• Sonuç bulunamadı

Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer

N/A
N/A
Protected

Academic year: 2021

Share "Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

Integration

of

glass

micropipettes

with

a

3D

printed

aligner

for

microfluidic

flow

cytometer

Abdullah

Bayram

a

,

Murat

Serhatlioglu

b

,

Bulend

Ortac

b

,

Serafettin

Demic

a

,

Caglar

Elbuken

b

,

Mustafa

Sen

c,∗

,

Mehmet

Ertugrul

Solmaz

d,∗

aDepartmentofMaterialScienceandEngineering,IzmirKatipCelebiUniversity,Izmir,Turkey

bUNAMNationalNanotechnologyResearchCenter,InstituteofMaterialsScienceandNanotechnology,BilkentUniversity,06800Ankara,Turkey

cDepartmentofBiomedicalEngineering,IzmirKatipCelebiUniversity,Izmir,Turkey

dDepartmentofElectricalandElectronicsEngineering,IzmirKatipCelebiUniversity,Izmir,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received10July2017

Receivedinrevisedform

30November2017

Accepted30November2017

Availableonline2December2017

Keywords: Flowcytometry Hydrodynamicfocusing Micropipette 3Dprinting Optofluidics

a

b

s

t

r

a

c

t

Inthisstudy,afacilestrategyforfabricatingamicrofluidicflowcytometerusingtwoglassmicropipettes withdifferentsizesanda3Dprintedmillifluidicalignerwaspresented.Particleconfinementwasachieved byhydrodynamicfocusingusingasinglesampleandsheathflow.Deviceperformancewasextracted usingtheforwardandside-scatteredopticalsignalsobtainedusingfiber-coupledlaserand photodetec-tors.The3-Dprintingassistedglasscapillarymicrofluidicdeviceisultra-low-cost,notlabor-intensive andtakeslessthan10mintofabricate.Thepresentdeviceoffersagreatalternativetoconventional benchtopflowcytometersintermsofoptofluidicconfiguration.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Flowcytometryhasproventobeasensitive,quantitativeand non-invasiveapproachtoobtainvaluableinformationfromsingle cells[1–4].Itisroutinelyusedinclinicallaboratoriesforthe identi-ficationandclassificationofcertaincancers,suchasleukemia[5–7] andlymphoma[8,9],andevenforthediagnosisoflife-threatening diseasessuchasAIDS[10,11].Becauseofthedisadvantagesofthe conventionalbenchtopflow cytometerssuchashighcost,large size,maintenance,complexconfigurationandtheneedforlarge volumesofreagents,agreatdealofattentionhasbeenpaidto fab-ricatemicrofluidicdevicesusingmicrofabricationtechnologiesin recentyears.Microfluidicdevicesoffermanyadvantageslike sim-plicity,lowcost,lowconsumptionofreagents,rapidanalysis,small sizeandhighlycontrollableenvironment forparticle manipula-tion.Focusinginflowcytometersisusedtoconfinecellscloseto thecenterofthechannelsothattheycanpassthroughtheoptical interrogationareaoneatatime,aphenomenonthatimproves

sin-∗ Correspondingauthors.

E-mailaddresses:mustafa.sen@ikc.edu.tr(M.Sen),mehmete.solmaz@ikc.edu.tr

(M.E.Solmaz).

glecellanalysisandlimitssampleadsorptiontothechannelwall. Avarietyoffocusingmethodsexploitingdifferentphysical mech-anisms have been developed; hydrodynamic focusing [12–15], dielectrophoresis [16,17], acoustics [18–21] and electroosmosis [22–24].Hydrodynamicfocusingenablesfocusinginawide veloc-ityrangeandhasnospecialrequirementforparticles,cellsand fluidsused.Itisusuallyusedtoguideparticlesorcellsinaconfined spacebymanipulatingthestreamlines.Unlike2Dhydrodynamic focusingthatfocusesinonlyonelateraldimension,confiningthe streamof particlesin 3D ensuresthe uniformflowof particles alongthedetectionarea. 3Dhydrodynamicfocusingimprovesa numberoffeaturesofthemicrofluidicflowcytometersincluding performance,accuracy,stability,sensitivityanddetection resolu-tion[15,25,26].Uptodate,different3Dfocusingstrategieshave beenproposedtofabricatemicrofluidicdevices.Forexample, Sun-dararajanetal.usedsixsheathinletsandafive-layerdesignfor3D focusingofsamplefluidinflow[27].However,theuseof multi-plesyringesandmultiplelayerfabricationmadethedesignrather complicated. Gorthiet al.fabricateda PDMS based single-layer microfluidicdevicethat consistsof threeinlets(oneforsample flowandtwoforsheathflow)andanoutlettorealize hydrody-namic3Dflow focusing[12].AlthoughPDMSdevicefabrication involveda singlelayer,themasterrequiredfor replicamolding

https://doi.org/10.1016/j.sna.2017.11.056

(2)

anddevicefabricationrequiredmultilayerfabricationbymeans ofphotolithography.Testaetal.developedamicro-flowcytometer capableofself-aligned3Dhydrodynamicfocusing[13].Tomakethe device,thedesignwasfirstprintedontwo3mm-thick polymethyl-methacrylates(PMMA)usingahighprecisioncomputernumerical controlmicromillingmachinefollowedbysolventassisted ther-malbonding.Agrawaletal.proposedanewstrategywithintricate microfabricationutilizing two bendsof opposite curvature, sin-glesheathinletsandexploitingsecondaryforcesandcentrifugal effectsfor3Dhydrodynamicfocusingofdye,particlesandcells[15]. Recently,femtosecondlasermicromachiningwaspresentedasa newpotentialfabricationtoolformakingmicrofluidicnetworks thatimplementhydrodynamicfocusingwithtwoinlets;onefor thesampleandoneforthesheathflow[14,28].3Dprinting technol-ogyhasalsobeenemployedtomakecomplexmicrofluidicdevices outofdiscreteelementswithlesseffort[29–31].3Dprintingstill lacksthesufficientpatterningresolutionrequiredforfabricating micronscaledfluidicdeviceswithgoodalignmentaccuracy[32]. Themajorityofreportedmicrofluidicflowcytometersareeither toocomplexorrequiremultiplesheathflowstorealize3D focus-ingandfurtherresearchisneededtomakelesslaborintensiveand cost-effectivemicrofluidicflowcytometerscapableofefficient3D hydrodynamicfocusing.

In this proof of concept study, a facile strategy for making a microfluidicflow cytometerbyusingtwo glassmicropipettes with different size and a 3D printed millifluidic aligner was demonstrated. Micropipettes have already been introduced to microfluidics;forexample,Weitzetal.usedmicropipettesfor cre-atingmonodispersemicrodropletsinsingleormultiple-emulsion forms[33,34].Thefabricationofmicropipettesfromglass capillar-iesusingamicropullerisrelativelyeasywithminimalfabrication time,andthedimensionsofmicropipettetipopeningcanbeeasily manipulatedbyeitherchangingthepullingparametersorgrinding thetipwithamicrogrinder[35–37].Tothebestofourknowledge, thisisthefirststudythatcombines3Dprintingwithmicropipette technologyfor efficienthydrodynamicfocusingofparticles.The proposedfabricationstrategyisfacile,straightforwardand ultra-low-costasittakeslessthanonedollartofabricatetheoptofluidic device.

2. Materialsandmethods

2.1. Materials

Glass capillary with filament (O.D./I.D.: 1/0.6mm; length: 90mm)(Narishige, Japan), blood gas capillary tubes (O.D./I.D.: 2.3/1.85mm;length:125mm)(Marianfeld,Germany),polystyrene microbeads with a diameter of 5.95±0.12␮m (Polysciences, Inc.,USA),phosphate-bufferedsaline(PBS)(SigmaAldrich,USA), sealant(Pattex,Henkel,Germany),ahightemperaturemold mate-rial(HTM140M,EnvisionTEC,USA),asinglemode(SM)bluelaser illumination fiber (LP405-SF10,Thorlabs, USA), forward scatter (FSC)andsidescatter(SSC)fibers(M43L01,Thorlabs,USA). 2.2. Devicefabrication

First,asmallglasscapillarytube(O.D./I.D.:1/0.6mm;length: 90mm) was pulled using a micropuller (PC-10 Micropulling Machine, Narishige, Japan) to produce two microneedles with thefollowingparameters;option2,first-pullpositionadjustment plate: 6mm, second-pull positionadjustmentplate: 2mm, one typelightandonetypeheavyweights,no.1heaterlevel:65and no.2heaterlevel:37[35].Thetipofthesmallmicropipettewas grinded tohavea tipopeninginner diameterofapproximately 150␮musingamicrogrinder(EG-401,Narishige,Japan)(Fig.1AI).

Thedesiredtipopeningdiameterwasadjustedusingtheocular micrometerofthemicrogrinder.Then,alargeglasscapillarytube (O.D./I.D.:2.3/1.85mm;length:125mm)waspulledthesameway asthesmallcapillarytubeusingthefollowingparameters;option 1,twotypelightandtwotypeheavyweights,no.1heaterlevel:75. Thelargemicropipettewaspulledinawaytohavea microchan-nelwithanapproximately90␮minnerdiameterandalengthof nolessthan10cm.Thetipofthelargemicropipettewasgrinded only to measure thetip opening diameter properly (Fig. 1AII). Both micropipettes were cleaned thoroughly in distilled water usingultrasonicbeforeuse.Thesmallmicropipettewas center-positioned inside the large micropipette using a micropipette aligner(Fig.1AIII,BI)aprocessthattookonlyafewminutes.The micropipette alignerwas firstdesigned using a 3D CADdesign software (SolidWorks2016,USA) (Fig.S1A)and then produced fromahightemperaturemoldmaterial(HTM140M)usinga3D rapid prototype manufacturingsystem (Perfactory 4 Mini with ERM,EnvisionTEC,USA)withhighprecision.Asfortheassembly ofthedevice,thelargemicropipettewasfirstinsertedinthe corre-spondingholeofthealignerandasealantwasusedtobothfixthe micropipetteandpreventanyleakagefromthesmallgapbetween thecapillaryandthealignerhole.Then,thesmallmicropipettewas insertedintothecorrespondingholeofthealignertopositionthe smallmicropipetteinsidethelargeoneunderastereomicroscope andthesamesealantasbeforewasusedformicropipettefixation andleakage prevention(Fig. S1B).Priortouse,alldevices were checkedforleakagebypumpingwaterfromthetwoinletsat pres-suresupto2bars,whichistheupperlimitthepressurepumpcan provide.

2.3. Devicecharacterization

The3Dhydrodynamicfocusingabilityofthedevicewas inves-tigatedusingdeionizedwater(DI)coloredwitha bluefooddye and colorless PBSas sample and sheathsolutions, respectively. Apressurepump(Elveflow,OB1)wasusedtopassthesolutions throughthemicropipettes.Inthissetting,thePBSsolutionfrom thelargemicropipette hydrodynamicallyfocusedthebluecolor solutionintroducedfromthesmallmicropipettebycompletely sur-roundingit(Fig.1BII).Theimpactoftheratiobetweensheathand sampleflowpressuresonthe3Dhydrodynamicfocusingwas inves-tigatedinarangefrom0.96to1.064(sheath/sampleflowpressures) (Fig.2A).The3Dhydrodynamicfocusingwasrecordedusinga cam-era(BaslerAceacA2040-90uc,BaslerAG,Germany)attachedtoa microscope(KrüssMSL4000,Germany).

Next,thedevicewastestedwithmicroparticlesofuniformsize usinganopticaltestsystem.Thetestsystemconsistedofthe fol-lowingcomponents; asinglemode(SM)bluelaser illumination fiber,forwardscatter(FSC)andsidescatter(SSC)fibers,twophoto diodes(FSCandSSC)(DET02AFC,Thorlabs,USA),a405nmlaser source(LP405-SF10,Thorlabs,USA),apressurepumpandan oscil-loscope(Tektronix,MDO3104)(Fig.3AandFig.S2A).Inaddition, aflatPMMAplatewithfiberguidancegrooveswasusedto posi-tionallthefibers(Fig.S2BandC).Anadhesivetapewasusedtofix thefibersinthegroovescarvedontheplatebyCO2laser(Epilog Zing30W,EpilogLaser,USA).Basically,thelaserilluminationfiber withadiameterof125␮mwaspositionedperpendicular(90◦)to themicrochannelwherethemicrochanneldiameterandthewidth ofthefocusedsamplesolutionwere∼130and∼18␮m, respec-tively.Theopticalfiberwiththefollowingspecifications(numerical aperture(NA):0.12,modefielddiameter(MFD):3.6±0.5␮mand centerwavelength:405nm)wasusedtotranslateasinglemode (SM)lasertotheinterrogationzonewherethebeamdiameter cal-culatedwithGaussianbeamapproximationis11.48␮m.Tocollect thescatteredlightthroughthephotodetector,FSCandSSCfibers werepositionedwithanglesof167◦and210◦tothelaser

(3)

illumina-Fig.1.Theopticalimagesofsmall(AI)andlarge(AII)micropipettesusedformountingtheglassmicropipettebasedflowcytometrydevicetogetherwithmagnifiedimages

showingthesizeoftherespectivetipopenings.Animageoftheintegrateddevicewiththetop(i)andside-view(ii)microscopeimagesofasmallmicropipettepositioned

inalargemicropipetteusingthealigner(AIII).Schematicofthedevice(Bl)andtheprincipleforhydrodynamicfocusing(Bll).Thesheathflowintroducedthroughtheinlet

ofthe3D-printedalignerfocusesthesamplefluidintroducedfromthesmallmicropipette.

Fig.2. Theimpactofthevaryingsheathfluidpressureonthehydrodynamicfocusingwhenthesamplefluidpressureiskeptconstant(pressureofsheath/pressureofsample:

0.960,etc.)(A).Aplotshowingthecorrelationbetweenthefocusedsamplefluidwidthandthepressureratioofsheathandsampleflows(B).Thetop(CI)andside(CII)view

microscopeimagesof3Dfocusingachievedataratioof1.004betweensheathandsampleflowpressures.

tionfiber,respectively.PBSandpolystyrenemicrobeadscontaining PBSsolutionswereusedassheathandsamplesolutions, respec-tively.Priortouse,themicroparticle(diameter:5.95±0.12␮m) stocksolutionwasdilutedinamixture(PBSsolution+bluefood dye)filteredusing0.2␮mporesyringefiltertorealizeafinal con-centrationof∼1000particles/␮l.Thebluecolormixturewasused

simplyforbettervisualization.Themicroparticlecontaining sus-pension wasalso sonicatedfor15mintominimizeaggregation duringexperiments.PressurepumpwasusedtopassPBS(sheath) andpolystyrenemicrospherecontainingsuspensionthroughthe largeandsmallmicropipettesatasheath/samplesolutionpressure

(4)

Fig.3. Schematicillustrationofthesetupusedtotesttheglassmicropipettebasedflowcytometrydevice(A).Componentsofthesetupareasfollows;anassembledflow

cytometrydevice,a405nmlasersource,apressurepump,anoscilloscope,Siphotodetectors,fiberforexcitationlaserandtwocollectorfibers.Thearrangementofthe

fibersusedforexcitationlaser,forwardscatteredlight(FSL)andsidescatteredlight(SSL)isshowninthefigure.Forwardscatter(FSC)andsidescatter(SSC)channelsignals

recordedwhilepassingmicroparticlesofuniformsizethroughthemicrofluidicchannelfor2s(Bl)withaninsetshowing100mssnapshot(Bll).Representativehistograms

ofFSC(CI)andSSC(CII)signals.Thenumberofdatausedforthehistogramsis339andthecalculatedcoefficientvariations(CV)ofFSCandSSCsignalsare26.98%and25.54%,

respectively.FSC-SSCscatterplotobtainedwithmicroparticlesofuniformsize(D).

ratioof1.004.Theoscilloscopewasusedtoquantifythevoltage signalsfromthephotodetectorsata0.5MHzsamplingrate.

3. Resultsanddiscussions

Thedesign ofthepresentmicrofluidicflowcytometerdevice isquitesimpleandeasilycomprehensible(Fig.1BI-II).Acomplete deviceiscomposedofthreecomponents;amicropipettealigner, asmallandalargemicropipettes(Fig.1AIII).Precisefabricationof alignerholesisimportantforsuccessfulmicropipettealignment. ManufacturerreportsthatHTM140isverydurableandhigh pre-cisionmaterialdesignedtowithstandboththeheatandpressure ofvulcanizingamodelwithgreatdetailandnolossofdimensional stability.GiventhedesigndimensionsofthemodelinFig.S1A,the averagediametersofsmallandlargeholesofthreedifferent align-ers weremeasured tobe1049.9±8.1␮m and 2303.5±8.9␮m, respectively(Fig.S3A,B).Itissafetosaythatthe3Drapid proto-typemanufacturingsystemalongwithHTM140materialprovides dimensionaccuracyforprecisealignment ofmicropipettes.The assemblyofthedevicetooklessthan10minincludingthetime neededtogrindthetipofthesmallmicropipette.Themicropipette alignerscanberetrievedeasilyandusedrepeatedlyforfabrication ofa newmicrofluidic flowcytometerdevice.Theonly

consum-ablesusedtofabricateanewdevicearethesealantandtheglass capillaries,whichmakesthedeviceultra-low-costasbothofthe consumablescostlessthanonedollar.

The3Dhydrodynamicfocusingabilityofthedevicewas demon-stratedusingdeionizedwater(DI)coloredwitha bluefooddye andphosphatebuffersaline(PBS)assampleandsheathsolutions, respectively.Thedifferentcolorsofthetwosolutionsmadeit pos-sibletoeasilyobservetheconfinementofthesamplesolutionin themicrochannelofthelargemicropipette(Fig.2A).Hydrophilic surface is important and desirable for microfluidic systems to achieve variousfunctionssuchasfacilitatingfluidflow intothe microchannels[38].Thewatercontactangletest resultshowed thatHTM140ishydrophilicwithanaveragecontactanglevalue of37.1◦ (Fig.S4).Usingthe3Dprintedmicropipettealignerwith easy-to-operatetwo-inletconfiguration;thesheathsolution com-pletely surrounds and confinesthesample solution ina highly efficientmanner(Figs.1AIIand2A).Theresultsshowedthatthe microchannelwasfilledwiththebluecolorsolutionattheratioof 0.96.Whentheratiowasraisedto1.064,theflowthroughthesmall micropipettewasblockedbythesheathsolution.Thesmall differ-encebetweenthetworatiosdemonstratesthatthepressureofthe twofluidsmustbecontrolledpreciselyforanefficient3D focus-ing.Therelationshipbetweenthewidthofthehydrodynamically

(5)

focusedsampleandthepressureratiobetweensheathand sam-pleflowsisgiveninFig.2B.Thewidthofthesamplesolutionwas measuredapproximately1.53mmawayfromthetipofthesmall micropipette(Fig.S5).Therelationshipappearstobealmostlinear, whichsuggeststhatthewidthofthe3Dfocusedsamplesolution canbepreciselycontrolledbytheratiobetweensheathand sam-pleflowpressures.Inaddition,sideviewmicroscopeimagesofthe microchannelweretakenbothhorizontallyandverticallyataratio of1.004(sheath/sampleflowpressure)toseethefocusedflowand thusverifythe3Dhydrodynamicfocusingwiththepresentdevice (Fig.2CI-II).Bothimagesshowedthatthesampleflowwasfocused closetothecenterofthemicrochannel.

Next,theperformanceofthemicrofluidicflowcytometerdevice in3Dhydrodynamicfocusingofmicroparticleswasevaluatedusing anopticaltestsystem.Withoutanyparticleflow,theFSCandSSC signalsshowDCoffsetvaluesduetocollectingsomeamountof light.Fig.3BIshows2-sFSCandSSCchannelsignalsrecordedwhile microparticlesofuniformsizewerepassingthroughthe microflu-idicchannel. Eachpeak observedin Fig.3BI-II correspondsto a microparticlepassingbytheinterrogationpoint.Fromtothedata with∼170events/sthroughput,anFSCpeakwasrecordedforeach SSCsignal,whichindirectlyprovesthatallofthemicroparticles werefocused properly and passedthrough thelaser interroga-tionregionat thesame pointalong the microchannel.Fig.3BII showsaclose-upviewofpeakeventsfor100ms.Sincetheevents werewellseparated,thereisagreatpossibilitytofurtherincrease thethroughput.Thesignalswerepost-processedwithMATLABto obtainthenumber,peakvaluesandpositionsoftheevents.Gating wasappliedtoimprovethepopulationdistributionwithcommon propertiesasseen incommercialflowcytometers and toavoid multi-particleeventssuchasaggregatedparticles.Fig.3CI-IIshows thehistogramsofthepeaksobservedinFSCandSSCsignalsgiven inFig.3BI,respectively.Thecalculatedcoefficientofvariation(CV) valuesobtainedforFSCandSSCsignalswere26.98%and25.54%, respectively.LowerCVvaluescouldbeachievedbyadjustingthe sheathandsmallsolutionpressuresmoreprecisely[39].Accurate alignmentoftheilluminationfiberandFSC/SSCfibersiscritical.In thissetup,thesefiberswerealignedusingguidelinegroovescarved onaPMMAsubstratebyCO2laser(Fig.S6AI-II).Inotherwords,the illuminationandFSC/SSCfiberswerealignedautomaticallyonce theywerefixedontheplateusingatape.However,thealignment betweenthesefibersandglassmicropipettewasdonemanually usinganXYZstage(Fig.S6BandC).Thismightbealimitationforthe currentsystemasitmightbetime-consumingforresearcherswho arenotfamiliarwithsuchinstruments.Toovercomethislimitation, anewstrategywillbedevelopedtobypassthemanualalignment stage.Anotherlimitationofthecurrentsetupissamplerecovery. Thisissuewillalsobeaddressedin thefuture bycollectingthe outgoingsampleinachannelwithminimaldilution.Acellsorting mechanismmayalsobeintegratedintothesystemtodivertcells ofinterest.ScatterplotinFig.3Ddepictsthecorrelationbetween FSCandSSCsignalsfor2stimeduration.Itisobviousthatmostof theeventsweregatheredinasmallregion,aresultthatconfirms theproperfunctioningofthedevice.Ascomparedtocommercial state-of-the-artopticalflowcytometers,bulkoptics(laserdiodes, opticallenses,mirrors,filtersetc.)andmechanicalholders/aligners areexcludedfromthepresentsetup.Thepresentsetupusesfiber optics,whichprovidesgreatdealofflexibilitywhenconsidering theintegrationandstabilityofopticalelements.

4. Conclusion

Inconclusion,thefabricationofalow-costandsimplemicroflow cytometrydevicecapableofhydrodynamicfocusingwas demon-strated usingdifferent size glasscapillaries and a micropipette

alignerprintedwitha3Drapidprototypingmanufacturing sys-tem.Theassemblyofthedevicetooklessthan10minincluding micropipettetipgrindingandthefinaldeviceisultra-lowcost.The deviceshowedanexcellentperformanceinhydrodynamic focus-ingofDIwatercoloredwithabluefooddye.Thedevicewasalso usedfor3Dhydrodynamicfocusingofmicroparticlesofuniform sizewheredistinctFSCandSSCsignalsofmicroparticlespassing throughtheopticalinterrogationpointweresuccessfullyrecorded. Giventheseparationbetweeneachevent,thedevicehasthe poten-tialforfurtherincreaseinthroughput.Thedeviceofferssimplicity, low-costandgoodperformanceinhydrodynamicfocusingandhas a greatpotentialtobeusedin a widerange offlow cytometry applications.

AppendixA. Supplementarydata

Supplementarymaterial relatedto this articlecanbe found, intheonlineversion,atdoi:https://doi.org/10.1016/j.sna.2017.11. 056

References

[1]S.Gawad,L.Schild,P.Renaud,Micromachinedimpedancespectroscopyflow cytometerforcellanalysisandparticlesizing,LabChip1(2001)76–82.

[2]L.Wu,X.Wang,J.Zhang,T.Luan,E.Bouveret,X.Yan,Flowcytometric single-cellanalysisforquantitativeinvivodetectionofprotein–protein interactionsviarelativereporterproteinexpressionmeasurement,Anal. Chem.89(2017)2782–2789.

[3]A.K.Lehmann,S.Sornes,A.Halstensen,Phagocytosis:measurementbyflow cytometry,J.Immunol.Methods243(2000)229–242.

[4]M.Roederer,J.M.Brenchley,M.R.Betts,S.C.DeRosa,Flowcytometricanalysis ofvaccineresponses:howmanycolorsareenough?Clin.Immunol.110 (2004)199–205.

[5]E.G.Weir,M.J.Borowitz,Flowcytometryinthediagnosisofacuteleukemia, Semin.Hematol.38(2001)124–138.

[6]J.M.Peters,M.Q.Ansari,Multiparameterflowcytometryinthediagnosisand managementofacuteleukemia,Arch.Pathol.Lab.Med.135(2011)44–54.

[7]P.Theunissen,E.Mejstrikova,L.Sedek,A.J.vanderSluijs-Gelling,G.Gaipa,M. Bartels,etal.,StandardizedflowcytometryforhighlysensitiveMRD measurementsinB-cellacutelymphoblasticleukemia,Blood129(2017) 347–357.

[8]J.R.Fromm,A.Thomas,B.L.Wood,Flowcytometrycandiagnoseclassical hodgkinlymphomainlymphnodeswithhighsensitivityandspecificity,Am. J.Clin.Pathol.131(2009)322.

[9]I.Cozzolino,M.Rocco,G.Villani,M.Picardi,Lymphnodefine-needlecytology ofnon-hodgkinlymphoma:diagnosisandclassificationbyflowcytometry, ActaCytol.60(2016)302–314.

[10]I.C.Clift,DiagnosticflowcytometryandtheAIDSpandemic,Lab.Med.46 (2015)e59–e64.

[11]S.L.Waldrop,C.J.Pitcher,D.M.Peterson,V.C.Maino,L.J.Picker,Determination ofantigen-specificmemory/effectorCD4+Tcellfrequenciesbyflow cytometry:evidenceforanovel,antigen-specifichomeostaticmechanismin HIV-associatedimmunodeficiency,J.Clin.Invest.99(1997)1739–1750.

[12]G.Eluru,L.A.N.Julius,S.S.Gorthi,Single-layermicrofluidicdevicetorealize hydrodynamic3Dflowfocusing,LabChip16(2016)4133–4141.

[13]G.Testa,G.Persichetti,R.Bernini,Microflowcytometerwithself-aligned3D hydrodynamicfocusing,Biomed.Opt.Express6(2015)54–62.

[14]P.Paie,F.Bragheri,R.M.Vazquez,R.Osellame,Straightforward3D hydrodynamicfocusinginfemtosecondlaserfabricatedmicrofluidic channels,LabChip14(2014)1826–1833.

[15]S.Tripathi,A.Kumar,Y.V.BalaVarunKumar,A.Agrawal,Three-dimensional hydrodynamicflowfocusingofdye,particlesandcellsinamicrofluidicdevice byemployingtwobendsofoppositecurvature,Microfluid.Nanofluid.20 (2016)34.

[16]H.Chu,I.Doh,Y.-H.Cho,Athree-dimensional(3D)particlefocusingchannel usingthepositivedielectrophoresis(pDEP)guidedbyadielectricstructure betweentwoplanarelectrodes,LabChip9(2009)686–691.

[17]S.Yan,J.Zhang,M.Li,G.Alici,H.Du,R.Sluyter,etal.,On-chip high-throughputmanipulationofparticlesinadielectrophoresis-active hydrophoreticfocuser,Sci.Rep.4(2014)5060.

[18]Y.Takahashi,A.I.Shevchuk,P.Novak,Y.Zhang,N.Ebejer,J.V.Macpherson, etal.,Multifunctionalnanoprobesfornanoscalechemicalimagingand localizedchemicaldeliveryatsurfacesandinterfaces,Angew.Chem.Int.Ed. 50(2011)9638–9642.

[19]A.H.Yang,H.T.Soh,Acoustophoreticsortingofviablemammaliancellsina microfluidicdevice,Anal.Chem.84(2012)10756–10762.

[20]Y.Chen,A.A.Nawaz,Y.Zhao,P.-H.Huang,J.P.McCoy,S.J.Levine,etal., Standingsurfaceacousticwave(SSAW)-basedmicrofluidiccytometer,Lab Chip14(2014)916–923.

(6)

[21]P.Augustsson,J.T.Karlsen,H.-W.Su,H.Bruus,J.Voldman,Iso-acoustic focusingofcellsforsize-insensitiveacousto-mechanicalphenotyping,Nat. Commun.7(2016)11556.

[22]Y.Jia,Y.Ren,H.Jiang,Continuous-flowfocusingofmicroparticlesusing induced-chargeelectroosmosisinamicrofluidicdevicewith3DAgPDMS electrodes,RSCAdv.5(2015)66602–66610.

[23]Z.Liu,A.J.H.Frijns,M.F.M.Speetjens,A.A.vanSteenhoven,Particlefocusingby ACelectroosmosiswithadditionalaxialflow,Microfluid.Nanofluid.18(2015) 1115–1129.

[24]Y.Ren,J.Liu,W.Liu,Q.Lang,Y.Tao,Q.Hu,etal.,Scaledparticlefocusingina microfluidicdevicewithasymmetricelectrodesutilizinginduced-charge electroosmosis,LabChip16(2016)2803–2812.

[25]Z.Jingjing,Y.Zheng,Microfluidichydrodynamicfocusingforhigh-throughput applications,J.Micromech.Microeng.25(2015)125006.

[26]A.A.Nawaz,X.Zhang,X.Mao,J.Rufo,S.C.Lin,F.Guo,etal.,

Sub-micrometer-precision,three-dimensional(3D)hydrodynamicfocusing via“microfluidicdrifting”,LabChip14(2014)415–423.

[27]N.Sundararajan,M.S.Pio,L.P.Lee,A.A.Berlin,Three-dimensional hydrodynamicfocusinginpolydimethylsiloxane(PDMS)microchannels,J. Microelectromech.Syst.13(2004)559–567.

[28]M.Serhatlioglu,C.Elbuken,B.Ortac,M.E.Solmaz,Femtosecondlaser fabricationoffiberbasedoptofluidicplatformforflowcytometry applications,Proc.SPIE10058(2017).

[29]J.Gottmann,M.Hermans,N.Repiev,J.Ortmann,Selectivelaser-induced etchingof3Dprecisionquartzglasscomponentsformicrofluidic applications—up-scalingofcomplexityandspeed,Micromachines8(2017) 110.

[30]K.C.Bhargava,B.Thompson,N.Malmstadt,Discreteelementsfor3D microfluidics,Proc.Natl.Acad.Sci.111(2014)15013–15018.

[31]C.M.B.Ho,S.H.Ng,K.H.H.Li,Y.-J.Yoon,3Dprintedmicrofluidicsforbiological applications,LabChip15(2015)3627–3637.

[32]N.Bhattacharjee,A.Urrios,S.Kang,A.Folch,Theupcoming3D-printing revolutioninmicrofluidics,LabChip16(2016)1720–1742.

[33]A.S.Utada,E.Lorenceau,D.R.Link,P.D.Kaplan,H.A.Stone,D.A.Weitz, Monodispersedoubleemulsionsgeneratedfromamicrocapillarydevice, Science308(2005)537–541.

[34]S.H.Kim,J.W.Kim,J.C.Cho,D.A.Weitz,Double-emulsiondropswith ultra-thinshellsforcapsuletemplates,LabChip11(2011)3162–3166.

[35]M.Sen,A.Demirci,pH-dependentionic-current-rectificationinnanopipettes modifiedwithglutaraldehydecross-linkedproteinmembranes,RSCAdv.6 (2016)86334–86339.

[36]M.Sen,K.Ino,H.Shiku,T.Matsue,Anewelectrochemicalassaymethodfor geneexpressionusingHeLacellswithasecretedalkalinephosphatase(SEAP) reportersystem,Biotechnol.Bioeng.109(2012)2163–2167.

[37]M.Sen,Y.Takahashi,Y.Matsumae,Y.Horiguchi,A.Kumatani,K.Ino,etal., Improvingtheelectrochemicalimagingsensitivityofscanning

electrochemicalmicroscopy-scanningionconductancemicroscopybyusing electrochemicalPtdeposition,Anal.Chem.87(2015)3484–3489.

[38]J.M.Lee,M.Zhang,W.Y.Yeong,Characterizationandevaluationof3Dprinted microfluidicchipforcellprocessing,Microfluid.Nanofluid.20(2016)5.

[39]C.Simonnet,A.Groisman,High-throughputandhigh-resolutionflow cytometryinmoldedmicrofluidicdevices,Anal.Chem.78(2006)5653–5663.

Biographies

AbdullahBayramreceivedhisB.Sc.inPhysicsfromIzmirInstituteofTechnologyin

2012andhisM.Sc.fromtheDepartmentofMaterialScienceandEngineeringatIzmir

KatipCelebiUniversityin2014.HeispursuinghisPh.D.atthesamedepartment.

MuratSerhatlioglureceivedaB.Sc.inElectricalandElectronicsEngineeringfrom

FiratUniversityin2012.HeispursuinghisPh.D.atBilkentUniversity,National

NanotechnologyResearchCenter,Ankara,Turkey.

Dr.BulendOrtacisanassistantprofessoratBilkentUniversity,National

Nanotech-nologyResearchCenter,Ankara,Turkey.

Dr.SerafettinDemicisanassociateprofessorattheDepartmentofMaterialScience

andEngineering,IzmirKatipCelebiUniversity,Izmir,Turkey.

Dr.CaglarElbukenisanassistantprofessoratBilkentUniversity,National

Nano-technologyResearchCenter,Ankara,Turkey.

Dr.MustafaSenreceivedhisM.Sc.degreeinMolecularBiologyandGeneticsfrom

IstanbulTechnicalUniversityin2010andPh.D.degreeinBio-enginneringfrom

TohokuUniversityin2013.Hecurrrentlyworksasanassistantprofessoratthe

DepartmentofBiomedicalEngineering,IzmirKatipCelebiUniversity.Hismain

researchfocusisinthefieldofmicro-andnanobiosensordevelopmentandtheir

applicationsinsinglecellandmicro-tissueanalysis.

Dr.MehmetE.SolmazreceivedhisB.Sc.degreeinMicroelectronicsfromSabanci

Universityin2004andPh.D.degreefromTexasA&MUniversityin2010.Hewas

apartofNanophotonicsResearchGroupatUniversityofSouthernCalifornia

dur-inghispostdoctoralresearch.CurrentlyheisanassociateprofessorinElectrical

andElectronicsEngineeringDepartmentofIzmirKatipCelebiUniversity,Izmir,

Turkey.Hisresearchfocusesonopticalsensingapplicationsusingsmartphonesand

Şekil

Fig. 1. The optical images of small (A I ) and large (A II ) micropipettes used for mounting the glass micropipette based flow cytometry device together with magnified images showing the size of the respective tip openings
Fig. 3. Schematic illustration of the setup used to test the glass micropipette based flow cytometry device (A)

Referanslar

Benzer Belgeler

It is true since one person can not only see his/her face but also look after other several factors including pose, facial expression, head profile, illumination, aging,

In high-speed tests, the tensile strength, in unidirectional laying is higher than in wavy laying, however, if during static tests this difference was not

In conclusion, we prepared flexible AR coatings from ormosil colloids which are prepared using MTMS and TEOS based hybrid gels. We observed that the MTMS monomer provides

Evidently there were conflicting versions of the Grand Siècle (and other pe- riods of French history, for example the sixteenth century) circulating in the 1830s and 40s, but

Sıyırma adımında hangi tarama modunun daha duyar ve tekrarlanabilir olduğunu görmek için 1 M HCI ve 50 μg/L arsenik içeren çözelti içerisinde DP ve SW

In the networks with DWDM equipments, if different logical links use the same physical resources, the failure of a node or physical link may cause more than one failure in the

İnsanlar Türkiye'nin en çok satan gazetesinde çıkan böyle önemli habere inanıp inanmamakta tereddüt ettiler, doğru olup olmadığını tartıştılar, daha da

Üretim planlamasının amacı, belirlenen üretim hedeflerine ulaşabilmek ya da mevcut satış imkanlarmdan faydalanabilmek için kaynakların en iyi (optimal)