys.Rev.D76(2007)094025. [19]H.J.Lee,Eur.Phys.J.A30(2006)423.

[20]J.Sugiyama,T.Nakamura,N.Ishii,T.Nishikawa,M.Oka,Phys.Rev.D76(2007) 114010.

[21]T.Kojo,D.Jido,Phys.Rev.D78(2008)114005. [22]Z.G.Wang,Eur.Phys.J.C76(2016)427.

[23]C.Patrignani,etal.,ParticleDataGroup,Chin.Phys.C40(2016)100001. [24]H.Kim,K.S.Kim,M.K.Cheoun,M.Oka,arXiv:1711.08213 [hep-ph]. [25]T.Feldmann,P.Kroll,B.Stech,Phys.Rev.D58(1998)114006. [26]T.Feldmann,P.Kroll,B.Stech,Phys.Lett.B449(1999)339.

[27]S.S.Agaev,V.M.Braun,N.Offen,F.A.Porkert,A.Schäfer,Phys.Rev.D90(2014) 074019.

Şekil

Fig. 1. The tan 2 ϕ (a), and the masses m f (b) and m f  (c) in the two-angles mixing scheme as functions of the Borel parameter M 2 at fixed s 0 .

Referanslar

Benzer Belgeler

pylori VacA ve CagA’sına karşı oluşan serum antikor profillerinin Western blot testi ile araştırdıkları çalışmalarında; kültür tek başına pozitif olduğunda

Kapu Camisi, kubbeyle örtülü tek mekanlı harim’e sahip camii tipolojilerinin bir örneği olarak Fevzi Paşa ve Bekir Paşa Caddeleri arasında doğu-batı yönünde eğimli olan

Eser önce Mükrimin Halil Yinanç tarafından tercüme edilerek yayımlanmış (Türk Tarihi Encümeni Mecmuası, II/79, s. 85-94); daha sonra ise İbrahim Hakkı

In this study, the VSM08 survey which was developed to measure cultural dimensions of societies by Hofstede (2008), has been practiced to Çukurova University Architectural

Bu otorite (Parlamento), modern Irak tarihinde bu şekilde kurulacak ve sahip olduğu görev ve yetkilerine göre önceki Irak anayasalarına kıyasla ilk farklı parlamento

6360 sayılı Yasa’nın yürürlüğe girmeden bir önceki yılı 2013 ve bir sonraki yılı 2015 bütçe uygulama sonuçları karşılaştırıldığında; Türkiye’de belediye

Kumarin iskeletinde, benzen, piron veya hem benzen hem de piron halkalarına değişik sübstitüentlerin bağlanmasıyla meydana gelen kumarinlerdir [5]. Şekil 2.2: Benzen

Grafik 2.1 Konsantrasyonda meydana gelen sabit bir değişmenin, etkide yaptığı değişmenin boyutlarının, konsantrasyon-etki eğrisinin eğiminin değişmesine göre farklı