• Sonuç bulunamadı

Başlık: Generalized fractional Hermite-Hadamard type inequalities for m-convex and (α, m)-convex functionsYazar(lar):SET, Erhan; ÇELİK, BarışCilt: 67 Sayı: 1 Sayfa: 333-344 DOI: 10.1501/Commua1_0000000855 Yayın Tarihi: 2018 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: Generalized fractional Hermite-Hadamard type inequalities for m-convex and (α, m)-convex functionsYazar(lar):SET, Erhan; ÇELİK, BarışCilt: 67 Sayı: 1 Sayfa: 333-344 DOI: 10.1501/Commua1_0000000855 Yayın Tarihi: 2018 PDF"

Copied!
12
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

C om mun. Fac. Sci. U niv. A nk. Ser. A 1 M ath. Stat. Volum e 67, N umb er 1, Pages 333–344 (2018) D O I: 10.1501/C om mua1_ 0000000855 ISSN 1303–5991

http://com munications.science.ankara.edu.tr/index.php?series= A 1

GENERALIZED FRACTIONAL HERMITE-HADAMARD TYPE

INEQUALITIES FOR m CONVEX AND ( ; m) CONVEX

FUNCTIONS

ERHAN SET AND BARI¸S ÇEL·IK

Abstract. In the present article, we derive some new inequalities of Hermite-Hadamard type involving left-sided and right-sided generalized fractional in-tegral operators for products of two m-convex and ( ; m)- convex functions, respectively. It is worth mentioning that the presented results have close con-nection with those in [6]. These new results generalize the existing Hermite-Hadamard type inequalities for products of two functions. Therefore the ideas of this article may stimulate further research in this …eld.

1. Introduction and Preliminaries

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are very important in the literature (see, e.g.,[11, p.137],[7]). These inequalities state that if f : I ! R is a convex function on the interval I of real numbers and a; b 2 I with a < b, then f a + b 2 1 b a Z b a f (x)dx f (a) + f (b) 2 : (1.1)

The inequality (1.1) has evoked the interest of many mathematicians. Especially in the last three decades numerous generalizations, variants and extensions of this inequality have been obtained, to mention a few, see ([2, 3, 4, 5, 7, 8, 10, 11, 13, 14]) and the references cited therein.

m convexity was de…ned by Toader as follows:

De…nition 1. (see [17]) The function f : [0; b] ! R, b > 0, is said to be m convex, where m 2 [0; 1], if we have

f (tx + m(1 t)y) tf (x) + m(1 t)f (y) Received by the editors: February 23, 2017; Accecpted: March 28, 2017. 2010 Mathematics Subject Classi…cation. 26A33, 26D10, 26D15.

Key words and phrases. m convex function, ( ; m) convex function, Hermite-Hadamard in-equality, fractional integral operator.

c 2 0 1 8 A n ka ra U n ive rsity C o m m u n ic a tio n s d e la Fa c u lté d e s S c ie n c e s d e l’U n ive rs ité d ’A n ka ra . S é rie s A 1 . M a th e m a t ic s a n d S t a tis t ic s .

(2)

for all x; y 2 [0; b] and t 2 [0; 1].

One says that f is m concave if ( f ) is m convex. Denote by Km(b) the

class of all m convex functions on [0; b] for which f (0) 0.

Obviously, for m = 1, De…nition 1 recaptures concept of standard convex func-tions on [0; b] and for m = 0 the concept of starshaped funcfunc-tions. The notion of m convexity has been further generalized in [9] as it is stated in the following de…nition.

De…nition 2. (see [9]) The function f : [0; b] ! R, b > 0, is said to be ( ; m) convex, where ( ; m) 2 [0; 1]2, if one has

f (tx + m(1 t)y) t f (x) + m(1 t )f (y) for all x; y 2 [0; b] and t 2 [0; 1].

Denote by Km(b) the class of ( ; m) convex functions on [0; b] for which f (0) 0.

It can be easily seen that when ( ; m) 2 f(1; 1); (1; m)g one obtains the following classes of functions: convex and m convex, respectively. Note that K1

1(b) is proper

subclass of m convex and ( ; m) functions on [0; b]. The interested reader can …nd more about partial ordering of convexity in [11].

We recall some necessary de…nitions and preliminary results which are used and referred to throughout this paper as follows:

De…nition 3. Let f 2 L1[a; b]: The Riemann-Liouville integrals Ja+f and Jb f of

order > 0 with a 0 are de…ned by Ja+f (x) = 1 ( ) Z x a (x t) 1f (t)dt; x > a and Jb f (x) = 1 ( ) Z b x (t x) 1f (t)dt; x < b respectively where ( ) =R01e tu 1du. Here is J0

a+f (x) = Jb0 f (x) = f (x):

Some Hermite-Hadamard type inequalities for products of two functions are proposed by Chen in [6] as follows:

Theorem 1. Let f; g : [0; 1) ! [0; 1), 0 a < b, be functions such that f g 2 L1[a; b]. If f is m1 convex and g is m2 convex on [a; b] with m1; m2 2 (0; 1],

then one has ( ) (b a) Ja+f (b)g(b) f (a)g(a) + 2 + m2 ( + 1)( + 2)f (a)g b m2 (1.2) + m1 ( + 1)( + 2)g(a)f b m1 + 2m1m2 ( + 1)( + 2)f b m1 g b m2

(3)

and ( ) (b a) Jb f (a)g(a) f (b)g(b) + 2 + m2 ( + 1)( + 2)f (b)g a m2 (1.3) + m1 ( + 1)( + 2)g(b)f b m1 + 2m1m2 ( + 1)( + 2)f a m1 g a m2 : Theorem 2. Let f; g : [0; 1) ! [0; 1), 0 a < b, be functions such that f g 2 L1[a; b]. If f is ( 1; m1) convex and g is ( 2; m2) convex on [a; b] with

( 1; m1); ( 2; m2) 2 (0; 1]2, respectively, then one has

( ) (b a) Ja+f (b)g(b) 1 1+ 2+ f (a)g(a) + 2 ( + 1)( + 1+ 2) m2f (a)g b m2 + 1 ( + 2)( + 1+ 2) m1g(a)f b m1 (1.4) + 1 1 + 1 1 + 2 + 1 + 1+ 2 m1m2f b m1 g b m2 ; and ( ) (b a) Jb f (a)g(a) 1 1+ 2+ f (b)g(b) + 2 ( + 1)( + 1+ 2) m2f (b)g a m2 + 1 ( + 2)( + 1+ 2) m1g(b)f a m1 (1.5) + 1 1 + 1 1 + 2 + 1 + 1+ 2 m1m2f a m1 g a m2 : In [12], Raina introduced a class of functions de…ned formally by

F ; (x) = F (0); (1);::: ; (x) = 1 X k=0 (k) ( k + )x k ( ; > 0; jxj < R); (1.6) where the coe¢ cients (k) (k 2 N = N [ f0g) is a bounded sequence of positive real numbers and R is the set of real numbers. With the help of (1.6), Raina [12] and Agarwal et al. [1] de…ned the following left-sided and right-sided fractional integral operators respectively, as follows:

J ; ;a+;w' (x) =

Z x a

(4)

J ; ;b ;w' (x) =

Z b x

(t x) 1F ; [w(t x) ]'(t)dt (0 < x < b); (1.8) where ; > 0, w 2 R and '(t) is such that the integral on the right side exits.

It is easy to verify that J ; ;a+;w'(x) and J ; ;b ;w'(x) are bounded integral

operators on L(a; b), if

M := F; +1[w(b a) ] < 1: (1.9)

In fact, for ' 2 L(a; b), we have

jjJ ; ;a+;w'(x)jj1 M(b a) jj'jj1 (1.10) and jjJ ; ;b ;w'(x)jj1 M(b a) jj'jj1 (1.11) where jj'jjp:= Z b a j'(t)j pdt !1 p :

Here, many useful fractional integral operators can be obtained by specializing the coe¢ cient (k). For instance the classical Riemann-Liouville fractional integrals Ja+and Jb of order follow easily by setting = , (0) = 1 and w = 0 in (1.7) and (1.8). Some recent results and properties concerning the fractional integral operators can be found [15, 16, 18, 19].

In this paper, some new Hermite-Hadamard type inequalities for products of two di¤erent convex functions via generalized fractional integral operator are obtained.

2. Inequalities for product of m-convex and ( ; m)-convex functions Theorem 3. Let f; g : [0; 1) ! [0; 1), 0 a < b, be functions such that f g 2 L1[a; b]. If f is m1 convex and g is m2 convex on [a; b] with m1; m2 2 (0; 1],

then one has 1 (b a) (J ; ;a+;w)(f g(b)) (2.1) f (a)g(a)F 1 ; [w(b a) ] + f (a)g b m2 F 2 ; [w(b a) ] +g(a)f b m1 F 3 ; [w(b a) ] + f b m1 g b m2 F 4 ; +1[w(b a) ]

(5)

and 1 (b a) (J ; ;b ;w)(f g(a)) (2.2) f (b)g(b)F 1 ; [w(b a) ] + f (b)g a m2 F 2 ; [w(b a) ] +g(b)f a m1 F 3 ; [w(b a) ] + f a m1 g a m2 F 4 ; +1[w(b a) ] ; where > 0 and 1(k) := (k) 1 + k + 2; 2(k) := (k) m2 ( + k + 1)( + k + 2); 3(k) := (k) m1 ( + k + 1)( + k + 2); 4(k) := (k) 2m1m2 ( + k + 1)( + k + 2): Proof. By using the de…nitions of f and g, we can write

f (ta + (1 t)b) tf (a) + m1(1 t)f b m1 (2.3) and g(ta + (1 t)b) tg(a) + m2(1 t)g b m2 : (2.4)

By multiplying (2.3) and (2.4), we get

f (ta + (1 t)b)g(ta + (1 t)b) (2.5) t2f (a)g(a) + m2f (a)g b m2 t(1 t) +m1g(a)f b m1 t(1 t) + m1m2f b m1 g b m2 (1 t)2:

(6)

If we multiply both sides of (2.5) by t 1F

; [w(b a) t ], then integrating with

respect to t over [0; 1], we obtain Z 1 0 t 1F ; [w(b a) t ]f (ta + (1 t)b)g(ta + (1 t)b)dt = Z a b b u b a 1 F ; [w(b u) ] f (u)g(u) du a b = 1 (b a) (J ; ;a+;w)(f g(b)) f (a)g(a) Z 1 0 t +1F ; [w(b a) t ]dt +m2f (a)g b m2 Z 1 0 t (1 t)F ; [w(b a) t ]dt +m1g(a)f b m1 Z 1 0 t (1 t)F ; [w(b a) t ]dt +m1m2f b m1 g b m2 Z 1 0 t 1(1 t)2F ; [w(b a) t ]dt = f (a)g(a) 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k+1dt +m2f (a)g b m2 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k(1 t)dt +m1g(a)f b m1 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k(1 t)dt +m1m2f b m1 g b m2 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k 1(1 t)2dt = f (a)g(a)F 1 ; [w(b a) ] + f (a)g b m2 F 2 ; [w(b a) ] +g(a)f b m1 F 3 ; [w(b a) ] + f b m1 g b m2 F 4 ; +1[w(b a) ] : Analogously, we obtain f ((1 t)a + tb)g((1 t)a + tb) t2f (b)g(b) + m2f (b)g a m2 t(1 t) (2.6) +m1g(b)f a m1 t(1 t) + m1m2f a m1 g a m2 (1 t)2:

(7)

If we multiply both sides of (2.6) by t 1F

; [w(b a) t ], then integrating with

respect to t over [0; 1], we obtain Z 1 0 t 1F ; [w(b a) t ]f ((1 t)a + tb)g((1 t)a + tb)dt = Z b a v a b a 1 F ; [w(v a) ] f (v)g(v) dv b a = 1 (b a) (J ; ;b ;w)(f g(a)) f (b)g(b) Z 1 0 t +1F ; [w(b a) t ]dt +m2f (b)g a m2 Z 1 0 t (1 t)F ; [w(b a) t ]dt +m1g(b)f a m1 Z 1 0 t (1 t)F ; [w(b a) t ]dt +m1m2f a m1 g a m2 Z 1 0 t 1(1 t)2F ; [w(b a) t ]dt = f (b)g(b) 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k+1dt +m2f (b)g a m2 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k(1 t)dt +m1g(b)f a m1 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k(1 t)dt +m1m2f a m1 g a m2 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k 1(1 t)2dt = f (b)g(b)F 1 ; [w(b a) ] + f (b)g a m2 F 2 ; [w(b a) ] +g(b)f a m1 F 3 ; [w(b a) ] + f a m1 g a m2 F 4 ; +1[w(b a) ] :

Here, we used the facts that Z 1 0 t + k+1dt = 1 + k + 2; Z 1 0 t + k(1 t)dt = 1 ( + k + 1)( + k + 2);

(8)

Z 1 0

t + k 1(1 t)2dt = 2

( + k)( + k + 1)( + k + 2): This completes the proof.

Remark 1. If we take (0) = 1 and w = 0 in the Theorem 3, then the inequalities (2.1) and (2.2) reduces to the inequalities (1.2) and (1.3), respectively.

Theorem 4. Let f; g : [0; 1) ! [0; 1), 0 a < b, be functions such that f g 2 L1[a; b]. If f is ( 1; m1) convex and g is ( 2; m2) convex on [a; b] with

( 1; m1); ( 2; m2) 2 (0; 1]2, respectively, then one has

1 (b a) (J ; ;a+;w)(f g(b)) (2.7) f (a)g(a)F 5 ; [w(b a) ] + f (a)g b m2 F 6 ; [w(b a) ] +g(a)f b m1 F 7 ; [w(b a) ] + f b m1 g b m2 F 8 ; [w(b a) ] and 1 (b a) (J ; ;b ;w)(f g(a)) (2.8) f (b)g(b)F 5 ; [w(b a) ] + f (b)g a m2 F 6 ; [w(b a) ] +g(b)f a m1 F 7 ; [w(b a) ] + f a m1 g a m2 F 8 ; [w(b a) ] ; where > 0 and 5(k) := (k) 1 1+ 2+ + k ; 6(k) := (k) 2 m2 ( + k + 1)( + k + 1+ 2) ; 7(k) := (k) 1 m1 ( + k + 2)( + k + 1+ 2) ; 8(k) := (k) 1 + k 1 + k + 1 1 + k + 2 + 1 + k + 1+ 2 m1m2:

Proof. By using the de…nitions of f and g, we can write f (ta + (1 t)b) t 1f (a) + m 1(1 t 1)f b m1 (2.9) and g(ta + (1 t)b) t 2g(a) + m 2(1 t 2)g b m2 : (2.10)

(9)

By multiplying (2.9) and (2.10), we get f (ta + (1 t)b)g(ta + (1 t)b) t 1+ 2f (a)g(a) + m 2f (a)g b m2 t 1(1 t 2) +m1g(a)f b m1 t 2(1 t 1) +m1m2f b m1 g b m2 (1 t 1)(1 t 2): (2.11)

If we multiply both sides of (2.11) by t 1F ; [w(b a) t ], then integrating with

respect to t over [0; 1], we obtain Z 1 0 t 1F ; [w(b a) t ]f (ta + (1 t)b)g(ta + (1 t)b)dt = Z a b b u b a 1 F ; [w(b u) ] f (u)g(u) du a b = 1 (b a) (J ; ;a+;w)(f g(b)) f (a)g(a) Z 1 0 t 1+ 2+ 1F ; [w(b a) t ]dt +m2f (a)g b m2 Z 1 0 t 1t 1(1 t 2)F ; [w(b a) t ]dt +m1g(a)f b m1 Z 1 0 t 1t 2(1 t 1 )F ; [w(b a) t ]dt +m1m2f b m1 g b m2 Z 1 0 t 1(1 t 1)(1 t 2)F ; [w(b a) t ]dt = f (a)g(a) 1 X k=0 (k)wk(b a)k ( + k) Z 1 0 t 1+ 2+ + k 1dt +m2f (a)g b m2 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k 1t 1(1 t 2)dt +m1g(a)f b m1 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k 1t 2(1 t 1)dt +m1m2f b m1 g b m2 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k 1(1 t 1)(1 t 2)dt

(10)

= f (a)g(a)F 5 ; [w(b a) ] + f (a)g b m2 F 6 ; [w(b a) ] +g(a)f b m1 F 7 ; [w(b a) ] + f b m1 g b m2 F 8 ; [w(b a) ] : Similarly, we have f ((1 t)a + tb)g((1 t)a + tb) t 1+ 2f (b)g(b) + m 2f (b)g a m2 t 1(1 t 2) +m1g(b)f a m1 t 2(1 t 1) +m1m2f a m1 g a m2 (1 t 1)(1 t 2): (2.12)

If we multiply both sides of (2.12) by t 1F

; [w(b a) t ], then integrating with

respect to t over [0; 1], we obtain

Z 1 0 t 1F ; [w(b a) t ]f ((1 t)a + tb)g((1 t)a + tb)dt = Z b a v a b a 1 F ; [w(v a) ] f (v)g(v) dv b a = 1 (b a) (J ; ;b ;w)(f g(a)) f (b)g(b) Z 1 0 t 1+ 2+ 1 F ; [w(b a) t ]dt +m2f (b)g a m2 Z 1 0 t 1t 1(1 t 2 )F ; [w(b a) t ]dt +m1g(b)f a m1 Z 1 0 t 1t 2(1 t 1)F ; [w(b a) t ]dt +m1m2f a m1 g a m2 Z 1 0 t 1(1 t 1)(1 t 2 )F ; [w(b a) t ]dt

(11)

= f (b)g(b) 1 X k=0 (k)wk(b a)k ( + k) Z 1 0 t 1+ 2+ + k 1dt +m2f (b)g a m2 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k 1t 1(1 t 2)dt +m1g(b)f a m1 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k 1t 2(1 t 1)dt +m1m2f a m1 g a m2 1 X k=0 (k)wk(b a) k ( + k) Z 1 0 t + k 1(1 t 1)(1 t 2)dt = f (b)g(b)F 5 ; [w(b a) ] + f (b)g a m2 F 6 ; [w(b a) ] +g(b)f a m1 F 7 ; [w(b a) ] + f a m1 g a m2 F 8 ; [w(b a) ] :

Here, we used the facts that Z 1 0 t 1+ 2+ + k 1dt = 1 1+ 2+ + k ; Z 1 0 t + k 1t 1(1 t 2)dt = 2 ( + k + 1)( + k + 1+ 2) ; Z 1 0 t + k 1t 2(1 t 1)dt = 1 ( + k + 2)( + k + 1+ 2) ; Z 1 0 t + k 1(1 t 1)(1 t 2)dt = 1 + k 1 + k + 1 1 + k + 2 + 1 + k + 1+ 2 : This completes the proof.

Remark 2. If we take (0) = 1 and w = 0 in the Theorem 4, then the inequalities (2.7) and (2.8) reduces to the inequalities (1.4) and (1.5), respectively.

References

[1] Agarwal, R.P., Luo, M.-J., and Raina, R.K., On Ostrowski type inequalities, Fasciculi Math-ematici, 204 (2016), 5-27.

[2] Alomari, M., and Darus, M., On the Hadamard’s inequality for log-convex functions on the coordinates, Journal of Inequalities and Applications, vol. 2009, Article ID 283147, 13 pages, 2009.

[3] Azpeitia, A.G., Convex functions and the Hadamard inequality, Rev. Colombiana Math., 28 (1994), 7-12.

[4] Bakula, M.K., Özdemir, M.E., Peµcari´c, J., Hadamard tpye inequalities for m convex and ( ; m)-convex functions, J. Ineq. Pure and Appl. Math., 9(4) (2008), Art. 96.

(12)

[5] Bakula, M.K., and Peµcari´c, J., Note on some Hadamard-type inequalities, Journal of Inequal-ities in Pure and Applied Mathematics, vol. 5, no. 3, article 74, 2004.

[6] Chen, F., On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Chinese J. Math., Article ID 173923, 7 pages, 2014.

[7] Dragomir, S.S., and Pearce, C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.

[8] Dragomir, S.S., On some new inequalities of Hermite-Hadamard type for m convex func-tions, Tamkang J. Math., 3(1) (2002).

[9] Mihesan, V.G., A Generalization of the Convexity, Seminar of Functional Equations, Ap-prox. and Convex, Cluj-Napoca, Romania, 1993.

[10] Özdemir, M.E., Avci, M. and Set, E., On some inequalities of Hermite-Hadamard type via m-convexity, Applied Mathematics Letters, vol. 23, no. 9, pp. 1065–1070, 2010.

[11] Peµcari´c, J.E., Proschan, F., Tong, Y.L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.

[12] Raina, R.K., On generalized Wright’s hypergeometric functions and fractional calculus oper-ators, East Asian Math. J., 21(2) (2005), 191-203.

[13] Set, E., Özdemir, M.E. and Dragomir, S.S., On the Hermite-Hadamard inequality and other integral inequalities involving two functions, Journal of Inequalities and Applications, Article ID 148102, 9 pages, 2010.

[14] Set, E., Özdemir, M.E. and Dragomir, S.S., On Hadamard-Type inequalities involving several kinds of convexity, Journal of Inequalities and Applications, Article ID 286845, 12 pages, 2010. [15] Set, E., Choi, J., Çelik, B., A new approach to generalized of Hermite-Hadamard inequality using fractional integral operator, ResearchGate, https://www.researchgate.net/publication/313437121.

[16] Set, E., Noor, M.A., Awan, M.U., Gözp¬nar, A., Some new generalized Hermite-Hadamard type inequalities for convex functions involving fractional integral operators, Journal of In-equalities and Applications, 2017:169; http://dx.doi.org/10.1186/s13660-017-1444-6 (2017). [17] Toader, G., Some generalizations of the convexity, Proceedings of The Colloquium On

Ap-proximation And Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985, 329-338.

[18] Usta, F., Budak, H., Sar¬kaya, M.Z. and Set, E., On generalization of trapezoid type inequal-ities for s-convex functions with generalized fractional integral operators, Filomat, accepted for publication.

[19] Yald¬z, H., Sar¬kaya, M.Z., On the Hermite-Hadamard type inequalities for fractional integral operator, ResearchGate, https://www.researchgate.net/publication/309824275.

Current address : Erhan SET: Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey

E-mail address : erhanset@yahoo.com ORCID: orcid.org/0000-0003-1364-5396

Current address : Bar¬¸s ÇEL·IK: Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey

E-mail address : bariscelik15@hotmail.com ORCID: orcid.org/0000-0001-5372-7543

Referanslar

Benzer Belgeler

Etlerde YBU’sı ilk olarak Macfarlane (1973) tarafından gerçekleştirilmiştir ve bu çalışmayı takiben yüksek basınç uygulamasının et ve et ürünlerinin

Düzce İli fındık bahçelerinde Mayıs böceği popülasyon yoğunluğu ekonomik zarar eşiği açısından incelendiğinde; İl genelinde incelenen 32 bahçenin 3’ünde,

[Ammâ odaların biri] yani anda hıfzı şart olunan oda [kargir ve diğeri] yani müstevda‘ın hilâf-ı şart olarak hıfz ittiği oda [ahşap olmak] ya biri

Analysis of variance (ANOVA) results of total color change (ΔE*) values of samples applied with acetic acid, ammonia, hydrogen peroxide and sodium silicate at different

Of the mechanical properties; experiments of compression strength parallel to grain were conducted in accordance with TS 2595 (1977), bending strength in accordance with TS

However, the most successful results for all tested properties were determined in the styrene pretreated samples in which hygroscopicity decreased and dimensional stability

Bu romanda önermek istediğim, sizin okur katında çok güzel algıladığınız, tıpkı bu roman yazarının bunu oluştururken bir şeyle­ re şöyle bakması gibi sen bu

ÇalıĢmada betonun malzeme parametreleri; agrega tipi, maksimum agrega çapı, betonun basınç mukavemeti, su/çimento oranı ve malzemenin geometrik parametresi