• Sonuç bulunamadı

(k, s)-Riemann-Liouville fractional integral and applications

N/A
N/A
Protected

Academic year: 2021

Share "(k, s)-Riemann-Liouville fractional integral and applications"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

(k, s)-Riemann-Liouville fractional integral and

applications

Mehmet Zeki SARIKAYA∗†, Zoubir DAHMANI, Mehmet Ey¨up KIRIS§and Farooq AHMAD

Abstract

In this paper, we introduce a new approach on fractional integration, which generalizes the Riemann-Liouville fractional integral. We prove some properties for this new approach. We also establish some new integral inequalities using this new fractional integration.

Keywords: Riemann-Liouville fractional integrals, synchronous function, Cheby-shev inequality, H¨older inequality.

2000 AMS Classification: 26A33;26A51;26D15.

1. Introduction

Fractional calculus and its widely application have recently been paid more and more attentions. For more recent development on fractional calculus, we refer the reader to [7, 12, 15, 16, 19]. There are several known forms of the fractional integrals of which two have been studied extensively for their applications [5, 10, 11, 14, 21]. The first is the Riemann-Liouville fractional integral of α ≥ 0 for a continuous function f on [a, b] which is defined by

af (x) = 1 Γ(α) Z x a (x − t)α−1f (t)dt, α ≥ 0, a < x ≤ b. This integral is motivated by the well known Cauchy formula:

Z x a dt1 Z t1 a dt2... Z tn−1 a f (tn)dtn= 1 Γ(n) Z x a (x − t)n−1f (t)dt, n ∈ N∗. The second is the Hadamard fractional integral introduced by Hadamard [9]. It is given by: af (x) = 1 Γ(α) Z x a ³ logx t ´α−1 f (t)dt t , α > 0, x > a.

Department of Mathematics, Faculty of Science and Arts, D¨uzce University, D¨uzce, Turkey,

Email: sarikayamz@gmail.com

Corresponding Author.

Laboratory of Pure and Applied Mathematics, UMAB, University of Mostaganem, Algeria,

Email: zzdahmani@yahoo.fr

§Department of Mathematics, Faculty of Science and Arts, Afyon Kocatepe University,

Afyon-TURKEY, Email: mkiris@gmail.com, kiris@aku.edu.tr

Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya

(2)

The Hadamard integral is based on the generalization of the integral Z x a dt1 t1 Z t1 a dt2 t2 ... Z tn−1 a f (tn) tn dtn= 1 Γ(α) 1 Γ(α) Z x a ³ logx t ´n−1 f (t)dt t for n ∈ N∗.

In [10], Katugampola gave a new fractional integration which generalizes both the Riemann-Liouville and Hadamard fractional integrals into a single form. This generalization is based on the observation that, for n ∈ N∗,

Z x a ts1dt1 Z t1 a ts2dt2... Z tn−1 a tsnf (tn)dtn= (s + 1) 1−n Γ(α) Z x a ¡ xs+1− ts+1¢n−1tsf (t)dt, which gives the following fractional version

sJα af (x) = (s + 1)1−n Γ(α) Z x a ¡ xs+1− ts+1¢α−1tsf (t)dt, where α and s 6= −1 are real numbers.

Recently, in [6], Diaz and Pariguan have defined new functions called k-gamma and k-beta functions and the Pochhammer k-symbol that is respectively generalization of the classical gamma and beta functions and the classical Pochhammer symbol:

Γk(x) = lim n→∞

n!kn(nk)x k−1

(x)n,k , k > 0,

where (x)n,k is the Pochhammer k-symbol for factorial function. It has been shown that the Mellin transform of the exponential function e−tk

k is the k-gamma function, explicitly given by

Γk(x) = Z 0 tx−1e−tk kdt, x > 0. Clearly, Γ(x) = lim k→1Γk(x), Γk(x) = k x k−1Γ(x k) and Γk(x + k) = xΓk(x). Further-more, k-beta function is defined as follows

Bk(x, y) = 1 k Z 1 0 txk−1(1 − t) y k−1dt,

so that Bk(x, y) = 1kB(xk,yk) and Bk(x, y) = ΓΓk(x)Γk(x+y)k(y).

Later, under the above definitions, in [13], Mubeen and Habibullah have introduced the k-fractional integral of the Riemann-Liouville type as follows:

kJαf (x) = 1

kΓk(α) Z x

0

(x − t)αk−1f (t)dt, α > 0, x > 0.

Note that when k → 1, then it reduces to the classical Riemann-liouville fractional integral.

2. (k, s)-Riemann-Liouville fractional integral

In this section, we present the (k, s) fractional integration which generalizes all of the above Riemann-Liouville fractional integrals as follows:

(3)

2.1. Definition. Let f be a continuous function on on a the finite real interval [a, b]. Then (k, s)-Riemann-Liouville fractional integral of f of order α > 0 is defined by: (2.1) s kJaαf (x) := (s + 1)1−α k kΓk(α) Z x a ¡ xs+1− ts+1¢αk−1tsf (t)dt, x ∈ [a, b], where k > 0, s ∈ R\{−1}.

In the following theorem, we prove that the (k, s) fractional integral is well defined:

2.2. Theorem. Let f ∈ L1[a, b], s ∈ R\{−1} and k > 0. ThenskJaαf (x) exists for

any x ∈ [a, b], α > 0.

Proof. Let ∆ := [a, b] × [a, b] and P : ∆ → R ; P (x, t) =xs+1− ts+1¢αk−1tsi. It clear to see that P = P++ P−, where

P+(x, t) := ½ ¡ xs+1− ts+1¢αk−1ts , a ≤ t ≤ x ≤ b 0 , a ≤ x ≤ t ≤ b and P−(x, t) := ½ ¡ ts+1− xs+1¢αk−1xs , a ≤ t ≤ x ≤ b 0 , a ≤ x ≤ t ≤ b. Since P is measurable on ∆, then we can write

Z b a P (x, t)dt = Z x a P (x, t)dt = Z x a ¡ xs+1− ts+1¢αk−1tsdt = k α ¡ xs+1− as+1¢αk . By using the repeated integral, we obtain

Z b a ÃZ b a P (x, t) |f (x)| dt ! dx = Z b a |f (x)| ÃZ b a P (x, t)dt ! dx = k α Z b a ¡ xs+1− as+1¢αk|f (x)| dx k α ¡ bs+1− as+1¢αk Z b a |f (x)| dx. That is Z b a ÃZ b a P (x, t) |f (x)| dt ! dx = Z b a |f (x)| ÃZ b a P (x, t)dt ! dx k α ¡ bs+1− as+1¢αkkf (x)k L1[a,b]< ∞.

Therefore, the function Q : ∆ → R; Q(x, t) := P (x, t)f (x) is integrable over ∆ by Tonelli’s theorem. Hence, by Fubini’s theorem RabP (x, t)f (x)dx is an integrable function on [a, b], as a function of t ∈ [a, b]. That is, s

kJaαf (x) exists. ¤ Now, we prove the commutativity and the semigroup properties of the (k, s)-Riemann-Liouville fractional integral. We have:

(4)

2.3. Theorem. Let f be continuous on [a, b], k > 0 and s ∈ R\{−1}. Then, s kJaα £ s kJaβf (x) ¤ = skJaα+βf (x) = skJaβ[skJaαf (x)] ,

for all α > 0, β > 0, x ∈ [a, b].

Proof. Thanks to Definition 1 and by Dirichlet’s formula, we have

s kJaα £s kJaβf (x) ¤ =(s + 1)1− α k kΓk(α) Z x a ¡ xs+1− ts+1¢αk−1ts s kJaβf (t)dt = (s+1)1− αk kΓk(α) Rx a ¡ xs+1− ts+1¢αk−1ts · (s+1)1− βk kΓk(β) Rt a ¡ ts+1− τs+1¢βk−1τsf (τ )dτ ¸ dt. = (s+1)1− αk kΓk(α) Rx a ¡ xs+1− ts+1¢αk−1ts · (s+1)1− βk kΓk(β) Rt a ¡ ts+1− τs+1¢βk−1τsf (τ )dτ ¸ dt. That is (2.2) s kJaα £s kJaβf (x) ¤ = (s + 1) 2−α+β k k2Γ k(α)Γk(β) Z x a τsf (τ ) ·Z x τ ¡ xs+1− ts+1¢αk−1ts¡ts+1− τs+1¢βk−1dt ¸ dτ. Using the change of variable y =¡ts+1− τs+1¢/¡xs+1− τs+1¢, we can write

(2.3) Z x τ ¡ xs+1− ts+1¢αk−1¡ts+1− τs+1¢βk−1tsdt = (xs+1−τs+1) α+β k −1 s+1 R1 0(1 − y) α k−1y β k−1dy = (xs+1−τs+1) α+β k −1 s+1 R1 0(1 − y) α k−1yβk−1dy = (x s+1−τs+1)α+βk −1 s+1 kBk(α, β). According to the k-beta function and by (2.2) and (2.3), we obtain

s kJaα £s kJaβf (x) ¤ = (s + 1) 1−α+β k kΓk(α + β) Z x a ¡ xs+1− τs+1¢α+βk −1τsf (τ )dτ = skJaα+βf (x).

This completes the proof of the Theorem 2.3. ¤

2.4. Theorem. Let α, β > 0, k > 0 and s ∈ R\{−1}. Then, we have (2.4) skJaα h ¡ xs+1− as+1¢βk−1 i = Γk(β) (s + 1)αkΓk(α + β) ¡ xs+1− as+1¢α+βk −1, where Γk denotes the k-gamma function.

(5)

Proof. By Definition 1 and using the change of variable y =¡xs+1− ts+1¢/¡xs+1− as+1¢; x ∈ ]a, b], we get s kJaα h ¡ xs+1− as+1¢βk−1 i = (s + 1) 1−α k kΓk(α) Z x a ¡ xs+1− ts+1¢αk−1ts¡ts+1− as+1¢α+βk −1dt = (s + 1) −α k ¡ xs+1− as+1¢α+βk −1 kΓk(α) Z 1 0 (1 − y)αk−1yβk−1dy = ¡ xs+1− as+1¢α+βk −1 (s + 1)α kΓk(α) Bk(α, β).

The case a = x is trivial. The proof of the Theorem 2.4 is complete. ¤ 2.5. Remark. (i :) Taking s = 0, k > 0 in (2.4), we obtain

(2.5) kJaα h (x − a)βk−1 i = Γk(β) Γk(α + β) (x − a)α+βk −1. (ii :) The formula (2.4) for s = 0, k = 1 becomes

a h (x − a)β−1 i = Γ(β) Γ(α + β)(x − a) α+β−1 .

2.6. Corollary. Let k > 0 and s ∈ R\{−1}. Then the formula (2.6) s kJaα(1) = 1 (s + 1)αkΓk(α + k) ¡ xs+1− as+1¢αk−2 is valid for any α > 0.

2.7. Remark. (a :) For s = 0, k > 0 in (2.6), we get (2.7) kJaα(1) = 1 Γk(α + k)(x − a) α k−2. (b :) For s = 0, k = 1 we have a(1) = 1 Γ(α + 1)(x − a) α−2 .

3. Some new (k, s)-Riemann-Liouville fractional integral

inequal-ities

Chebyshev inequalities can be represented in (k, s)-fractional integral forms as follows:

3.1. Theorem. Let f, g be two synchronous on [0, ∞), then for all t > a ≥ 0, α > 0, β > 0, the following inequalities for (k, s)-fractional integrals hold:

(3.1) skJaαf g(t) ≥ 1 a(1) s kJaαf (t) skJaαg(t) (3.2) skJaαf g(t)skJaβ(1)+skJaβf g(t)skJaα(1) ≥ skJaαf (t)skJaβg(t)+skJaαg(t)skJaβf (t).

(6)

Proof. Since the functions f and g are synchronous on [0, ∞), then for all x, y ≥ 0, we have

(f (x) − f (y)) (g (x) − g(y)) ≥ 0. Therefore

(3.3) f (x) g (x) + f (y) g (y) ≥ f (x) g (y) + f (y) g (x) Multiplying both sides of (3.3) by (s+1)1− αk

kΓk(α) ¡

ts+1− xs+1¢αk−1xs, then integrating the resulting inequality with respest to x over (a, t), we obtain

(s + 1)1−α k kΓk(α) Z t a ¡ ts+1− xs+1¢αk−1xsf (x) g (x) dx +(s + 1)1− α k kΓk(α) Z t a ¡ ts+1− xs+1¢αk−1xsf (y) g (y) dx (s + 1) 1−α k kΓk(α) Z t a ¡ ts+1− xs+1¢αk−1xsf (x) g (y) dx +(s + 1)1− α k kΓk(α) Z t a ¡ ts+1− xs+1¢αk−1xsf (y) g (x) dx, i.e. (3.4) s

kJaαf g(t) + f (y) g (y) skJaα(1) ≥ g (y) skJaαf (t) + f (y) skJaαg(t). Multiplying both sides of (3.3) by (s+1)1− αk

kΓk(α) ¡

ts+1− ys+1¢αk−1ys, then integrating the resulting inequality with respest to y over (a, t), we obtain

s kJaαf g(t) (s + 1)1−α k kΓk(α) Z t a ¡ ts+1− ys+1¢αk−1ysdy +skJaα(1) (s + 1)1−α k kΓk(α) Z t a ¡ ts+1− ys+1¢αk−1ysf (y) g (y) dy s kJaαf (t) (s + 1)1−α k kΓk(α) Z t a ¡ ts+1− ys+1¢αk−1ysg(y)dy +skJaαg(t) (s + 1)1−α k kΓk(α) Z t a ¡ ts+1− ys+1¢αk−1ysf (y) dy, that is s kJaαf g(t) ≥ 1 a(1) s kJaαf (t)skJaαg(t) and the first inequality is proved.

(7)

Multiplying both sides of (3.3) by (s+1)1− βk kΓk(α)

¡

ts+1− ys+1¢βk−1ys, then integrat-ing the resultintegrat-ing inequality with respest to y over (a, t), we obtain

s kJaαf g(t) (s + 1)1−βk kΓk(α) Z t a ¡ ts+1− ys+1¢βk−1ysdy +s kJaα(1) (s + 1)1−β k kΓk(α) Z t a ¡ ts+1− ys+1¢βk−1ysf (y) g (y) dy s kJaαf (t) (s + 1)1−β k kΓk(α) Z t a ¡ ts+1− ys+1¢βk−1ysg(y)dy +s kJaαg(t) (s + 1)1−β k kΓk(α) Z t a ¡ ts+1− ys+1¢βk−1ysf (y) dy, that is s kJaαf g(t)skJaβ(1)+skJaβf g(t)skJaα(1) ≥ skJaαf (t)skJaβg(t)+skJaαg(t)skJaβf (t) and the second inequality is proved. The proof is completed. ¤ 3.2. Theorem. Let f, g be two synchronous on [0, ∞), h ≥ 0, then for all t > a ≥ 0, α > 0, β > 0, the following inequalities for (k, s)-fractional integrals hold:

1 (s + 1)βkΓk(β + k) ¡ ts+1− as+1¢βk−2 s kJaαf gh(t) + 1 (s + 1)αkΓk(α + k) ¡ ts+1− as+1¢αk−2 s kJaβf gh(t) s kJaαf h(t)skJaβg(t) + skJaαgh(t) skJaβf (t) − skJaαh(t)skJaβf g(t) − skJaαf g(t)skJaβh(t) +skJaαf (t)skJaβgh(t) + skJaαg(t)skJaβf h(t).

Proof. Since the functions f and g are synchronous on [0, ∞) and h ≥ 0, then for all x, y ≥ 0, we have

(f (x) − f (y)) (g (x) − g(y)) (h (x) + h (y)) ≥ 0. By opening the above, we get

f (x) g (x) h (x) + f (y) g (y) h (y) (3.5)

≥ f (x) g (y) h (x) + f (y) g (x) h (x) − f (y) g (y) h (x) −f (x) g (x) h (y) + f (x) g (y) h (y) + f (y) g (x) h (y) .

(8)

Multiplying both sides of (3.5) by (s+1)1− αk kΓk(α)

¡

ts+1− xs+1¢αk−1xs, then integrating the resulting inequality with respest to x over (a, t), we obtain

(s + 1)1−α k kΓk(α) Z t a ¡ ts+1− xs+1¢αk−1xsf (x) g (x) h (x) dx +f (y) g (y) h (y)(s + 1)1−

α k kΓk(α) Z t a ¡ ts+1− xs+1¢αk−1xsdx ≥ g (y)(s + 1) 1−α k kΓk(α) Z t a ¡ ts+1− xs+1¢αk−1xsf (x) h (x) dx +f (y)(s + 1)1− α k kΓk(α) Z t a ¡ ts+1− xs+1¢αk−1xsg (x) h (x) dx −f (y) g (y)(s + 1) 1−α k kΓk(α) Z t a ¡ ts+1− xs+1¢αk−1xsh (x) dx −h (y)(s + 1)1− α k kΓk(α) Z t a ¡ ts+1− xs+1¢αk−1xsf (x) g (x) dx +g (y) h (y)(s + 1) 1−α k kΓk(α) Z t a ¡ ts+1− xs+1¢αk−1xsf (x) dx +f (y) h (y)(s + 1)1− α k kΓk(α) Z t a ¡ ts+1− xs+1¢αk−1xsg (x) dx. i.e, s

kJaαf gh(t) + f (y) g (y) h(y) skJaα(1) (3.6)

≥ g (y) skJaαf h(t) + f (y) skJaαgh(t) − f (y) g (y) skJaαh(t) − h(y)skJaαf g(t) +g (y) h (y) s

(9)

Multiplying both sides of (3.6) by (s+1)1− βk kΓk(β)

¡

ts+1− ys+1¢βk−1ys, then integrating the resulting inequality with respest to y over (a, t), we obtain

s kJaαf gh(t) (s + 1)1−βk kΓk(β) Z t a ¡ ts+1− ys+1¢βk−1ysdy +s kJaα(1) (s + 1)1−βk kΓk(β) Z t a ¡

ts+1− ys+1¢βk−1ysf (y) g (y) h(y)dy

s kJaαf h(t) (s + 1)1−βk kΓk(β) Z t a ¡ ts+1− ys+1¢βk−1ysg (y) dy +s kJaαgh(t) (s + 1)1−βk kΓk(β) Z t a ¡ ts+1− ys+1¢βk−1ysf (y) dy −s kJaαh(t) (s + 1)1−βk kΓk(β) Z t a ¡ ts+1− ys+1¢βk−1ysf (y) g (y) dy −s kJaαf g(t) (s + 1)1−β k kΓk(β) Z t a ¡ ts+1− ys+1¢βk−1ysh(y)dy +s kJaαf (t) (s + 1)1−β k kΓk(β) Z t a ¡ ts+1− ys+1¢βk−1ysg (y) h (y) dy +s kJaαg(t) (s + 1)1−β k kΓk(β) Z t a ¡

ts+1− ys+1¢βk−1ysf (y) h (y) dy, that is s kJaαf gh(t)skJaβ(1) +skJaα(1)skJaβf gh(t) ≥ skJaαf h(t)skJaβg(t) + skJaαgh(t)skJaβf (t) −s kJaαh(t)skJaβf g(t) − skJaαf g(t)skJaβh(t) +skJaαf (t)skJaβgh(t) + skJaαg(t)skJaβf h(t)

which this completes the proof. ¤

3.3. Corollary. Let f, g be two synchronous on [0, ∞), h ≥ 0, then for all t > a ≥ 0, α > 0, the following inequalities for (k, s)-fractional integrals hold:

1 (s + 1)αkΓk(α + k) ¡ ts+1− as+1¢αk−2 s kJaαf gh(t) skJaαf h(t)skJaαg(t) + skJaαgh(t)skJaαf (t) − skJaαh(t)skJaαf g(t). 3.4. Theorem. Let f, g and h be three monotonic functions defined on [0, ∞) satisfying the following

(10)

for all x, y ∈ [a, t] , then for all t > a ≥ 0, α > 0, β > 0, the following inequalities for (k, s)-fractional integrals hold:

1 (s + 1)βkΓk(β + k) ¡ ts+1− as+1¢βk−2 s kJaαf gh(t) 1 (s + 1)αkΓk(α + k) ¡ ts+1− as+1¢αk−2 s kJaβf gh(t) s kJaαf h(t)skJaβg(t) + skJaαgh(t) skJaβf (t) − skJaαh(t)skJaβf g(t) + skJaαf g(t)skJaβh(t) −s kJaαf (t)skJaβgh(t) − skJaαg(t)skJaβf h(t).

Proof. The proof is similar to that given in Theorem 3.2. ¤ 3.5. Theorem. Let f and g be two functions on [0, ∞), then for all t > a ≥ 0, α > 0, β > 0, the following inequalities for (k, s)-fractional integrals hold:

1 (s + 1)βkΓk(β + k) ¡ ts+1− as+1¢βk−2 s kJaαf2(t) (3.7) + 1 (s + 1)α kΓk(α + k) ¡ ts+1− as+1¢αk−2 s kJaβg2(t) ≥ 2s kJaαf (t)skJaβg(t) (3.8) s kJaαf2(t)skJaβg2(t) + skJaβf2(t)skJaαg2(t) ≥ 2 ksJaαf g(t)skJaβf g(t). Proof. Since, (f (x) − g(y))2≥ 0 then we have (3.9) f2(x) + g2(y) ≥ 2f (x)g(y).

Multiplying both sides of (3.9) by(s+1)1− αk kΓk(α) ¡ ts+1− xs+1¢αk−1xsand(s+1)1− βk kΓk(β) ¡ ts+1− ys+1¢βk−1ys, then integrating the resulting inequality with respest to x and y over (a, t)

respec-tively, we obtain (3.7). On the other hand, since

(f (x)g(y) − f (y)g(x))2≥ 0

then under procedures similar to the above we obtain (3.8). ¤ 3.6. Corollary. Let f and g be two functions on [0, ∞), then for all t > a ≥ 0, α > 0, the following inequalities for (k, s)-fractional integrals hold:

1 (s + 1)αkΓk(α + k) ¡ ts+1− as+1¢αk−2 £s kJaαf2(t) + skJaβg2(t) ¤ ≥ 2skJaαf (t)skJaαg(t) s kJaαf2(t)skJaαg2(t) ≥ [skJaαf g(t)]2.

(11)

3.7. Theorem. Let f : R → R and defined by ¯ f (x) = Z x a tsf (t)dt, x > a ≥ 0, s ∈ R\{−1} then for α ≥ k > 0 s kJaαf (x) = 1 k s kJaα−kf (x)¯

Proof. By definition of the (k, s)-fractional integral and by using Dirichlet’s for-mula, we have s kJaαf (x) =¯ (s + 1)1−α k kΓk(α) Z x a ¡ xs+1− ts+1¢αk−1ts Z t a usf (u)dudt = (s + 1) 1−α k kΓk(α) Z x a usf (u) Z x u ¡ xs+1− ts+1¢αk−1tsdtdu = (s + 1)− α k Γk(α + k) Z x a ¡ xs+1− us+1¢αkusf (u)du = k s kJaα+kf (x).

This completes the proof of Theorem 3.7. ¤

We give the generalized Cauchy-Buniakovsky-Schwarz inequality as follows: 3.8. Lemma. Let f, g, h : [a, b] → (0, ∞) be three functions 0 ≤ a < b. Then (3.10) ÃZ b a gm(t)hx(t)f (t)dt ! ÃZ b a gn(t)hy(t)f (t)dt ! ÃZ b a gm+n2 (t)h x+y 2 (t)f (t)dt !2 . where m, n, x, y arbitrary real numbers.

Proof. Z b a  pgm(t)hx(t)f (t) sZ b a gn(t)hy(t)f (t)dt −pgn(t)hy(t)f (t) sZ b a gm(t)hx(t)f (t)dt   2 dt ≥ 0 Z b a " gm(t)hx(t)f (t) Z b a gn(t)hy(t)f (t)dt + gn(t)hy(t)f (t) Z b a gm(t)hx(t)f (t)dt −2 gm+n2 (t)hx+y2 (t)f (t) sZ b a gm(t)hx(t)f (t)dt sZ b a gn(t)hy(t)f (t)dt dt ≥ 0

(12)

2 ÃZ b a gm(t)hx(t)f (t)dt ! ÃZ b a gn(t)hy(t)f (t)dt ! ≥ 2 ÃZ b a gm+n2 (t)h x+y 2 (t)f (t)dt ! sZ b a gm(t)hx(t)f (t)dt sZ b a gn(t)hy(t)f (t)dt

which this give the requair inequality. ¤

3.9. Theorem. Let f ∈ L1[a, b]. Then

(3.11) ³ s kJ m(α k−1)+1 a fr(x) ´ ³ s kJ n(α k−1)+1 a fp(x) ´ ³ s kJ m+n 2 (αk−1)+1 a f r+p 2 (x) ´2 for k, m, n, r, p > 0 and α > 1. Proof. By taking g(t) =¡xs+1− ts+1¢αk−1, f (t) = ts(s+1)1− αk kΓk(α) and h(t) = f (t) in (3.10), we obtain µ (s + 1)1−α k kΓk(α) Z x a ¡ xs+1− ts+1¢m(αk−1)tsfr(t)dt ¶ µ (s + 1)1−α k kΓk(α) Z x a ¡ xs+1− ts+1¢n(αk−1)tsfp(t)dt µ (s + 1)1−α k kΓk(α) Z x a ¡ xs+1− ts+1¢m+n2 (αk−1)tsfr+p2 (t)dt ¶2

which can be written as (3.11). ¤

3.10. Remark. For k = 1 in (3.11), we get the following inequalities ³ Jam(α−1)+1fr(x) ´ ³ kJan(α−1)+1fs(x) ´ ³ kJ m+n 2 (α−1)+1 a f r+s 2 (x) ´2 .

References

[1] Belarbi, S. and Dahmani, Z., On some new fractional integral inequalities, J. Ineq. Pure and Appl. Math., 10(3) (2009), Art. 86.

[2] Dahmani, Z., New inequalities in fractional integrals, International Journal of Nonlinear Scinece, 9(4) (2010), 493-497.

[3] Dahmani, Z., On Minkowski and Hermite-Hadamard integral inequalities via fractional in-tegration, Ann. Funct. Anal. 1(1) (2010), 51-58.

[4] Dahmani, Z., Tabharit, L. and Taf, S., Some fractional integral inequalities, Nonl. Sci. Lett. A, 1(2) (2010), 155-160.

[5] Dahmani, Z., Tabharit, L. and Taf, S., New generalizations of Gruss inequality usin Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3) (2010), 93-99. [6] Diaz, R. and Pariguan, E., On hypergeometric functions and Pochhammer k−symbol,

Di-vulg.Math, 15.(2007),179-192.

[7] Gorenflo, R. and Mainardi, F., Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien (1997), 223-276.

[8] Kilbas, A. A.,Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Ams-terdam, 2006.

[9] Hadamard, J., Essai sur l’´etude des fonctions donn´ees par leur d´eveloppement de Taylor,Jour.PureandAppl.Math4(8),1892,101-186.

[10] Katugompola, U.N., New Approach Generalized Fractional Integral, Applied Math and Comp. 218(2011),860-865.

(13)

[11] Latif, M. A. and Hussain, S., New inequalities of Ostrowski type for co-ordineted convex functions via fractional integrals, Journal of Fractional Calculus and Applications,Vol. 2., 2012, No. 9, pp. 1-15.

[12] Miller, S. and Ross, B., An introduction to the Fractional Calculus and Fractional Differ-ential Equations, John Wiley & Sons, USA, 1993, p.2.

[13] Mubeen, S. and Habibullah, G.M., k−fractional integrals and application, Int. J. Contemp. Math. Sciences, 7(2), 2012, 89-94.

[14] Romero, L. G., Luque, L. L., Dorrego, G. A. and Cerutti, R. A., On the k−Riemann-Liouville Fractional Derivative, Int. J. Contemp. Math. Sciences, 8(1), 2013, 41-51. [15] Sarikaya, M.Z. and Ogunmez, H., On new inequalities via Riemann-Liouville fractional

integration, Abstract and Applied Analysis, Volume 2012, Article ID 428983, 10 pages, doi:10.1155/2012/428983.

[16] Sarikaya, M. Z., Set, E., Yaldiz, H. and Basak, N., Hermite -Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Mod-elling, 57 (2013) 2403–2407.

[17] Sarikaya, M. Z., On the Hermite-Hadamard-type inequalities for co-ordinated convex func-tion via fracfunc-tional integrals, Integral Transforms and Special Funcfunc-tions, Volume 25, Issue 2, pp:134-147, 2014.

[18] Sarikaya, M. Z., Ostrowski type inequalities involving the right Caputo fractional derivatives belong to Lp, Facta Universitatis, Series Mathematics and Informatics , Vol. 27 No 2 (2012),

191-197.

[19] Sarikaya, M. Z. and Yaldiz, H., On weighted Montogomery identities for Riemann-Liouville fractional integrals, Konuralp Journal of Mathematics, Volume 1 No. 1 pp. 48-53, 2013. [20] Sarikaya, M. Z., and Karaca, A., On the k-Riemann-Liouville fractional integral and

appli-cations, International Journal of Statistics and Mathematics, Vol. 1(1), pp. 022-032, August, 2014.

[21] Tunc, M., On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat 27:4 (2013), 559–565

[22] Samko, S. G., Kilbas, A. A and Marichev, O. I., Fractional Integrals and Derivatives Theory and Application, Gordan and Breach Science, New York, 1993.

Referanslar

Benzer Belgeler

Bulgular gözlemleri de içerecek şekilde görüş- melerdeki alıntılardan örnekler verile- rek yorumlanmış ve öne çıkan beş ana tema başlığı (boşanmalar için

Düzce İli fındık bahçelerinde Mayıs böceği popülasyon yoğunluğu ekonomik zarar eşiği açısından incelendiğinde; İl genelinde incelenen 32 bahçenin 3’ünde,

İşletmenin yabancı sermaye ile ortaklık yapıp yapmama durumuna göre örgüt- çevre etkileşimi arasında anlamlı bir fark olup olmadığını belirlemek amacıyla

türlerinin bulunduğu su örneklerindeki klor miktarlarına bakıldığında sadece iki örneğin klor miktarı 0.3ppm’den yüksek (0.4 ppm) çıkmıştır. Klor miktarı

[Ammâ odaların biri] yani anda hıfzı şart olunan oda [kargir ve diğeri] yani müstevda‘ın hilâf-ı şart olarak hıfz ittiği oda [ahşap olmak] ya biri

Comparison of the con- trol group with the GTx-applied 48-hour, 25 mg/kg RH-applied 48-hour, 50 mg/kg RH-applied 24- and 48-hour, 75 mg/kg RH-applied 24- and 48-hour groups has shown

The aim of this study is to determine the influence of short duration rotational grazing in a pasture area grazed in an uncontrolled and heavy way for a long time on some

After the use of sugammadex as a reversal agent and rocu- ronium as a neuromuscular blocking agent, the time to reach TOF 0.7, 0.8 and 0.9 in relation to intubation time and the