Physics Letters B 793 (2019) 469–492
Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
Observation
of
electroweak
W
±
Z boson
pair
production
in
association
with
two
jets
in
pp collisions
at
√
s
=
13 TeV
with
the
ATLAS
detector
.
The
ATLAS
Collaboration
a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory:
Received27December2018 Receivedinrevisedform16April2019 Accepted6May2019
Availableonline13May2019 Editor:M.Doser
Anobservationofelectroweak
W
±Z production inassociationwithtwojetsinproton–protoncollisions is presented. The data collected by the ATLAS detector at the Large Hadron Collider in 2015 and 2016atacentre-of-mass energyof√s=13 TeV areused,corresponding to anintegratedluminosity of 36.1 fb−1.Eventscontaining three identifiedleptons, eitherelectrons ormuons, and two jetsare selected. The electroweak productionof W±Z bosons in association withtwo jetsis measured with anobservedsignificanceof5.3 standarddeviations.Afiducialcross-sectionforelectroweakproduction including interference effects and for a single leptonic decay mode is measured to beσ
W Z j j−EW=0.57+0.14 −0.13(stat.)+
0.07
−0.06(syst.)fb. Total and differential fiducial cross-sections of the sum of W±Z j j
electroweakandstrongproductionsforseveralkinematicobservablesarealsomeasured.
©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
The scattering of vector bosons (VBS), V V
→
V V with V=
W/
Z/
γ
,isakeyprocesswithwhichtoprobetheSU(
2)
L×
U(
1)
Ygaugesymmetry ofthe electroweak(EW)theory that determines the self-couplings of the vector bosons. New phenomena be-yond the Standard Model (SM) can alter the couplings of vector bosons,generating additionalcontributions to quartic gauge cou-plings(QGC)comparedwiththeSMpredictions [1–3].
Inproton–protoncollisions,VBSisinitiatedbyaninteractionof twovectorbosonsradiatedfromtheinitial-statequarks,yieldinga finalstate withtwo bosonsandtwo jets, V V j j,ina purely elec-troweak process [4]. VBS diagrams are not independently gauge invariant and cannot be studied separately fromother processes leading to the same V V j j final state [5]. Twocategories of pro-cessesgive riseto V V j j final states.Thefirstcategory, which in-cludesVBScontributions,involvesexclusivelyweakinteractionsat Bornleveloforder
α
6EWincludingthebosondecays,where
α
EWistheelectroweakcouplingconstant.Itisreferredtoaselectroweak production.Thesecondcategoryinvolvesboththestrongand elec-troweakinteractionsatBornleveloforder
α
2S
α
4EW,whereα
Sisthestronginteractioncouplingconstant.Itis referredtoasQCD pro-duction.AccordingtotheSM asmallinterferenceoccursbetween electroweakandQCDproduction.
E-mailaddress:atlas.publications@cern.ch.
Different searches for diboson electroweak production have beenperformedbytheATLAS andCMScollaborationsattheLHC. So far, electroweak V V j j production has only been observed in thesame-sign W±W±j j channelbyCMSusingdatacollectedata centre-of-massenergyof
√
s=
13 TeV [6].EvidenceofelectroweakV V j j production has also been obtained in the W±W±j j [7,8] and Z
γ
j j [9] channels by ATLAS and CMS, respectively, using smaller samplesof data recordedat√
s=
8 TeV.Limits on elec-troweakcross-sectionsfortheproductionoftwogaugebosonhave been reportedfor the W±Z j j [10,11], Z Z j j [12], Zγ
j j [13] andW
γ
j j [14] channelsbyATLASandCMS.This Letter reports on an observation and measurement of electroweak W±Z j j production,exploitingthefullyleptonic final states where both the Z and W bosonsdecay into electrons or muons.Thepp collisiondatawerecollectedwiththeATLAS detec-torin2015 and2016 ata centre-of-massenergyof
√
s=
13 TeV andcorrespondtoanintegratedluminosityof36.
1 fb−1.2. TheATLASdetector
The ATLAS detector [15] is a multipurpose detector with a cylindricalgeometry1 andnearly 4
π
coverage insolid angle.Thecollision point is surrounded by inner tracking detectors,
collec-1 ATLASuses aright-handedcoordinatesystemwith itsoriginat thenominal interactionpoint(IP)inthecentreofthedetectorandthez-axisalongthebeam direction.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthey-axis pointsupward.Cylindricalcoordinates
(
r, φ)areusedinthetransverse(
x, y)plane, https://doi.org/10.1016/j.physletb.2019.05.0120370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
tivelyreferredtoastheinnerdetector(ID),locatedwithina super-conductingsolenoidprovidinga2 Taxialmagneticfield,followed byacalorimetersystemandamuonspectrometer(MS).
Theinner detectorprovides precisemeasurements of charged-particle tracks in the pseudorapidity range
|
η
|
<
2.
5. It consists ofthree subdetectors arranged in a coaxialgeometryaround the beam axis: a silicon pixel detector, a silicon microstrip detector andatransitionradiationtracker.Theelectromagneticcalorimetercoverstheregion
|
η
|
<
3.
2 and isbasedonhigh-granularity,lead/liquid-argon(LAr)sampling tech-nology. The hadronic calorimeter uses a steel/scintillator-tile de-tector in the region|
η
|
<
1.
7 and a copper/LAr detector in the region 1.
5<
|
η
|
<
3.
2. The mostforward region ofthe detector, 3.
1<
|
η
|
<
4.
9,isequippedwithaforwardcalorimeter,measuring electromagnetic and hadronic energies in copper/LAr and tung-sten/LArmodules.The muon spectrometer comprises separate trigger and high-precision tracking chambers to measure the deflection of muons in a magnetic field generated by three large superconducting toroidal magnetsarranged withan eightfold azimuthal coil sym-metryaroundthecalorimeters.Thehigh-precisionchamberscover the range
|
η
|
<
2.
7 with three layers of monitored drift tubes, complemented by cathodestrip chambersin the forwardregion, wheretheparticlefluxishighest.Themuontriggersystemcovers therange|
η
|
<
2.
4 withresistive-platechambersinthebarreland thin-gapchambersintheendcapregions.A two-level trigger system is used to select events in real time [16]. It consists of a hardware-based first-level trigger and asoftware-basedhigh-leveltrigger.The latteremploys algorithms similartothoseusedofflinetoidentifyelectrons,muons, photons andjets.
3. Phasespaceforcross-sectionmeasurements
The W±Z j j electroweak cross-section is measured in a fidu-cialphasespacethatisdefinedbythekinematicsofthefinal-state leptons,electronsormuons,associatedwiththeW±andZ boson
decays,andoftwojets.Leptonsproducedinthedecayofahadron, a
τ
-lepton,ortheir descendantsare notconsidered inthe defini-tion ofthe fiducial phase space. At particle level,the kinematics ofthechargedlepton afterquantum electrodynamics(QED) final-stateradiation(FSR)are‘dressed’by includingcontributionsfrom photons with an angular distanceR
≡
(
η
)
2+ (φ)
2<
0.
1fromthelepton.Dressedchargedleptons,andfinal-stateneutrinos thatdonotoriginatefromhadronor
τ
-leptondecays,arematched tothe W± andZ bosondecayproductsusingaMonteCarlo(MC) generator-independent algorithmic approach, calledthe ‘resonant shape’algorithm.Thisalgorithmisbasedon thevalueofan esti-matorexpressingtheproductofthenominallineshapesoftheWandZ resonancesasdetailedinRef. [10].
Thefiducialphasespaceofthemeasurementmatchestheone used in Refs. [10,17] and is defined at particle level by the fol-lowingrequirements: thecharged leptons from the Z boson de-cayare requiredtohavetransversemomentum pT
>
15 GeV,thecharged lepton from the W± decay is required to have trans-versemomentum pT
>
20 GeV,thechargedleptonsfromtheW±and Z bosons are required to have
|
η
|
<
2.
5 and the invariant massofthetwoleptons fromthe Z boson decaymustbe within 10 GeV of the nominalZ boson mass,taken fromthe world av-eragevalue,mPDGZ [18].The W bosontransversemass,definedasmWT
=
2
·
pνT·
pT· [
1−
cosφ (,
ν
)
]
, whereφ (,
ν
)
is thean-φbeingtheazimuthalanglearoundthebeamdirection.Thepseudorapidityis de-finedintermsofthepolarangle
θ
asη= −ln[tan(θ/2)].gle between thelepton andthe neutrinoin the transverseplane and pνT is the transversemomentum of theneutrino, is required to be mW
T
>
30 GeV. The angular distance between the chargedlepton fromthe W± decayandeach ofthechargedleptonsfrom the Z decay is required to be
R
>
0.
3, and the angular dis-tancebetweenthetwoleptonsfromthe Z decayisrequiredtobeR
>
0.
2.Requiring that thetransverse momentum of the lead-ingleptonbeabove27 GeVreducestheacceptanceofthefiducial phase spaceby only0.
02% andisthereforenot addedto the def-inition of the fiducial phase space, although it is present in the selectionatthedetectorlevelpresentedinSection5.Inadditiontotheserequirementsthatdefineaninclusivephase space, atleasttwo jets with pT
>
40 GeV and|
η
j|
<
4.
5 arere-quired.Theseparticle-leveljetsare reconstructedfromstable par-ticles witha lifetimeof
τ
>
30 ps inthesimulation afterparton showering, hadronisation, anddecayof particles withτ
<
30 ps. Muons, electrons, neutrinos andphotonsassociated with W and Z decays are excluded. The particle-level jets are reconstructed using the anti-kt [10] algorithm with a radius parameter R =0
.
4. The angular distance between all selected leptons and jets is required to beR
(
j,
)
>
0.
3. If theR
(
j,
)
requirement is not satisfied,the jet isdiscarded. Theinvariant mass,mj j, ofthetwo highest-pT jetsin opposite hemispheres,
η
j1·
η
j2<
0,isre-quired to be mj j
>
500 GeV to enhance the sensitivity to VBSprocesses. These two jetsare referred to astagging jets. Finally, processes withab-quark intheinitial state, suchast Z j
produc-tion, are not considered assignal. The production of t Z j results
from a t-channel exchange of a W boson between a b- and a
u-quarkgivingafinalstatewithat-quark,a Z bosonanda light-quark jet, butdoesnot includediagrams withgauge boson cou-plings.
4. Signalandbackgroundsimulation
MonteCarlosimulationisusedtomodelsignalandbackground processes.AllgeneratedMCeventswerepassedthroughtheATLAS detector simulation [20], based on Geant 4 [21], and processed using thesamereconstruction softwareasusedforthe data.The eventsamplesincludethesimulationofadditionalproton–proton interactions (pile-up) generatedwith Pythia 8.186 [22] usingthe
MSTW2008LO
[23] parton distribution functions (PDF) and the A2 [24] setoftunedparameters.Scalefactorsare appliedtosimulatedeventstocorrectforthe differencesbetweendataandMCsimulationinthetrigger, recon-struction,identification,isolationandimpactparameterefficiencies ofelectrons andmuons [25,26]. Furthermore,theelectronenergy andmuonmomentuminsimulatedeventsaresmearedtoaccount fordifferencesinresolutionbetweendataandMCsimulation [26,
27].
The Sherpa 2
.
2.
2 MC event generator [28–35] was used to model W±Z j j events. It includes the modelling of hard scatter-ing, partonshowering, hadronisation andtheunderlyingevent. A MC eventsample,referredtoasW Z j j−
EW,includesprocessesof order six(zero)inα
EW (α
S). In thissample, which includesVBSdiagrams, two additional jets originating from electroweak ver-tices frommatrix-elementpartons areincludedin thefinal state. Diagrams with a b-quark in either the initial or final state, i.e.
b-quarks in the matrix-element calculation, are not considered. This sample provides a LO prediction for the W Z j j
−
EW signal process. A second MC event sample, referred to as W Z j j−
QCD, includes processes of order four inα
EW in the matrix-elementof W±Z production with up to one jet calculated at next-to-leading order (NLO) and with a second or third jet calculated at leading order (LO). This W Z j j
−
QCD sample includes matrix-elementb-quarks.Both Sherpa samplesweregeneratedusingtheThe ATLAS Collaboration / Physics Letters B 793 (2019) 469–492 471
NNPDF3.0
[36] PDFset.Interferencesbetweenthetwoprocesses were estimated at LO using the MadGraph5_aMC@NLO 2.
3 [37] MC eventgenerator withtheNNPDF3.0
PDF set, includingonly contributions to the squared matrix-element of order one inα
S. They are found to be positive and approximately 10% ofthe W Z j j
−
EW cross-sectionin the fiducial phase spaceand are treatedasanuncertaintyinthemeasurement,asdiscussedin Sec-tion 8. For the estimation of modelling uncertainties, alternative MCsamplesofW Z j j−
QCD andW Z j j−
EW processeswere gener-atedwith MadGraph5_aMC@NLO 2.
3 at LOinQCD, includingup totwo partons inthematrix-element for W Z j j−
QCD, andusing theNNPDF3.0
PDF set. MC samples of inclusive W±Zproduc-tiongenerated at NLO in QCD withthe Powheg-Box v2 [38–41] generator, interfaced to Pythia 8.210 or Herwig++ 2.7.1 [42] for simulation of parton showering and hadronisation are also used fortestsofthemodellingofW Z j j
−
QCD events.The qq
¯
→
Z Z(∗) processes were generated with Sherpa 2.
2.
2and the
NNPDF3.0
PDF set. Similarly to W±Z simulation, theZ Z j j
−
QCD and Z Z j j−
EW processesaregeneratedseparatelywith the same matrix-element accuracy as for the W±Z Sherpa MCsamples.The Sherpa 2
.
1.
1 MCeventgeneratorwasusedtomodel the gg→
Z Z(∗) and V V V processesat LO using theCT10
[43] PDFset.Thet¯
t V processesweregeneratedatNLO withthe Mad-Graph5_aMC@NLO 2.
3 MCgeneratorusingtheNNPDF3.0
PDFset interfacedto the Pythia 8.186 parton shower model.The associ-atedproductionofasingletopquarkandaZ bosonwassimulated atLOwith MadGraph5_aMC@NLO 2.
3 using theNNPDF3.0
PDF setandinterfacedto Pythia 8.
186 forpartonshower.5. Eventselection
Candidateeventswereselectedusingsingle-leptonstriggers [16] that requiredat least one electron ormuon. The transverse mo-mentumthresholdoftheleptonsin2015 was24 GeVforelectrons and 20 GeV for muons satisfying a loose isolation requirement based only on ID track information. Due to the higher instan-taneous luminosity in 2016 the trigger threshold was increased to 26 GeV for both the electrons and muons and tighter iso-lation requirements were applied. Possible inefficiencies for lep-tons with large transverse momenta were reduced by including additional electron and muon triggers that did not include any isolation requirements with transverse momentum thresholds of
pT
=
60 GeV and 50 GeV, respectively. Finally, a single-electrontriggerrequiringpT
>
120 GeVorpT>
140 GeVin2015 and2016,respectively,withlessrestrictiveelectronidentificationcriteriawas used to increase the selection efficiency for high-pT electrons.
The combined efficiency of these triggers is close to 100% for
W±Z j j events. Only data recorded with stable beam conditions andwithall relevantdetectorsubsystems operationalare consid-ered.
Events are required to have a primary vertex reconstructed fromatleasttwocharged-particletracksandcompatiblewiththe pp interaction region. Ifseveral such vertices are present in the event, theone with thehighestsum ofthe p2T ofthe associated tracksis selectedasthe productionvertexof the W±Z .All final stateswiththreechargedleptons(electronsormuons)and neutri-nosfromW±Z leptonicdecaysareconsidered.
Muon candidatesare identified by tracks reconstructedin the muon spectrometer and matched to tracks reconstructed in the inner detector. Muons are required to satisfy a ‘medium’ identi-fication selection that is based on requirements on the number ofhitsintheID andtheMS [26].The efficiencyofthisselection averagedover pT and
η
is>
98%.Themuonmomentumiscalcu-latedbycombiningtheMSmeasurement,correctedfortheenergy depositedinthecalorimeters,withtheIDmeasurement.The
trans-verse momentum ofthe muonmust satisfy pT
>
15 GeV anditspseudorapiditymustsatisfy
|
η
|
<
2.
5.Electron candidates are reconstructed fromenergy clusters in theelectromagneticcalorimetermatchedtoIDtracks.Electronsare identifiedusingalikelihoodfunctionconstructedfrominformation from the shape of the electromagnetic showers inthe calorime-ter,trackpropertiesandtrack-to-clustermatchingquantities [25]. Electrons must satisfy a ‘medium’ likelihood requirement, which provides an overall identification efficiency of 90%. The electron momentumiscomputedfromtheclusterenergyandthedirection ofthetrack.Thetransverse momentumoftheelectronmust sat-isfy pT
>
15 GeVandthepseudorapidityoftheclustermustbeintheranges
|
η
|
<
1.
37 or1.
52<
|
η
|
<
2.
47.Electron and muon candidates are required to originate from the primary vertex. The significanceofthe track’stransverse im-pactparameter relative to the beamline mustsatisfy
|
d0/
σ
d0|
<
3
(
5)
formuons(electrons),andthelongitudinal impact parame-ter,z0 (the differencebetweenthevalue ofz ofthepointon thetrackatwhich d0 isdefinedandthe longitudinal positionofthe
primaryvertex),isrequiredtosatisfy
|
z0·
sin(θ )
|
<
0.
5 mm.Electrons and muons are required to be isolated from other particles, according to calorimeter-cluster and ID-track informa-tion. The isolation requirementfor electrons varies with pT and
istuned foran efficiencyofatleast 90% for pT
>
25 GeVandatleast99% for pT
>
60 GeV [25]. Fixed thresholds valuesare usedforthemuonisolationvariables,providinganefficiencyabove90% forpT
>
15 GeVandatleast99% forpT>
60 GeV [26].Jets are reconstructed from clusters of energy depositions in the calorimeter [44] using the anti-kt algorithm [19] with a
ra-dius parameter R
=
0.
4. Events with jets arising from detector noise or other non-collision sources are discarded [45]. All jets must have pT>
25 GeV and be reconstructed in thepseudora-pidity range
|
η
|
<
4.
5. A multivariate combinationof track-based variables is usedto suppressjets originatingfrompile-up in the IDacceptance [46].Theenergyofjetsiscalibratedusingajet en-ergycorrectionderivedfromsimulationandinsitu methodsusing data [47]. Jets in the ID acceptance with pT>
25 GeVcontain-ing a b-hadron are identified usinga multivariate algorithm [48,
49] thatusesimpact parameterandreconstructedsecondary ver-texinformationofthetrackscontainedinthejets.Jetsinitiatedby
b-quarksare selected bysetting thealgorithm’s output threshold suchthat a70% b-jetselectionefficiencyisachievedinsimulated
tt events.
¯
The transverse momentum of the neutrino is estimated from the missingtransversemomentum inthe event, EmissT , calculated as the negative vector sum of the transverse momentum of all identified hard (high pT) physics objects (electrons, muons and
jets), aswell asan additional softterm. A track-based measure-ment of the softterm [50,51], which accounts forlow-pT tracks
notassignedtoahardobject,isused.
Events are requiredtocontain exactlythree lepton candidates satisfyingtheselectioncriteriadescribedabove.Toensurethatthe triggerefficiencyiswelldetermined,atleastoneofthecandidate leptons is requiredto have pT
>
25 GeV or pT>
27 GeV for the2015 or2016 data,respectively,andtobegeometricallymatched toaleptonthatwasselectedbythetrigger.
To suppress background processes with at least four prompt leptons, events with a fourth lepton candidate satisfying looser selectioncriteriaarerejected. Forthislooserselection,the pT
re-quirement for the leptons is lowered to pT
>
5 GeV and ‘loose’identification requirements are used for both the electrons and muons. Alessstringentrequirementisapplied forelectron isola-tionbasedonlyonIDtrackinformationandelectronswithcluster intherange1
.
37≤ |
η
|
≤
1.
52 arealsoconsidered.Table 1
Expected and observed numbers ofeventsin the W±Z j j signalregion and inthe threecontrolregions, beforethefit.TheexpectednumberofW Z j j−EW eventsfrom Sherpa and the estimated number of background events from the other processes are shown. Thesum ofthebackgrounds containingmisidentified leptons islabelled ‘Misid.leptons’.Thecontributionarisingfrominterferencesbetween W Z j j−QCD and W Z j j−EW processesisnotincludedinthetable.Thetotaluncertaintiesarequoted.
SR W Z j j−QCD CR b-CR Z Z -CR Data 161 213 141 52 Total predicted 200±41 290±61 160±14 45.2±7.5 W Z j j−EW (signal) 24.9±1.4 8.45±0.37 1.36±0.10 0.21±0.12 W Z j j−QCD 144±41 231±60 24.4±1.7 1.43±0.22 Misid. leptons 9.8±3.9 17.7±7.1 30±12 0.47±0.21 Z Z j j−QCD 8.1±2.2 15.0±3.9 1.96±0.49 35±11 t Z j 6.5±1.2 6.6±1.1 36.2±5.7 0.18±0.04 t¯t+V 4.21±0.76 9.11±1.40 65.4±10.3 2.8±0.61 Z Z j j−EW 1.80±0.45 0.53±0.14 0.12±0.09 4.1±1.4 V V V 0.59±0.15 0.93±0.23 0.13±0.03 1.05±0.30
Candidateeventsarerequiredtohaveatleastone pairof lep-tonsofthesameflavourandofoppositecharge,withaninvariant mass that is consistent with the nominal Z boson mass [52] to within 10 GeV. Thispair isconsidered to be the Z boson candi-date.Ifmorethanonepaircanbeformed,thepairwhoseinvariant massisclosesttothenominalZ bosonmassistakenasthe Z
bo-soncandidate.
Theremaining thirdlepton isassignedtothe W bosondecay. The transverse mass of the W candidate, computed using EmissT
andthe pT oftheassociatedlepton,isrequiredtobegreaterthan
30 GeV.
Backgrounds originating from misidentified leptons are sup-pressed by requiring thelepton associated withthe W bosonto satisfy morestringentselection criteria. Thus, thetransverse mo-mentumoftheseleptons isrequiredto be pT
>
20 GeV.Further-more,leptons associatedwiththe W bosondecayare requiredto satisfy the ‘tight’ identification requirements, which have an ef-ficiency between 90% and 98% for muons and an efficiency of 85% for electrons. Finally, muons must also satisfy a tighter iso-lation requirement, tuned foran efficiencyof at least 90% (99%) forpT
>
25(
60)
GeV.ToselectW±Z j j candidates, eventsarefurther requiredtobe associatedwithatleasttwo ‘tagging’jets. Theleading taggingjet is selectedas thehighest-pT jet in theevent with pT
>
40 GeV.Thesecond taggingjetisselectedastheonewiththehighestpT
amongtheremaining jetsthat havea pseudorapidity ofopposite sign to the first tagging jet and a pT
>
40 GeV. These two jetsare required to verify mj j
>
150 GeV, in order to minimise thecontaminationfromtribosonprocesses.
Thefinalsignal region(SR)forVBSprocessesisdefinedby re-quiring that the invariant mass of the two tagging jets, mj j, be
above500 GeVandthatnob-taggedjetbepresentintheevent.
6. Backgroundestimation
Thebackground sourcesare classifiedintotwo groups:events whereatleastone ofthe candidateleptons isnot a prompt lep-ton (reducible background) and events where all candidates are promptleptons orare producedin thedecayofa
τ
-lepton (irre-ducible background). Candidatesthat are not prompt leptons are alsocalled‘misidentified’or‘fake’leptons.The dominantsourceof backgroundoriginatesfrom the QCD-inducedproductionofW±Z dibosonsinassociationwithtwojets,
W Z j j
−
QCD. Theshapesofdistributions ofkinematicobservables of this irreducible background are modelled by the Sherpa MC simulation.Thenormalisationofthisbackgroundis,however, con-strainedbydatainadedicatedcontrolregion.Thisregion,referredto as W Z j j
−
QCD CR, is defined by selecting a sub-sample ofW±Z j j candidateeventswithmj j
<
500 GeVandnoreconstructed b-jets.The other main sources of irreducible background arise from
Z Z andtt
¯
+
V (whereV=
Z orW ).Theseirreduciblebackgrounds are also modelled using MC simulations. Data in two additional dedicatedcontrol regions,referredtoas Z Z -CR andb-CR, respec-tively,are usedtoconstrain thenormalisationsofthe Z Z j j−
QCD andt¯
t+
V backgrounds.ThecontrolregionZ Z -CR,enrichedinZ Zevents,isdefinedby applyingtheW±Z j j eventselectiondefined in Section 5, withthe exception that instead of vetoinga fourth leptonitisrequiredthateventshaveatleastafourthlepton can-didatewithlooseridentificationrequirements.Thisregionis domi-natedbyZ Z j j
−
QCD eventswithasmallcontributionofZ Z j j−
EW events.The controlregion b-CR,enriched int¯
t+
V events,is de-fined by selecting W±Z j j candidate events having at least one reconstructed b-jet. Remaining sources of irreducible background are Z Z j j−
EW V V V and t Z j events. Their contributions in the controlandsignalregionsareestimatedfromMCsimulations.The reducible backgrounds originate from Z
+
j, Zγ
, tt,¯
W tandW W productionprocesses.Thereduciblebackgroundsare es-timated using a data-driven method basedon the inversion of a globalmatrixcontaining theefficienciesandthemisidentification probabilitiesforpromptandfakeleptons [10,53].The method ex-ploits theclassification ofthe leptonasloose ortight candidates and theprobability that a fake lepton ismisidentified asa loose ortight leptoncandidate.Tight leptonscandidates aresignal lep-ton candidates as defined in Section 5. Loose lepton candidates areleptonsthatdonotmeettheisolationandidentification crite-riaofsignalleptoncandidatesbutsatisfyonlyloosercriteria.The misidentificationprobabilitiesforfakeleptonsaredeterminedfrom data,usingdedicatedcontrolsamplesenrichedinnon-prompt lep-tons from heavy-flavour jets and in misidentified leptons from photon conversions or charged hadrons in light-flavour jets. The lepton misidentification probabilities are applied to samples of
W±Z j j candidate events in data where at least one and up to three of the lepton candidates are loose. Then, using a matrix inversion, the number of events with at least one misidentified lepton, which represents the amount of reduciblebackground in theselectedW±Z j j sample,isobtained.
The number of observed events together with the expected backgroundcontributionsaresummarisedinTable1forthesignal region andthethree controlregions. All sourcesofuncertainties, asdescribed inSection8,areincluded.Theexpectedsignalpurity in the W±Z j j signal regionis about13%, and72% of theevents arisefromW Z j j
−
QCD production.The ATLAS Collaboration / Physics Letters B 793 (2019) 469–492 473
7.Signalextractionprocedure
GiventhesmallcontributiontothesignalregionofW Z j j
−
EW processes,amultivariatediscriminantisusedtoseparatethesignal from the backgrounds. A boosted decision tree (BDT), as imple-mentedintheTMVApackage [54],isusedtoexploitthekinematic differences between the W Z j j−
EW signal and the W Z j j−
QCD andotherbackgrounds.TheBDTistrainedandoptimisedon sim-ulatedeventsto separate W Z j j−
EW eventsfromall background processes.Atotalof15 variablesarecombinedintoonediscriminant,the BDT score output value in the range
[−
1,
1]
. The variables can beclassifiedintothree categories:jet-kinematicvariables, vector-bosons-kinematicsvariables,andvariablesrelatedtobothjetsand leptons kinematics. The variables related to the kinematic prop-erties ofthe two tagging jetsare the invariant mass of the two jets, mj j, the transverse momenta of the jets, the difference inpseudorapidity and azimuthal angle between the two jets,
η
j jand
φ
j j, the rapidity of the leading jet and the jetmultiplic-ity. Variables related to the kinematic properties of the vector bosons are the transverse momenta of the W and Z bosons,
the pseudorapidity of the W boson, the absolute difference be-tween the rapidities of the Z boson and the lepton from the decay of the W boson,
|
yZ−
y,W|
, and the transverse massof the W±Z system mW Z
T . The pseudorapidity of the W boson
is reconstructed using an estimate of the longitudinal momen-tum of the neutrino obtained using the W mass constraint as detailed in Ref. [55]. The mW ZT observable is reconstructed fol-lowingRef. [10]. Variablesthat relate thekinematicpropertiesof jetsand leptons are the distance in the pseudorapidity–azimuth plane between the Z boson and the leading jet,
R
(
j1,
Z)
, theeventbalance Rhard
pT , definedasthe transverse componentof the
vector sum of the W Z bosons and tagging jets momenta, nor-malised to their scalar pT sum, and, finally the centrality of
the W Z system relative to the tagging jets, defined as
ζ
lep.=
min
(
η
−,
η
+)
, withη
−=
min(
η
W,
η
Z 2
,
η
Z
1
)
−
min(
η
j1,
η
j2)
and
η
+=
max(
η
j1,
η
j2)
−
max(
η
W,
η
Z2,
η
Z
1
)
.Alargersetofdis-criminatingobservableswas studiedbutonlyvariablesimproving signal-to-background were retained. The good modelling by MC simulations ofthe distribution shapesand the correlationsof all inputvariablestotheBDTisverifiedintheW Z j j
−
QCD CR,as ex-emplifiedbythegooddescriptionoftheBDTscoredistributionof dataintheW Z j j−
QCD CRshowninFig.1.Thedistribution ofthe BDT scoreinthe W±Z j j signal region is used to extract the significance of the W Z j j
−
EW signal and tomeasureitsfiducialcross-sectionviaamaximum-likelihoodfit. An extended likelihood is built from the product of four likeli-hoodscorresponding tothe BDTscore distributioninthe W±Z j jSR,themj j distributionintheW Z j j
−
QCD CR,themultiplicityofreconstructedb-quarksintheb-CRandthemj j distributioninthe Z Z -CR.Theinclusionofthethreecontrolregionsinthefitallows theyields oftheW Z j j
−
QCD,t¯
t+
V and Z Z j j−
QCD backgrounds to be constrained by data. The shapes of these backgrounds are taken from MC predictions and can vary within the uncertain-ties affecting the measurement as described in Section 8. The normalisations of these backgrounds are introduced in the like-lihood as parameters, labelledμ
W Z j j−QCD,μ
t¯t+V andμ
Z Z j j−QCDforW Z j j
−
QCD,tt¯
+
V and Z Z j j−
QCD backgrounds, respectively. They are treated as unconstrained nuisance parameters that are determined mainly by the data in the respective control region. Thenormalisationandshapeoftheotherirreduciblebackgrounds are taken from MC simulations and are allowed to vary within their respective uncertainties. The distribution of the reducible backgroundisestimatedfromdata usingthematrixmethodpre-Fig. 1. Post-fitdistributionoftheBDTscoredistributionintheW Z j j−QCD control region.Signalandbackgroundsarenormalisedtotheexpectednumberofevents af-terthefit.TheuncertaintybandaroundtheMCexpectationincludesallsystematic uncertaintiesasobtainedfromthefit.
sented in Section 6 and is allowed to vary within its uncer-tainty.
The determination of the fiducial cross-section is carried out usingthesignalstrengthparameter
μ
W Z j j−EW:μ
W Z j j−EW=
Ndatasignal NMCsignal=
σ
fid. W Z j j−EWσ
W Z j j−fid.,MCEW,
where Ndatasignal is the signal yield extracted from data by the
fit and NsignalMC is the number of signal events predicted by the
Sherpa MC simulation. The measured cross-section
σ
fid.W Z j j−EW is
derived fromthe signal strength
μ
W Z j j−EW by multiplying it bythe Sherpa MC cross-section prediction
σ
W Z j jfid.,MC−EW inthe fiducial region. The W Z j j−
QCD contribution that is considered as back-groundinthefitproceduredoesnotcontaininterferencebetween the W Z j j−
QCD and W Z j j−
EW processes. The measured cross-sectionσ
fid.W Z j j−EW therefore formally corresponds to the
cross-section of the electroweak production including interference ef-fects.
8. Systematicuncertainties
Systematic uncertainties in the signal and control regions af-fecting the shape and normalisation of the BDT score, mj j and Nb−jetsdistributionsfortheindividualbackgrounds,aswellasthe
acceptanceofthesignalandtheshapeofitstemplateare consid-ered. Ifthe variationofa systematicuncertaintyasa function of the BDT score is consistent withbeing dueto statistical fluctua-tions,thissystematicuncertaintyisneglected.
Systematicuncertaintiesduetothetheoreticalmodellinginthe eventgeneratorusedtoevaluatethe W Z j j
−
QCD and W Z j j−
EW templates are considered. Uncertainties dueto higher orderQCD correctionsare evaluatedby varyingthe renormalisationand fac-torisation scales independently by factors of two and one-half, removing combinations wherethevariations differ by a factorof four.Theseuncertaintiesareof−
20% to+
30% ontheW Z j j−
QCD backgroundnormalisation andupto±
5% on the W Z j j−
EW sig-nal shape. The uncertainties due to the PDF and theα
S valueprescription [56]. They are of the order of 1% to 2% in shape of the predicted cross-section. A global modelling uncertainty in the W Z j j
−
QCD background template that includes effects of the parton shower model is estimated by comparing predic-tions ofthe BDT score distribution inthe signal region fromthe Sherpa and MadGraph MC eventgenerators. The difference be-tween the predicted shapes of the BDT score distribution from thetwo generators isconsidered asan uncertainty. Theresulting uncertainty ranges from 5% to 20% at medium and high values of the BDT score,respectively. Alternatively, using two MC sam-ples with different parton shower models, Powheg+Pythia8 and Powheg+Herwig, it was verified that for W Z j j−
QCD events the variations oftheBDT scoreshape dueto differentpartonshower modelsarewithintheglobalmodellinguncertaintydefinedabove. Aglobalmodellinguncertaintyinthe W Z j j−
EW signaltemplate isalso estimatedby comparingpredictions ofthe BDT score dis-tributioninthesignalregionfromthe Sherpa and MadGraph MC eventgenerators. Thismodelling uncertaintyaffects the shapeof theBDT scoredistribution by atmost14% at large valuesofthe BDTscore.TheSherpaW Z j j−
EW sampleusedinthisanalysiswas recentlyfoundtoimplementacolourflowcomputationinVBS-like processes that increases central parton emissions from the par-tonshower [57].Itwas verifiedthatpossibleeffectsonkinematic distributionsandespeciallyontheBDT scoredistributionare cov-eredbythemodellinguncertaintyused.Theinterferencebetween electroweak- and QCD-induced processes is not included in the probabilitydistributionfunctionsofthefitbutisconsideredasan uncertainty affecting only the shape of the W Z j j−
EW MC tem-plate.Theeffectisdeterminedusingthe MadGraph MCgenerator, resultingforthesignal regioninshape-onlyuncertaintiesranging from10% to5% at lowandhighvaluesoftheBDT score, respec-tively.The effectof interference on the shape of the W Z j j−
EW MCtemplate intheW±Z j j-QCDCRisnegligibleandistherefore notincluded.Systematic uncertainties affecting the reconstruction and en-ergy calibration of jets, electrons and muons are propagated through the analysis. The dominant sources of uncertainties are the jet energy scale calibration, including the modelling of pile-up. The uncertainties in the jet energy scale are obtained from
√
s
=
13 TeV simulationsandinsitu measurements [47].The un-certaintyin thejetenergyresolution [58] andinthesuppression ofjetsoriginatingfrompile-up arealso considered [46].The un-certaintiesintheb-taggingefficiencyandthemistagratearealso takenintoaccount.Theeffectofjetuncertaintiesontheexpected numberofeventsranges from10% to 3% atlow andhighvalues oftheBDTscore,respectively,withasimilareffectforW Z j j−
QCD andW Z j j−
EW events.TheuncertaintyintheEmissT measurementisestimatedby prop-agating the uncertainties in the transverse momenta of hard physics objects andby applying momentum scale andresolution uncertaintiestothetrack-basedsoftterm [50,51].
The uncertainties due to lepton reconstruction, identification, isolationrequirementsandtriggerefficiencies areestimatedusing tag-and-probemethodsin Z
→
events [25,26].Uncertaintiesin theleptonmomentumscaleandresolutionarealsoassessedusingZ
→
events [26,27]. These uncertainties impact the expected numberofeventsby 1.
4% and 0.
4% forelectrons andmuons, re-spectively, and are independent of the BDT score. Their effectis similarforW Z j j−
QCD andW Z j j−
EW events.A40% yielduncertaintyisassignedtothereduciblebackground estimate.Thistakesintoaccountthelimitednumberofeventsin thecontrolregionsaswellasthedifferencesinbackground com-positionbetweenthecontrolregionsusedtodeterminethelepton misidentification rate and the control regions used to estimate theyield in thesignal region. The uncertaintydue toirreducible
Table 2
Summaryoftherelativeuncertaintiesinthemeasuredfiducial cross-sectionσfid.
W Z j j−EW.Theuncertaintiesarereportedas per-centages. Source Uncertainty [%] W Z j j−EW theory modelling 4.8 W Z j j−QCD theory modelling 5.2 W Z j j−EW and W Z j j−QCD interference 1.9 Jets 6.6 Pile-up 2.2 Electrons 1.4 Muons 0.4 b-tagging 0.1 MC statistics 1.9
Misid. lepton background 0.9
Other backgrounds 0.8
Luminosity 2.1
Total Systematics 10.9
backgroundsourcesotherthanW Z j j
−
QCD isevaluatedby propa-gating the uncertaintyin their MC cross-sections. These are 20% for V V V [59], 15% for t Z j [10] and tt¯
+
V [60], and 25% forZ Z j j
−
QCD toaccountforthepotentiallylargeimpactofscale vari-ations.The uncertainty in the combined 2015+2016 integrated lumi-nosity is 2
.
1%. It is derived, following a methodology similar to that detailedinRef. [61], andusingthe LUCID-2detectorforthe baseline luminosity measurements [62], froma calibration ofthe luminosityscaleusingx– y beam-separationscans.The effectof the systematic uncertainties on the final results after the maximum-likelihood fitis shown inTable 2 where the breakdown of the contributions to the uncertainties in the mea-suredfiducialcross-section
σ
fid.W Z j j−EWispresented.The individual
sources ofsystematicuncertaintyarecombinedintotheory mod-ellingandexperimentalcategories.Asshowninthetable,the sys-tematicuncertaintiesinthejetreconstructionandcalibrationplay a dominant role, followed by the uncertainties in the modelling ofthe W Z j j
−
EW signalandofthe W Z j j−
QCD background. Sys-tematic uncertainties inthe missing transversemomentum com-putationarisedirectlyfromthemomentumandenergycalibration of jets, electrons and muons and are included in the respective lines ofTable 2.Systematicuncertainties in themodelling ofthe reducibleandirreduciblebackgroundsother thanW Z j j−
QCD are alsodetailed.9. Cross-sectionmeasurements
The signal strength
μ
W Z j j−EW and its uncertainty aredeter-mined withaprofile-likelihood-ratioteststatistic [63].Systematic uncertainties in the input templates are treated asnuisance pa-rameterswithanassumedGaussiandistribution.Thedistributions ofmj j inthe Z Z -CRcontrol region,ofNb−jets intheb-CR,ofmj j
in the W Z j j
−
QCD control region and of the BDT score in the signal region, with background normalisations, signal normalisa-tionandnuisanceparametersadjustedbytheprofile-likelihoodfit areshowninFig.2.Thecorresponding post-fityieldsaredetailed in Table 3. The table presents the integral of the BDT score dis-tribution in the SR, but the uncertainty on the measured signal crosssectionisdominatedbyeventsathighBDTscore.Thesignal strengthismeasuredtobeμ
W Z j j−EW=
1.
77+−00..4440(
stat.)
+ 0.15 −0.12(
exp.
syst.)
+0.15 −0.12(
mod.
syst.)
+ 0.15 −0.13(
theory)
+ 0.04 −0.02(
lumi.)
=
1.
77+−00..5145,
The ATLAS Collaboration / Physics Letters B 793 (2019) 469–492 475
Fig. 2. Post-fitdistributionsof(a)mj jintheZ Z -CRcontrolregion,(b)Nb−jetsintheb-CR,(c)mj jintheW Z j j−QCD controlregionand(d)theBDTscoredistributioninthe signalregion.Signalandbackgroundsarenormalisedtotheexpectednumberofeventsafterthefit.TheuncertaintybandaroundtheMCexpectationincludesallsystematic uncertaintiesasobtainedfromthefit.
Table 3
ObservedandexpectednumbersofeventsintheW±Z j j signalregionandinthethree controlregions,afterthefit.TheexpectednumberofW Z j j−EW eventsfrom Sherpa and theestimatednumberofbackgroundeventsfromtheotherprocessesareshown.Thesum ofthebackgroundscontainingmisidentifiedleptonsislabelled‘Misid.leptons’.Thetotal correlatedpost-fituncertaintiesarequoted.
SR W Z j j−QCD CR b-CR Z Z -CR Data 161 213 141 52 Total predicted 167±11 204±12 146±11 51.3±7.0 W Z j j−EW (signal) 44±11 8.52±0.41 1.38±0.10 0.211±0.004 W Z j j−QCD 91±10 144±14 13.9±3.8 0.94±0.14 Misid. leptons 7.8±3.2 14.0±5.7 23.5±9.6 0.41±0.18 Z Z j j−QCD 11.1±2.8 18.3±1.1 2.35±0.06 40.8±7.2 t Z j 6.2±1.1 6.3±1.1 34.0±5.3 0.17±0.04 t¯t+V 4.7±1.0 11.14±0.37 71±15 3.47±0.54 Z Z j j−EW 1.80±0.45 0.44±0.10 0.10±0.03 4.2±1.2 V V V 0.59±0.15 0.93±0.23 0.13±0.03 1.06±0.30
where the uncertainties correspond to statistical, experimental systematic, theory modelling and interference systematic, theory
σ
W Z j jfid.,MC−EWnormalisationandluminosityuncertainties,respectively. Thebackground-onlyhypothesisisexcluded withasignificanceof5
.
3 standard deviations, compared with 3.
2 standard deviations expected.ThenormalisationparametersoftheW Z j j−
QCD,tt¯
+
Vand Z Z backgroundsconstrainedby data inthe control and sig-nalregionsaremeasuredtobe
μ
W Z j j−QCD=
0.
56±
0.
16,μ
t¯t+V=
1
.
07±
0.
28 andμ
Z Z j j−QCD=
1.
34±
0.
44.TheobservedW Z j j−
EWproductionintegratedfiducialcross-sectionderived fromthis sig-nalstrengthforasingleleptonicdecaymodeis
σ
fid. W Z j j−EW=
0.
57+ 0.14 −0.13(
stat.)
+ 0.05 −0.04(
exp.
syst.)
+0.05 −0.04(
mod.
syst.)
+ 0.01 −0.01(
lumi.)
fb=
0.
57+−00..1614fb.
It corresponds to the cross-section of electroweak W±Z j j
pro-duction, including interference effects between W Z j j
−
QCD andW Z j j
−
EW processes,in thefiducial phasespacedefined in Sec-tion3usingdressed-levelleptons.TheSM LOpredictionfrom Sherpa forelectroweakproduction withoutinterferenceeffectsis
σ
W Z j jfid.,Sherpa−EW=
0.
321±
0.
002(
stat.)
±
0.
005(
PDF)
−+00..027023(
scale)
fb,
where the effects of uncertainties in the PDF and the
α
S valueused in the PDF determination, as well as the uncertainties due totherenormalisationandfactorisationscales,areevaluatedusing thesameprocedureastheonedescribedinSection8.
Alargercross-sectionof
σ
W Z j j−fid.,MadGraphEW=
0.
366±
0.
004(
stat.)
fb ispredicted by MadGraph.These predictions areat LO only and includeneither the effectsof interference,estimatedat LO tobe 10%, northeeffects ofNLO electroweakcorrectionsascalculated recentlyinRef. [64].Fromthe numberofobserved eventsintheSR, theintegrated cross-sectionofW±Z j j productionintheVBSfiducialphasespace definedin Section 3, including W Z j j
−
EW and W Z j j−
QCD con-tributionsandtheirinterference,ismeasured.ForagivenchannelW±Z
→
±ν
+
−, where
and
indicates each type of lep-ton(e or
μ
),theintegratedfiducialcrosssectionthatincludesthe leptonic branchingfractionsofthe W and Z bosonsiscalculated asσ
fid. W±Z j j=
Ndata−
NbkgL
·
CW Z j j×
1−
Nτ Nall,
where Ndata and Nbkg are the number of observed events and
the estimated number of background events in the SR, respec-tively, and
L
is the integrated luminosity. The factor CW Z j j,ob-tained from simulation, is the ratio of the number of selected signaleventsatdetectorleveltothenumberofeventsatparticle levelin thefiducial phasespace. This factorcorrects fordetector efficienciesandforQEDfinal-stateradiationeffects.The contribu-tion from
τ
-lepton decays, amounting to 4.
7%, is removed from thecross-section definition by introducing thetermin parenthe-ses. This term is computed using simulation, where Nτ is the number of selected events at detector level in which at least one of the bosons decays into aτ
-lepton and Nall is thenum-ber of selected W Z events with decays into any lepton. The
CW Z j j factorcalculatedwith Sherpa forthesumofthefour
mea-sured decay channels is 0
.
52 with a negligible statistical uncer-tainty. This factor is the same for W Z j j−
QCD and W Z j j−
EW events,aspredictedby Sherpa. Thetheory modellinguncertainty in this factor is 8%, as estimated from the difference between the Sherpa and MadGraph predictions.The uncertainties on this factorduetohigherorderQCDscalecorrectionsorPDFare negli-gible.Themeasured W±Z j j cross-sectioninthefiducialphasespace forasingleleptonicdecaymodeis
σ
Wfid±.Z j j=
1.
68±
0.
16(
stat.)
±
0.
12(
exp.
syst.)
±
0.
13(
mod.
syst.)
±
0.
044(
lumi.)
fb,
=
1.
68±
0.
25 fb,
wheretheuncertaintiescorrespondtostatistical,experimental sys-tematic, theory modelling systematic, and luminosity uncertain-ties, respectively. The corresponding prediction from Sherpa for strong and electroweak production without interference effects is
σ
Wfid±.,Z j jSherpa=
2.
15±
0.
01(
stat.)
±
0.
05(
PDF)
−+00..6544(
scale)
fb.
EventsintheSRarealsousedtomeasuretheW±Z j j
differen-tial productioncross-sectionin theVBS fiducialphase space. The differential detector-level distributions are corrected for detector resolution using an iterative Bayesian unfolding method [65], as implemented inthe RooUnfoldtoolkit [66]. Three iterations were used fortheunfolding ofeach variable.The widthofthebins in each distribution ischosen accordingto theexperimental resolu-tion andtothe statisticalsignificanceofthe expectednumberof eventsinthatbin.ThefractionofsignalMC eventsreconstructed in the same bin as generated is always greater than 40% and around70% onaverage.
For each distribution, simulated W±Z j j events are used to obtain a response matrix that accounts for bin-to-bin migration effects between the reconstruction-level and particle-level distri-butions. The Sherpa MCsamplesfor W Z j j
−
EW and W Z j j−
QCD production are added together to model W±Z j j production. To more closely model the data and to minimise unfolding uncer-tainties,their predictedcross-sectionsarerescaled bythe respec-tive signal strengths of 1.
77 and 0.
56 for the W Z j j−
EW andW Z j j
−
QCD contributions,respectively,asmeasuredindatabythe maximum-likelihoodfit.Uncertainties in the unfolding due to imperfect modelling of the databy the MC simulationare evaluated usinga data-driven method [67],wheretheMCdifferentialdistributioniscorrectedto matchthedatadistributionandtheresultingweighted MC distri-butionatreconstructionlevelisunfoldedwiththeresponsematrix usedinthedataunfolding.Thenewunfoldeddistributionis com-paredwiththeweightedMCdistributionatgeneratorlevelandthe differenceistakenasthesystematicuncertainty.Theuncertainties obtainedrange from0
.
1% to 25% depending onthe resolutionof the unfoldedobservables andonthequality ofits descriptionby Sherpa.Measurements are performed asa function of three variables sensitive to anomalies in the quartic gauge coupling in W±Z j j
events [10], namelythescalarsumofthe transversemomentaof the three charged leptons associated with the W and Z bosons
pT, the difference in azimuthal angle
φ (
W,
Z)
between theW and Z bosons’directions,andthetransversemassoftheW±Z
system mW Z
T ,defined following Ref. [10]. Theseare presented in
Fig.3.
Measurements are also performed as a function of variables related to the kinematics of jets. The exclusive multiplicity of jets, Njets, is shown in Fig. 4. The absolute difference in
rapid-ity between the two tagging jets
yj j, the invariant mass of
the tagging jets mj j, the exclusive multiplicity Njetsgapof jets with pT
>
25 GeV in the gapinη
betweenthe two tagging jets, andtheazimuthal anglebetweenthetwotaggingjets
φ
j jareshownThe ATLAS Collaboration / Physics Letters B 793 (2019) 469–492 477
Fig. 3. ThemeasuredW±Z j j differentialcross-sectionintheVBSfiducialphasespaceasafunctionof(a)p
T,(b)
φ(
W,Z)and(c)mW ZT .Theinnerandoutererrorbars onthedatapointsrepresentthestatisticalandtotaluncertainties,respectively.ThemeasurementsarecomparedwiththesumoftherescaledW Z j j−QCD andW Z j j−EW predictionsfrom Sherpa (solidline).TheW Z j j−EW andW Z j j−QCD contributionsarealsorepresentedbydashedanddashed-dottedlines,respectively.In(a)and(c),the righty-axisreferstothelastcross-sectionpoint,separatedfromtheothersbyaverticaldashedline,asthislastbinisintegrateduptothemaximumvaluereachedin thephasespace.Thelowerpanelsshowtheratiosofthedatatothepredictionsfrom Sherpa.Theuncertaintyonthe Sherpa predictionisdominatedbytheQCDscale uncertaintyontheW Z j j−QCD predictedcross-section,whoseenvelopeisof+30−20% anditisnotrepresentedonthefigure.
Totaluncertaintiesinthemeasurementsaredominatedby sta-tisticaluncertainties.The differentialmeasurements arecompared withthepredictionfrom Sherpa,afterhavingrescaledtheseparate
W Z j j
−
QCD andW Z j j−
EW componentsbytheglobalμ
W Z j j−QCDand
μ
W Z j j−EWparameters,respectively,obtainedfromtheprofile-likelihoodfittodata.InterferenceeffectsbetweentheW Z j j
−
QCD andW Z j j−
EW processesare incorporatedviatheμ
W Z j j−EWpa-rameterasachangeoftheglobalnormalisationofthe Sherpa elec-troweakprediction.
10. Conclusion
An observationof electroweak productionof a diboson W±Z
systeminassociationwithtwojetsandmeasurementsofits pro-ductioncross-sectionin
√
s=
13 TeV pp collisionsattheLHCare presented.The data were collected with the ATLAS detector and correspondtoanintegratedluminosityof36.
1 fb−1.The measure-ments useleptonic decays ofthe gauge bosons into electrons or muonsandareperformedinafiducialphasespaceapproximatingthe detector acceptance that increases the sensitivity to W±Z j j
electroweakproductionmodes.
TheelectroweakproductionofW±Z bosonsinassociationwith twojetsismeasuredwithobservedandexpectedsignificances of 5
.
3 and3.
2 standarddeviations,respectively. Themeasured fidu-cialcross-sectionforelectroweakproductionincludinginterference effectsisσ
W Z j j−EW=
0.
57+−00..1413(
stat.)
+−00..0504(
exp.
syst.)
+0.05−0.04
(
mod.
syst.)
+ 0.01−0.01
(
lumi.)
fb.
ItisfoundtobelargerthantheLO SMpredictionof0
.
32±
0.
03 fb as calculated with the Sherpa MC event generator that includes neither interference effects, estimatedat LO to be 10%, nor NLO electroweakcorrections.Differentialcross-sectionsofW±Z j jpro-duction,includingboththe strongandelectroweakprocesses,are also measured in thesame fiducial phase spaceas a function of severalkinematicobservables.
Fig. 4. Themeasured W±Z j j differentialcross-sectionintheVBSfiducialphase spaceasafunctionoftheexclusivejetmultiplicityofjetswithpT>40 GeV.The in-nerandoutererrorbarsonthedatapointsrepresentthestatisticalandtotal uncer-tainties,respectively.Themeasurementsarecomparedwiththesumofthescaled W Z j j−QCD and W Z j j−EW predictionsfrom Sherpa (solidline).TheW Z j j−EW andW Z j j−QCD contributionsarealsorepresentedbydashedanddashed-dotted lines,respectively.Theright y-axisreferstothelastcross-sectionpoint,separated fromtheothersbyaverticaldashedline,asthislastbinisintegrateduptothe maximumvaluereachedinthephasespace.Thelowerpanel showstheratioof thedatatothepredictionfrom Sherpa.Theuncertaintyonthe Sherpa predictionis dominatedbytheQCDscaleuncertaintyontheW Z j j−QCD predictedcross-section, whoseenvelopeisof+−3020% anditisnotrepresentedonthefigure.
Acknowledgements
We thankCERN for the very successfuloperation of theLHC, aswell asthe support stafffrom ourinstitutions without whom ATLAScouldnotbeoperatedefficiently.
WeacknowledgethesupportofANPCyT,Argentina;YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan; SSTC, Belarus; CNPq andFAPESP, Brazil; NSERC, NRC and CFI,Canada; CERN; CONICYT,Chile; CAS, MOSTandNSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic;DNRFandDNSRC,Denmark;IN2P3-CNRS,CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece;RGC,Hong KongSAR,China;ISF andBenoziyo Center, Is-rael; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands;RCN, Norway;MNiSW andNCN, Poland;FCT, Portu-gal; MNE/IFA, Romania; MES of Russiaand NRC KI, Russian Fed-eration; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia;DST/NRF,SouthAfrica;MINECO,Spain;SRCand Wallen-berg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom;DOEandNSF,UnitedStatesofAmerica. Inaddition, in-dividualgroupsandmembershavereceivedsupport fromBCKDF, Canarie,CRCandComputeCanada,Canada;COST,ERC,ERDF, Hori-zon 2020, andMarie Skłodowska-Curie Actions, European Union; Investissements d’ AvenirLabex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia pro-grammesco-financedbyEU-ESFandtheGreekNSRF,Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain;TheRoyalSocietyandLeverhulmeTrust,UnitedKingdom.
The crucial computing supportfrom all WLCG partnersis ac-knowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Swe-den),CC-IN2P3(France),KIT/GridKA(Germany),INFN-CNAF(Italy), NL-T1(Netherlands),PIC(Spain),ASGC(Taiwan),RAL(UK)andBNL (USA),theTier-2facilitiesworldwideandlargenon-WLCGresource providers.Major contributorsofcomputingresources arelistedin Ref. [68].
References
[1]O.J.P.Eboli,M.C.Gonzalez-Garcia,S.M.Lietti,BosonicquarticcouplingsatCERN LHC,Phys.Rev.D69(2004)095005,arXiv:hep-ph/0310141 [hep-ph]. [2]O.Eboli,M.Gonzalez-Garcia,J.Mizukoshi,
pp
→j je±μ±ννandj je
±μ±ννatO(α6
em)and O(α4emαs2)forthestudyofthequarticelectroweakgaugeboson
vertexat CERNLHC,Phys. Rev.D74(2006) 073005,arXiv:hep-ph/0606118 [hep-ph].
[3]C.Degrande,et al.,Effectivefieldtheory:amodernapproachtoanomalous couplings,Ann.Phys.335(2013)21,arXiv:1205.4231 [hep-ph].
[4]R.N.Cahn,S.D.Ellis,R.Kleiss,W.J.Stirling,Transverse-momentumsignatures forheavyHiggsbosons,Phys.Rev.D35(1987)1626.
[5]E.Accomando,A.Ballestrero,A.Belhouari, E.Maina,Isolatingvector boson scatteringat the CERN LHC:gaugecancellations and the equivalent vector boson approximation versus completecalculations, Phys. Rev.D 74 (2006) 073010,arXiv:hep-ph/0608019 [hep-ph].
[6]CMSCollaboration,Observationofelectroweakproductionofsame-sign
W
bo-sonpairsinthetwojetandtwosame-signleptonfinalstateinproton-proton collisionsat√s=13 TeV,Phys.Rev.Lett.120(2018)081801,arXiv:1709.05822 [hep-ex].[7]ATLASCollaboration,Evidenceforelectroweakproductionof
W
±W±j j in pp collisionsat√s=8 TeVwiththeATLASdetector,Phys.Rev.Lett.113(2014) 141803,arXiv:1405.6241 [hep-ex].[8]ATLAS Collaboration, Measurement of W±W± vector-boson scattering and limitsonanomalousquarticgaugecouplingswiththeATLAS detector,Phys. Rev.D96(2017)012007,arXiv:1611.02428 [hep-ex].
[9]CMSCollaboration,Measurementofthecrosssectionforelectroweak produc-tionof
Z
γ inassociationwithtwojetsandconstraintsonanomalousquartic gaugecouplingsinproton-protoncollisionsat√s=8 TeV,Phys.Lett.B770 (2017)380,arXiv:1702.03025 [hep-ex].[10]ATLASCollaboration,Measurementsof
W
±Z production crosssectionsinpp
collisionsat √s=8 TeVwiththe ATLASdetector andlimits onanomalous gaugebosonself-couplings,Phys.Rev.D93(2016)092004,arXiv:1603.02151 [hep-ex].[11]CMSCollaboration,Measurementofelectroweak
W Z boson
production and searchfornewphysicsin W Z + twojetseventsinpp collisions
at√s=13 TeV,arXiv:1901.04060 [hep-ex],2019.
[12]CMSCollaboration,Measurementofvectorbosonscatteringandconstraintson anomalousquarticcouplingsfromeventswithfourleptonsand twojetsin proton-protoncollisionsat√s=13 TeV,Phys.Lett.B774(2017)682,arXiv: 1708.02812 [hep-ex].
[13]ATLASCollaboration,Studiesof
Z
γproductioninassociationwithahigh-mass dijetsysteminpp collisions
at √s=8 TeVwiththeATLASdetector,J.High EnergyPhys.07(2017)107,arXiv:1705.01966 [hep-ex].[14]CMSCollaboration,Measurementofelectroweak-induced productionof
W
γ withtwojetsinpp collisions
at √s=8 TeVandconstraintsonanomalous quarticgaugecouplings,J.HighEnergyPhys.06(2017)106,arXiv:1612.09256 [hep-ex].[15]ATLASCollaboration,TheATLASexperimentattheCERNlargehadroncollider, J.Instrum.3(2008)S08003.
[16]ATLASCollaboration,PerformanceoftheATLAStrigger systemin2015,Eur. Phys.J.C77(2017)317,arXiv:1611.09661 [hep-ex].
[17]ATLASCollaboration,Measurementofthe W±Z boson pair-productioncross sectionin
pp collisions
at√s=13 TeVwiththeATLASdetector,Phys.Lett.B 762(2016)1,arXiv:1606.04017 [hep-ex].[18]M.Tanabashi,etal.,ReviewofParticlePhysics,Phys.Rev.D98(2018)030001. [19]M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High
EnergyPhys.04(2008)063,arXiv:0802.1189 [hep-ph].
[20]ATLASCollaboration, TheATLASsimulation infrastructure,Eur.Phys. J.C70 (2010)823,arXiv:1005.4568 [physics.ins-det].
[21]S.Agostinelli,etal.,GEANT4:asimulationtoolkit,Nucl.Instrum.MethodsA 506(2003)250.
[22]T.Sjöstrand,S.Mrenna,P.Z.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852,arXiv:0710.3820 [hep-ph].
[23]A.D.Martin,W.J.Stirling,R.S.Thorne,G.Watt,PartondistributionsfortheLHC, Eur.Phys.J.C63(2009)189,arXiv:0901.0002 [hep-ph].
[24] ATLAS Collaboration, Summary of ATLAS Pythia 8 Tunes, ATL-PHYS-PUB-2012-003.CERN,2012,http://cds.cern.ch/record/1474107.
The ATLAS Collaboration / Physics Letters B 793 (2019) 469–492 479
Fig. 5. ThemeasuredW±Z j j differentialcross-sectionintheVBSfiducialphasespaceasafunctionof(a)theabsolutedifferenceinrapiditybetweenthetwotaggingjets yj j,(b)theinvariantmassofthetaggingjetsmj j,(c)NgapjetstheexclusivejetmultiplicityofjetswithpT>25 GeVinthegapbetweenthetwotaggingjets,and(d)the azimuthalanglebetweenthetwotaggingjets
φ
j j.Theinnerandoutererrorbarsonthedatapointsrepresentthestatisticalandtotaluncertainties,respectively.The measurementsarecomparedwiththesumoftherescaledW Z j j−QCD andW Z j j−EW predictionsfrom Sherpa (solidline).TheW Z j j−EW andW Z j j−QCD contributions arealsorepresentedbydashedanddashed-dottedlines,respectively.In(b)ad(c),theright y-axisreferstothelastcross-sectionpoint,separatedfromtheothersbya verticaldashedline,asthislastbinisintegrateduptothemaximumvaluereachedinthephasespace.Thelowerpanelsshowtheratiosofthedatatothepredictionsfrom Sherpa.Theuncertaintyonthe Sherpa predictionisdominatedbytheQCDscaleuncertaintyontheW Z j j−QCD predictedcross-section,whoseenvelopeisof+−3020% andit isnotrepresentedonthefigure.[25] ATLASCollaboration,ElectronEfficiencyMeasurementsWiththeATLAS Detec-torUsingthe2015LHCProton-ProtonCollisionData,Tech.rep. ATLAS-CONF-2016-024,CERN,2016,http://cds.cern.ch/record/2157687.
[26]ATLASCollaboration,MuonreconstructionperformanceoftheATLASdetector inproton-protoncollisiondataat√s=13 TeV,Eur.Phys.J.C76(2016)292, arXiv:1603.05598 [hep-ex].
[27]ATLASCollaboration,ElectronandphotonenergycalibrationwiththeATLAS detectorusing2015-2016LHCproton-protoncollisiondata,arXiv:1812.03848 [hep-ex],2018.
[28]T.Gleisberg,etal.,EventgenerationwithSHERPA1.1,J.HighEnergyPhys.02 (2009)007,arXiv:0811.4622 [hep-ph].
[29]T.Gleisberg,S.Höche,Comix,anewmatrixelementgenerator,J.HighEnergy Phys.12(2008)039,arXiv:0808.3674 [hep-ph].
[30]S.Schumann,F.Krauss,ApartonshoweralgorithmbasedonCatani-Seymour dipolefactorisation,J.HighEnergyPhys.03(2008)038,arXiv:0709.1027 [hep -ph].
[31]S.Catani,F.Krauss,R.Kuhn,B.R.Webber,QCDmatrixelements+parton show-ers,J.HighEnergyPhys.11(2001)063,arXiv:hep-ph/0109231 [hep-ph]. [32]S.Höche,F.Krauss,S.Schumann,F.Siegert,QCDmatrix elementsand
trun-catedshowers,J.HighEnergyPhys.05(2009)053,arXiv:0903.1219 [hep-ph].
[33]S.Höche,F.Krauss,M.Schonherr,F.Siegert,QCDmatrixelements+parton showers:theNLOcase,J.HighEnergyPhys.04(2013)027,arXiv:1207.5030 [hep-ph].
[34]J.-C. Winter,F.Krauss, G.Soff,A modifiedcluster-hadronisationmodel,Eur. Phys.J.C36(2004)381,arXiv:hep-ph/0311085 [hep-ph].
[35]M.Schönherr,F.Krauss,SoftphotonradiationinparticledecaysinSHERPA,J. HighEnergyPhys.12(2008)018,arXiv:0810.5071 [hep-ph].
[36]R.D.Ball,etal.,PartondistributionsfortheLHCrunII,J.HighEnergyPhys.04 (2015)040,arXiv:1410.8849 [hep-ph].
[37]J.Alwall,etal.,Theautomatedcomputationoftree-levelandnext-to-leading orderdifferentialcrosssections,andtheirmatchingtopartonshower simula-tions,J.HighEnergyPhys.07(2014)079,arXiv:1405.0301 [hep-ph]. [38]P.Nason,AnewmethodforcombiningNLOQCD withshowerMonteCarlo
algorithms,J.HighEnergyPhys.11(2004)040,arXiv:hep-ph/0409146 [hep -ph].
[39]S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod,J.HighEnergyPhys.11(2007)070, arXiv:0709.2092 [hep-ph].
[40]S.Alioli,P.Nason,C.Oleari,E.Re,AgeneralframeworkforimplementingNLO calculationsinshowerMonteCarloprograms:thePOWHEGBOX,J.High En-ergyPhys.06(2010)043,arXiv:1002.2581 [hep-ph].