• Sonuç bulunamadı

S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting

N/A
N/A
Protected

Academic year: 2021

Share "S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Colloids

and

Surfaces

B:

Biointerfaces

j ou rn a l h om epa ge :w w w . e l s e v i e r . c o m / l o c a t e / c o l s u r f b

S-layer

fusion

protein

as

a

tool

functionalizing

emulsomes

and

CurcuEmulsomes

for

antibody

binding

and

targeting

Mehmet

H.

Ucisik

a,b,∗

,

Seta

Küpcü

a

,

Andreas

Breitwieser

c

,

Nicola

Gelbmann

d

,

Bernhard

Schuster

a

,

Uwe

B.

Sleytr

c

aInstituteforSyntheticBioarchitectures,DepartmentofNanobiotechnology,UniversityofNaturalResourcesandLifeSciences(BOKU)Vienna,

Muthgasse11,1190Vienna,Austria

bDepartmentofBiomedicalEngineering,SchoolofEngineeringandNaturalSciences,IstanbulMedipolUniversity,EkincilerCad.No.19KavacıkKavs¸a˘gı,

Beykoz34810,Istanbul,Turkey

cInstituteforBiophysics,DepartmentofNanobiotechnology,UniversityofNaturalResourcesandLifeSciences(BOKU)Vienna,Muthgasse11,

1190Vienna,Austria

dOctapharmaGmbH,OberlaaerStraße235,1100Vienna,Austria

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received1December2014

Receivedinrevisedform28January2015

Accepted29January2015

Availableonline17February2015

Keywords: Emulsomes Curcumin

S-layer(fusion)proteins

ImmunoglobulinG(IgG)Targeting

Activedrugdelivery

a

b

s

t

r

a

c

t

Selectivetargetingoftumorcellsbynanoparticle-baseddrugdeliverysystemsishighlydesirablebecause itmaximizesthedrugconcentrationatthedesiredtargetwhilesimultaneouslyprotectingthe surround-inghealthytissues.Here,weshowadesignforsmartnanocarriersbasedonabiomimeticapproach thatutilizesthebuildingprincipleofvirusenvelopestructures.EmulsomesandCurcuEmulsomes com-prisingatripalmitinsolidcoresurroundedbyphospholipidlayersaremodifiedbyS-layerproteinsthat self-assembleintoatwo-dimensionalarraytoformasurfacelayer.Onesignificantadvantageofthis nanoformulationisthatitincreasesthesolubilityofthelipophilicanti-canceragentcurcumininthe Cur-cuEmulsomesbyafactorof2700.InordertomaketheemulsomesspecificforIgG,theS-layerproteinis fusedwithtwoproteinGdomains.ThisS-layerfusionproteinpreservesitsrecrystallization characteris-tics,forminganorderedsurfacelayer(squarelatticewith13nmunit-by-unitdistance).TheGGdomains arepresentedinapredictedorientationandexhibitaselectivebindingaffinityforIgG.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Manystudiesprovideevidencethat theuseof nanoparticle-mediatedtargeteddrugdeliverysystems (DDS)minimizesdrug degradationandinactivationuponadministrationwhileincreasing drugbioavailabilityandthefractionofdrugdeliveredinthe patho-logical area [1–3]. Active targeting implies tailor-made surface modificationsofnanoparticleswithligandsthatbindtospecific receptorsexpressedontargetcells.

Innature,virusesareextremelyeffectiveattargetingcellsand deliveringgenomes intotheirhost.Oneremarkablepropertyof virusesisaregularandwell-definedproteinaceousstructurecalled acapsid[4].Thisfeaturecanalsobeobservedonmanybacteriaand mostarchaea,whichcarryacrystallinecellsurface(S-)layerasthe

∗ Correspondingauthorat:DepartmentofBiomedicalEngineering,Schoolof

Engi-neeringandNaturalSciences,IstanbulMedipolUniversity,EkincilerCad.No.19

KavacıkKavs¸a˘gı,Beykoz34810,Istanbul,Turkey.Tel.:+902166815154;

fax:+902125317555.

E-mailaddress:m.h.ucisik@gmail.com(M.H.Ucisik).

outermostenvelopestructure[5,6].Composedofasingleprotein orglycoproteinspecies[7],S-layerlatticescanbeemployedtoact asananti-foulinglayer[8]andtodecreasethecytotoxicityofblank nanocarrierssuchaspolymericcapsules[9]andemulsomes[10], therebyimprovingthebioavailabilityofencloseddrugs.

Membersoftheimmunoglobulinsuperfamilyareamongthe mostcommonselectedtargetsfordirectingdrugstocellsof inter-est,particularly inflammatory and cancercells [11]. Bindingto immunoglobulinG(IgG)isknowntobeimportantforthe opsoniza-tionprocess,whichcanfurtheractivatetheclassicalcomponent pathwaypresentingparticulatesorcolloidalcarrierstophagocytes [12].IthasalsobeenreportedthatIgGsecretedbyhumancancers promotesgrowthandsurvivaloftumorcells[13].Hence,IgGmay serveasapotentialtherapeutictargetincancertherapy.

Lipid-based nanocarrier systems are attractive because of theirbiocompatibility,biodegradabilityandtheirabilitytoentrap hydrophilicandhydrophobicdrugs[14].Emulsomesareaform of lipid-based nanocarrier with an internal solid fat core sur-roundedbyaphospholipidmultilayer[15–17].Theyofferbothhigh loadingcapacityforhydrophobicsubstances [18]andcontrolled drugrelease [16,19].Moreover,thephospholipidsurfacecanbe http://dx.doi.org/10.1016/j.colsurfb.2015.01.055

(2)

adaptedtovarioussurfacemodificationsalreadyestablishedfor liposomestocontrolthetargetingorenhancecirculationresidence time[20–22].Thesurfaceofemulsomescanalsobecoatedand modifiedwithS-layerproteinstobestowthenanocarrierswiththe characteristicfeaturesoftheS-layerlattice[10].

Mimickingthebuildingprincipleofvirusenvelopes,thisstudy introducesanemulsome-basedtargetedDDSfortheanti-cancer agent curcumin.The medical useof this natural polyphenol is currentlylimiteddue toitsextremely lowwater solubility.The solubilityofcurcumin,however,canbeenhancedvia encapsula-tioninemulsomes,whichproducesnanocarriersthathavebeen namedCurcuEmulsomes[19].CurcuEmulsomesnotonlyfacilitate thedeliveryofcurcumintothehumanlivercarcinomacellHepG2 invitro,butalsoprolongthebiologicaleffectbytriggering con-trolleddrugreleaseinsidethecell[19].

ThepresentstudyinvestigateshowS-layerfusiontechnology canbeappliedtoemulsomes andCurcuEmulsomes topromote targeteddeliverytoIgG.Forthispurpose,thefusionprotein rSbpA-GGwasdesignedwithtwoproteinGdomainsfusedtotheS-layer proteinSbpAfromLysinibacillussphaericusCCM2177.Thepresent studyinvolvesthegeneticdesignandexpressionofrSbpA-GGand exploresitsself-assemblyandIgG-bindingcharacteristicson emul-somes.Thisstudywillcontributetotheutilizationofemulsomes fordeliveryoflipophilictherapeuticsinnanomedicine.

2. Materialsandmethods 2.1. Materials

Curcumin, glyceryl tripalmitate (tripalmitin, purity ≥99%), 1,2-dipalmitoyl-rac-glycero-3-phosphocholine(DPPC,∼99%), glu-taraldehydesolution(50%),humanIgG-ReagentGrade,anti-human IgG (␥-chain specific)-gold antibody, Sudan III and FITC were purchasedfromSigma–AldrichGmbH,Germany.Hexadecylamine (HDA, ≥99%),uranyl acetate dehydrate (≥98%) and chloroform (≥99.8%) were obtained from Fluka Chemika, Switzerland and Germany, respectively. Cholesterol (>%98) was purchased from Avanti Polar Lipids, USA.Dimethyl sulfoxide (DMSO) was pur-chased from Riedel-de Haën (Sigma–Aldrich, Germany) and isopropyl-␤-d-thiogalactoside(IPTG)waspurchased fromGerbu (Gaiberg,Germany).Allchemicalswereusedasreceivedwithout furtherpurification.

2.2. CloningoftherecombinantplasmidpET28a/rsbpA31-1068/gg AllPCRswere performedas described inJarosch et al. [23]. ThetwoGGdomainswereamplifiedbyPCRfromplasmidSPG1 (Genart,Regensburg,Germany)containingtwocopiesofthegene sequenceencodingtheGdomainwithaglycine/glycinelinkerin betweenaswellastherestrictionsitesBamHI(upstream)andXhoI (downstream).The DNAsequenceencoding thetwoGdomains wasligatedintothetwocorrespondingrestrictionsitesofplasmid pET28acontainingthegenersbpA31-1068encodingS-layerprotein rSbpA31-1068.DigestionofDNAwithrestrictionendonucleases, sep-arationofDNAfragmentsbyagarosegelelectrophoresis,ligation ofDNAfragmentsandtransformationprocedureswereperformed aspreviouslydescribed[24].

2.3. HeterologousexpressionofthefusionproteinrSbpA-GG The construct pET28a–rsbpA31-1068/gg was cloned in Escherichia coli TG1 and heterologously expressed in E. coli BL21(DE3)Staraspreviouslydescribed[24].Theplasmidstability testwasperformedasdescribedpreviously[23].Expressionofthe chimericgene encodingrSbpA-GGwasinducedbytheaddition ofIPTGtoafinalconcentrationof1mMatanattenuance(D600)

of 0.6–0.8.Expressionwascarried outat 37◦C for 4h. Samples (2mL)weretakenbeforeandat1,2and4hafterinductionofgene expression and runonSDS-PAGE. SDS-PAGE wasperformedas describedpreviously[23].

2.4. IsolationofS-layerfusionproteinSbpA-GG

After 4h of expression, isolation of rSbpA-GG from E. coli BL21(DE3)StarcellswasperformedusingBacterialProtein Extrac-tion Reagent (B-PER)following a modified protocol.The B-PER waspurchased from Pierce(Rockford,IL, USA).Biomass pellets (2g)wereinitiallyresuspendedin20mLofB-PER.After incuba-tionfor10minatroomtemperaturethesolutionwascentrifuged (20,000×g,15min,4◦C).Subsequently,thepelletwasresuspended in20mLofB-PERcontainingand4mgoflysozyme(Sigma,Munich, Germany)andincubatedfor5minatroomtemperature.20␮Lof 1mgmL−1 DNAseIsolution(Roche,Basel,Switzerland)and1mL of a 0.1M MgSO4·7H2O solution were added and the suspen-sionwasincubatedfor30minatroomtemperature.Subsequently, 100mLofB-PER(diluted1:10indistilledwater)wasaddedand thesolutionwascentrifuged(20,000×g,20min,4◦C).Aftertwo washingstepswith30mLofdilutedB-PERandonewashingstep with30mLof50mMTris/HClbuffer(pH7.2)with1mM dithio-threitol(DTT),thesuspensionwascentrifuged(20,000×g,20min, 4◦C)andtheobtainedpelletwasresuspended in3.5mLof 4M guanidinehydrochloride(GHCl)dissolvedin50mMTris/HClbuffer (pH7.2)andstirredfor30minatroomtemperature.The suspen-sionwasdilutedtoafinalGHClconcentrationof2M.Toremove membranefragments,thesuspensionwascentrifuged(36,000×g, 30min,4◦C),thesupernatantwasfilteredthroughafilter mem-branewithporesizeof0.45␮m(MinisartRC25)andthefiltrate was subjected to GPC (gel-permeation chromatography) using a Superdex200column (AmershamBiosciences,Little Chalfont, Bucks, UK)equilibratedin degassed 50mM Tris/HCl buffer(pH 7.2)with150mM NaCl,for separation.Fractions containingthe fusion protein rSbpA-GG were pooled, dialysed against Milli-Q waterfor18hat4◦C,lyophilizedandstoredat−20◦C.Fordetection oftheGGportion,thefusionproteinrSbpA-GGwassubjectedto SDS-PAGE.

2.5. PreparationofrSbpA-GGELISAplates

LyophilizedrSbpA-GGwasdissolvedin5MGHCl/Trisbuffer(pH 7.2)anddialysedagainst3LMilli-QwateratRTfor3h(BioMol: Dialysismembranetype8;cut-off12–16kDa).Waterwaschanged three times:after 30min,60minand thenafter 90min. Subse-quentlythesolutionwascentrifugedat14,000rpmfor5minand theproteinconcentrationofthesupernatantwasdeterminedusing UV280nmmeasurementsandadjustedto1mgmL−1.The solu-tionwasdilutedwithcrystallizationbuffer(0.5mMTris,10mM CaCl2,pH9.5)toafinalconcentrationof100␮gmL−1protein.From thissolution110␮LwastransferredtoeachwellofanELISAplate (Microlon 200;GREINER, mediumcapacity). Crystallizationwas performedat4◦Covernight.UnboundS-layerproteinwaswashed away withcrystallizationbuffer. Subsequently, theS-layer pro-teinwasstabilizedandblockedbyanincubationstepwith250␮L StabilGuard(SurModics;1:1PBS/TritonX100)perwellatRTfor 4h. Theliquidwasremovedand theplates weredriedat37◦C overnight.

2.6. EstimationofIgGbindingaffinityofrSbpA-GGbyELISA TherSbpA-GGplateswereincubatedwithperoxidase-labeled anti-humanIgGdevelopedingoat(=anti-humanIgGPOX,Sigma A0293Fabspecificdevelopedingoat;1:5000inblockingbuffer)at RTfor30min.After3washingstepswith250␮LPBS/TritonX-100,

(3)

boundIgGPOXwasdetectedusing3,3,5,5-tetramethylbenzidine dihydrochloride(TMB;Sigma,T-3405)assubstrate;200␮LTMB solution was added per well and the color development was stoppedbyadditionof50␮L2MH2SO4.Subsequently,theyellow colorofthesampleswasreadat450nm(referencefilter630nm) withanELISAReader.Asacontrol,anidenticalassaywasperformed withrSbpA andtheS-layerfusion proteinrSbpA-ZZcomprising proteinA[24].

2.7. PreparationofemulsomesandCurcuEmulsomes

Emulsomeswerepreparedasdescribedpreviously[10]. Cur-cuEmulsomeswithtwodifferentcurcuminconcentrationswere preparedasdescribedinUcisiketal.[19].Accordingly,one prepara-tionhaspreparedasbeforewiththecurcumin–tripalmitinweight ratioof2:5[19],whereastheotherwithaweightratioof1:10. TheDPPC,cholesterolandHDAmolarratiowasasbefore10:5:4. Thesuspensionwasfilteredat66◦Cthroughpolycarbonatefilters (threepassesthrough800nm porefilters,followed by2passes through400nm porefilters;filtersfromNucleoporeTrack Etch Membrane,Whatman,UK).Thefiltratewasplacedimmediatelyon icefora10minperiod,followedbycentrifugationat13,200rpm (16,100×g)for10mintospindownunincorporatedcurcumin.The CurcuEmulsomesuspension,i.e.,thesupernatant,wasstored at 4◦C.

2.8. RecrystallizationofwtSbpAandrSbpA-GGonemulsomes 1mglyophilizedS-layerproteinwasdissolvedin1mL5MGHCl 50mMTris/HClbuffer(pH7.2).Thesolutionsweredialysedagainst distilledwateratleast24hat20◦C.Forrecrystallizationofthe S-layerproteinonemulsomes,theS-layerproteinsolutionwasmixed withtheemulsomesuspensionanddilutedwithMilli-Qwaterto achievefinalproteinandDPPCconcentrationsof300␮gmL−1and 150␮gmL−1,respectively.RecrystallizationoftheS-layerprotein wascarriedoutfor3hatroomtemperatureinatesttuberotator (REAX2,Heidolph,Germany)witharotationspeedof32–36rpm. Excessnon-assembledS-layerproteinwasremovedby centrifu-gationat14,100×gforlessthan1min.Thepelletcontainingthe S-layercoatedemulsomeswasresuspendedinMilli-Qwaterand storedat4◦Cuntilfurtheranalysis.

2.9. AffinityassaywithhumanIgG(HIgG)andanti-humanIgG goldconjugates(˛-HIgG-Au)

ReagentgradeHIgGwasdissolvedin10mMPBS(pH7.4)with afinalantibodyconcentrationof500␮gmL−1.Emulsomescoated withrSbpA-GGwere mixedwith this solutionin a 1:2protein massratio,andthevolumewasadjustedwith10mMPBS(pH7.4) toachieveafinalemulsomeconcentrationof150␮gDPPCmL−1 (i.e.,final HIgGconcentration=300␮gmL−1).Theobtained mix-turewasincubatedfor 2–2.5hatroomtemperaturein thetest tuberotatorwitharotationspeedof32–36rpm.Thesamplewas thencentrifugedfor2min.Thesupernatantwasdiscarded,the pel-letwasresuspendedin10mMPBS(pH7.4)andthecentrifugation wasrepeated.Againthesupernatantwasdiscardedandthepellet wasdissolvedin50␮L10mMPBS(pH7.4).Theobtainedproduct, correspondingtoHIgG-immobilizedrSbpA-GGcoatedemulsomes, wasincubatedinfirst1:10andthen1:5diluted␥-chainspecific ␣-HIgG-Au(G0786,Sigma–Aldrich,Germany)for10and15min, respectively,at20◦CintheEppendorfthermomixer(Eppendorf, Austria).Accordingly,10␮LofrSbpA-GG+HIgGcoatedemulsome, correspondingtonearly5␮gofDPPC,wasmixedwith10␮Lof 1:5diluted␣-HIgG-Au conjugateandincubatedfor 10min.The solutionwascentrifuged90sat14,100×g,andthecolorless super-natantwasdiscarded.Theincubationwasrepeatedthistimeby

directlyapplying10␮Lof1:5diluted␣-HIgG-Auconjugateontothe pellet.Themixturewasincubated15minat20◦CinanEppendorf thermomixer,afterwhichitwascentrifugedandthesupernatant wasremoved.Thefaintredcolorofthesupernatantindicatedthat freegoldconjugateswerepresentinthebroth,implyingthat satu-rationshouldbereached.PelletsweredissolvedwithMilli-Qwater or10mMPBSsolution(pH7.4).Thefinalproductwasanalyzedby TEMafternegativestainingasdescribedinUcisiketal.[10]. 2.10. TEM

Theshape,theintegrity oftheemulsomes, andthelatticeof recrystallizedS-layerproteinswereanalyzedwithaFEITecnaiG2 20TransmissionElectronMicroscope(TEM)at80kVequippedwith FEIEagle4kcamera(FEIEurope,TheNetherlands)afteranegative stainpreparation.

2.11. Quantificationofcurcuminbyabsorbancemeasurements Curcuminconcentrationinsampleswasestimatedasdescribed previously[19].Sampleabsorbancewasmeasuredat430nmusing anInfiniteF200platereader(TECAN,Austria).

2.12. Dynamiclightscatteringandzetapotential

Emulsomesin1mMKClsolution(pH6.3)toafinalDPPC con-centrationof4␮gmL−1wereanalyzedwithaZetasizer(Zetasizer NanoZS,MalvernInstrumentsLtd.,UK)todeterminetheparticle sizedistribution(dynamiclightscattering;DLS)andzeta poten-tial(PhaseAnalysisLightScattering;M3PALS).Thezetapotential valueswerecalculatedfromtheelectrophoreticmobilityusingthe Smoluchowskimodel[10].Theconductivityofthebuffervariedin therangeof0.16–0.18mScm−1ateachmeasurement.

3. Results

3.1. HeterologousexpressionofthefusionproteinrSbpA-GG Theoptimumexpressionofthefusionproteinwasfoundtobe at4hafterinduction(Fig.1,lane3).SDS-PAGEofsamplescollected duringtheisolationprocedureshowedthatrSbpA-GGhad accumu-latedintheinsolublefractionofthelysedE.coliBL21(DE3)Starhost cells(datanotshown).Followinggel-permeationchromatography, SDS-PAGEanalysisshowedasingleproteinbandwithan appar-entmolecularmassof130kDa(Fig.1,lane4)whichconfirmed thepurityoftheprotein.Membraneproteinsareknowntosize anomalouslyonSDS-PAGEcalibratedwithconventionalstandards [25],explainingthehighrelativemolecularmassvaluein compari-sontotheformulamolecularweightof116kDa.TherSbpA-GGwas expressedandpurifiedwithanoverallyieldof55mgproteinout of2gwetbiomasspellet.

3.2. Self-assemblypropertiesofrSbpA-GG

PurifiedrSbpA-GGwasrecrystallizedonpoly-l-lysine(PLL) pre-coatedcoppergridsandonasiliconwafer.AsshownbyTEMimages ofnegativelystainedpreparations,rSbpA-GGreassembledintoflat sheets,whichclearlyexhibitedthesquare(p4)latticestructureof wildtype(wt)SbpA(seeSupplementarydataFig.1A).The self-assemblycharacteristicsoftherSbpA-GGwerealsoverifiedona planarsiliconwaferviaAFMstudies(SupplementarydataFig.1B). 3.3. DetectionofIgGbindingpropertiesofrSbpA-GG

ELISAplatescoatedwithrSbpA-GGwereincubatedwith peroxi-dase(POX)labeledHIgG(developedingoat).Thecolorchangeafter

(4)

Fig.1.SDS/PAGEpatternofproteinextractofE.coliBL21(DE3)Starcells:(1)before

induction;(2)2hafterinduction;(3)4hafterinduction;and(4)afterpurification.

applicationofPOXsubstrateconfirmedthebinding.Forcontrols, parallelstudieswereperformedwith(i)recombinant(r)S-layer proteinrSbpAlackingIgGbindingdomains,aswellas(ii)previously engineeredrSbpA-ZZproteinscomprisingtwoproteinAdomains fusedtotheSbpA[24].ThegoatIgGboundtoELISAplatescoated withrSbpA-ZZatamuchlowerlevel(Fig.2), whichisin accor-dancewiththeweakaffinityofproteinAforgoatIgGasdescribed inliterature[26,27].PlatescoatedwithrSbpAexhibitedasexpected nosignificantbindingofIgG.Theresultsobtainedclearly demon-stratedthatgoatIgGwasonlyboundtorSbpA-GGcoatedplates, confirmingthespeciesindependentIgGaffinityofproteinG,and alsothefactthatproteinGmoleculesgeneticallyfusedtothe S-layerpreservetheirdistinctiveIgGbindingcharacteristics.

Fig.2. ELISAresultsshowingbindingaffinityofHIgGPOX(developedingoat)

onreassembled(fromlefttoright)rSbpA,rSbpA-ZZandrSbpA-GGmonolayers

obtainedbytheELISA.Developedyellowcolorwasreadat450nmonamicroplate

reader.Thestandarddeviation(SD)isgivenasbarswithinthegraph(n=3).

Table1

AveragevaluesforzetapotentialofemulsomesandCurcuEmulsomesbeforeand

afterbeingcoatedwithrSbpA-GGfusionprotein.

Zetapotentialbefore

rSbpA-GGcoating(mV)a

Zetapotentialafter

rSbpA-GGcoating(mV)

Emulsomeb 32.4±5.9mV −19.5±3.7mV

CurcuEmulsomec 29.8±2.1mV −22.7±3.7mV

aDatawererecordedatthedayofrecrystallization.

bMore than 10 separate samples with average conductivity of

0.158±0.011mScm−1.

c 10separatesampleswithaverageconductivityof0.175±0.003mScm−1.

Stan-darddeviationsgivenbythe±valuescorrespondtotheaveragestandarddeviation

ofallmeasurements,wheren≥3.

3.4. Emulsomes

Emulsomeswerecharacterizedwithrespecttotheir intrastruc-tureandphysicalcharacteristicsasdescribedindetailbyUcisik etal.[10].Followingthesamemethodology,theaveragediameter ofemulsomeswasfoundtobe297±28nmandzetapotentialwas 32.4±5.9mV.Theconfidenceintervalsrepresentthevariationof averagevaluesofdifferentformulations.

3.5. CurcuEmulsomes

Inthepresentstudy,thecurcuminconcentrationinthe sus-pensionwaseither30or110␮gmL−1,withthecurcuminbeing concentratedinside thesolidfatcoreoftheemulsomes. Unless otherwise specified, all results described in this work refer to CurcuEmulsomesuspensionswith30␮gmL−1curcumin.This cur-cuminconcentrationinthesuspensioncorrespondstoa2700-fold increaseoverthe11ngmL−1maximumsolubilityofcurcuminin water[28].Theincorporationofcurcumindidnotinfluenceeither thesizeorthezetapotentialcharacteristicsoftheemulsomes sig-nificantly.CurcuEmulsomesaresphericalinshapewithanaverage diameter of291±48nmand have anaverage zetapotentialof 29.8±2.1mV.Theconfidenceintervalsrepresentthevariationof averagevaluesofdifferentformulations.

3.6. RecrystallizationofrSbpA-GGonemulsomesand CurcuEmulsomes

Uponrecrystallization,rSbpA-GGcoatedtheentiresurfaceof bothemulsomesandCurcuEmulsomes,assemblingintothe char-acteristicsquarelatticesymmetryasevidencedbyTEM(Fig.3).It isimportanttoemphasizethatrSbpA-GG(Fig.3AandB)displays thesamelatticesymmetryaswtSbpA(Fig.3C),i.e.,unit-by-unit distanceof13.1nmandbaseangle=90◦[29].

The recrystallization of the S-layer protein altered the zeta potential of the nanoformulations. Hexadecylamine present in the phospholipidlayer confers a net positive charge (Table 1), which upon coating withrSbpA-GG became negative: the zeta potentialswerefoundtobe−19.5±3.7mVand−22.7±3.7mVfor coatedemulsomesandCurcuEmulsomes,respectively.These val-ueswerecomparabletothezetapotentialofemulsomescoated with wtSbpA, which was −18.7±4.0mV. The presence of two protein G domains seems not to cause any significant change inthezetapotentialvalueofthewildtype protein,whichisin accordancewithapreviousstudyreportingthatproteinG immo-bilizedpolymersomeshaveazetapotentialclosetothisvalue,i.e., −17.0±0.2mV[30].Evidently,rSbpA-GGhasthesame capabil-ityaswtSbpAtorecrystallizeonthesurfaceofemulsomes,and the entrapped curcuminhas nosignificant influence onthe S-layerrecrystallizationprocess.Onemaythereforespeculatethat the ability of the fusion protein rSbpA-GG to modify the sur-face of the emulsomes is independent of any loaded drug in

(5)

Fig.3.TEMimagesof(A)anemulsome;(B)aCurcuEmulsomecompletelycoveredbytheS-layerfusionproteinrSbpA-GG;(C)anemulsomecoatedwithwtSbpA.Barsizes

correspondto100nm.

lowenoughconcentrations.Increasingthecurcuminconcentration was,however,foundtoaffecttheS-layerself-assembly;no recrys-tallizationofrSbpA-GGwasobservedatacurcuminconcentration of110␮gmL−1.

3.7. AntibodybindingcharacteristicsofrSbpA-GGcoated emulsomes

Inpreviousstudies,SbpAfusionproteinsmodifiedwithsome otherfunctionalmoietieswererecrystallizedonpositivelycharged liposomes[31],secondarycellwallpolymer-coatedsolidsupports [32,33] and microbeads [24]. Most importantly, the conforma-tionalstructuresaswellasthecharacteristicfeaturesofthefused moietieswerepreserved.Likewise,immobilized onthesurface, proteinGdomainsmustpreservetheirconformational3D struc-tureinorder topresent theirinherentability torecognize IgG. The S-layer rSbpA-GG attachesto thephospholipid surface via its N-terminus and is therefore expected to orient the two C-terminallyfused proteinGdomainstowardtheouterface.This kindofC-terminusexposedorientationwouldcontributeto pre-ventionofpossiblenonspecifichydrophobicinteractionsbetween proteinGand thelipidsurface,thereby enabling theproteinG domainstomaintaintheirtertiaryconformation.TheIgGis there-foreexpectedtobindtothemodifiedemulsomesviaitsantibody tail(Fc)region,leavingtheFabportionavailableforantigen bind-ing.Theaccuracyofthisassertionwasinvestigatedasdescribed below.

Anti-human IgG gold conjugates (␣-HIgG-Au) were used to verifytheantibodybindingpropertiesoftheS-layercoated emul-somes.First, rSbpA-GGcoatedemulsomes wereincubatedwith HIgG.The resulting product wasthen incubated with ␣-HIgG-Auwhich boundtoHIgG(Fig.4A)andenabledthedetectionof bindingviaTEM(Fig.4B).Themainadvantagesofthisapproach arethat it confirms thebindingwhile alsoindicating the loca-tionsofsinglebindingsitesandverifyingtheC-terminusoriented accessibilityofproteinGmoleculesonthelattice.TheboundAu conjugatesinseveralregionsseveralregionscanbeseento fol-lowthesamesquaresymmetryoftheunderlyingS-layer(Fig.4C, arrows).

Foranegativecontrol,thesameprocedurewasrepeatedwith rSbpA coatedemulsomes lacking theprotein G domains.Some nonspecific binding was observed (Fig. 4D) and attributed to theaffinity of S-layer protein for gold [34].The relatively low bindingof␣-HIgG-AuonSbpAcoatedemulsomesindicatedthat theinteractionbetweentheS-layerandgoldisweakcomparedto thestronginteractionbetweenHIgGand␣-HIgG-Au.Thespecific IgG recognitionof rSbpA-GGcoated emulsomes wasconfirmed using an additional approach (Supplementary data Fig. 2), in which the interaction between the ␣-HIgG-Au and HIgG-FITC

coatedemulsomeswasvisualizedunderaconfocallaserscanning microscope(SupplementarydataFig.3).

4. Discussion

Onthepositivelychargedoutermostshelloftheemulsomesand CurcuEmulsomes,bothwtSbpAandrSbpA-GGreassembletothe samecoherentcrystallinelatticewithsquaresymmetry(Fig.3). TherecrystallizationofrSbpA-GG onthesurface of CurcuEmul-somescausesashiftinthezetapotentialofthenanocarrierfrom 29.8±2.1mVto−22.7±2.1mV(Table1),therebyconfirmingthe nanocarriersarecompletelycoveredwiththeS-layerofrSbpA-GG. Clearly,thesefindingsprovidedevidencethatCurcuEmulsomescan becoatedwithrSbpA-GGandthatthepresenceofcurcumininside thenanocarrierattheconcentrationusedhere(i.e.,30␮gmL−1) hadnoinfluenceontheS-layerrecrystallizationcharacteristics. Itisimportanttoemphasizethatthiscurcuminconcentrationis sufficientlyhightoenableitsmedicaluse(i.e.,IC50:2–40␮gmL−1

[35]).

Asrecentlyreported,it is possibletoincrease thecurcumin contentofCurcuEmulsomesupto110␮gmL−1 [19].Atthis con-centration,thecurcuminwasfoundtoaffecttheself-assemblyof theS-layerproteins,preventingtherecrystallizationofrSbpA-GG. Thismaybeduetononspecificabsorptionofcurcuminonthe sur-faceoftheemulsome.Asaresult,therecrystallizationprocessof theS-layerproteinmaybedisturbed.Ontheotherhand,itisalso possiblethatincorporationofcurcumininveryhighamountsmay influencethestiffnessorroughnessoftheoutermostphospholipid bilayerofthenanocarrier,factorswhichcanaffectthe recrystalliza-tion[36].Afullunderstandingandclarificationmeritsadetailed furtherstudy,whichisoutofthescopeofthiswork.

TherelativeIgGaffinitiesofrSbpA-GG,SbpAandSbpA-ZZwere qualitativelyevaluatedbymonitoringthebindingofPOXlabeled goatIgG.TheresultsobtainedclearlyshowedthatgoatIgGbinds stronglyonlytoplatescoatedwithrSbpA-GG;therSbpA-ZZwith itsproteinA domainshad a verylow affinityfor goatIgG, and rSbpAdisplayedalmostnobinding(Fig.2).Thesedataindicated thatrSbpA-GGpossessesstrongaffinitytowardIgGwhichis con-ferredbythetwofusedproteinGdomains.SbpAlackingtheprotein GmoietiesdoesnothaveanyaffinityforIgG.Inaddition,ourdata verified once againthat – unlike protein G – protein A shows lowerbindingtoIgGsfromseveralanimalspecies suchasgoat [37].

Following the recrystallization of rSbpA-GG on emulsomes, HIgGbindingaffinityoftailoredemulsomeswasexaminedbyan indirectapproach(Fig.4A)inwhichHIgGbindingontheS-layer wasdemonstratedbythesubsequentcouplingof␣-HIgG-Au con-jugates.Thisapproachprovidednotonlyevidenceforbinding,but alsoshowedthatHIgGbindingtotheS-layerfollowsthep4lattice

(6)

Fig.4. (A)Schematicdrawingillustratingtwo-stepindirectapproachverifyingtheantibodybindingtorSbpA-GGcoatedemulsomes.First,HIgGmoleculesarerecognized

bytherSbpA-GGcoatedCurcuEmulsomesandbindtothelattice.The␣-HIgG-AuconjugatestheninteractwiththeboundHIgG.(B)ATEMimageofanrSbpA-GGcoated

emulsomeuponwhichHIgGand␣-HIgG-Auconjugateswereboundspecifically.Thescalebarcorrespondsto100nm.(C)Insetimage,wherethearrowsindicatethatHIgG

bindingfollowsthep4symmetryontheS-layerlattice.Thebarcorrespondsto10nm.(D)ATEMimageofanrSbpAcoatedemulsomeuponwhichHIgGand/or␣-HIgG-Au

conjugateswereboundnonspecifically.Thescalebarcorrespondsto100nm.

symmetry(Fig.4B).Confocallaserscanningmicroscopyanalysis withFITC-labeledHIgGprovidedfurtherevidencethatHIgG specif-icallybindstotherSbpA-GGlatticeontheemulsomes,andhence, rSbpA-GGcoatedemulsomesarefunctionalintermsofspecificIgG recognition(Supplementarydata,Fig.3).Again,lackingthe func-tionalproteinGdomains,SbpA coatedCurcuEmulsomesdo not displayanyspecificIgGbinding.

TEManalysisrevealedthatnotallpresentedproteinGdomains withinthelatticewereoccupiedby␣-HIgG-Auconjugates.This maybe attributedtothefact that either (i)␣-HIgG-Au’s could notbindtoallfreeHIgG’simmobilizedontheS-layer,or(ii)not allbindingsitesontheS-layer,i.e.,proteinGdomains,were sat-uratedwithHIgG.Besidesthesekineticparameters,interactions andcollisionsoccurringbetweenemulsomesmayalsolimit anti-bodybinding,assuggestedbyapreviousstudy[10].Thisargument couldexplainwhythe␣-HIgG-Au-occupiedregions arepresent aspatchesinsteadofthe␣-HIgG-Au beingdistributed homoge-neouslyontheS-layerlattice(Fig.4B).

Asalternativetoourgeneticapproach,HIgGcouldbecovalently (i.e.,chemically)linkedtotheS-layerlatticeaspreviouslyreported [38–40].However,thepresent approachusingsite-mutagenesis benefitsfromthespecificinteractionsthatmaketheantibody bind-ing(Fab)regionstobecomeaccessibleforantigenbinding(Fig.5).

Thisinherentcontrolover orientationofHIgGmayfurther con-tributetodirecttheCurcuEmulsomestowardIgGspecificcells,in particularinflammatoryandcancercells[11],atopicthatwillbea focusofourforthcomingstudies.

Innanomedicine,particularcarehastobetakenwiththe par-ticles’surfacestoavoidinnateimmunesystemrecognitionandto securesufficientlylongcirculationhalf-livesfortheagentstoreach theirtargets[41].Asthemostcommonapproach,surface-bound biocompatiblepolyethyleneglycol(PEG)allowstheformationofa hydratedstericbarrierthatdecreasesnanocarrierinteractionwith blood-bornecomponents.Thiscausesanincreasedblood circula-tiontime,decreasedspleenandlivercapture,andimprovedtumor uptake [22].ThePEGcushionreducestheadhesionofopsonins presentinthebloodserumonnanoparticles[42],andthe immuno-logical responseis reduced [43].The S-layerproteinsdescribed heremayprovideanalternateapproachforsurfacemodification. TheS-layer proteinSbpA wasrecentlyshown toform (atbasic pH)smooth,cytophobicpatternsthateliminatetheadsorptionof humanplasmaproteins[44],aswellastheadhesionofcells(e.g., HepG2)[45].TheSbpAcoatingmaythereforeminimizethe adhe-sionofopsoninsandenhancethecirculationtimeofthemodified emulsomes.Theseanti-foulingcharacteristicsoftheSbpAlayerare expectedtobenefitCurcuEmulsomesinvivo,potentiallyimproving

(7)

Fig.5.SchematicdrawingillustratingtheimmobilizationofHIgGonrSbpA-GGcoatedemulsomes.FollowingtherSbpA-GGrecrystallizationonthephospholipidmultilayer

surfaceofemulsomes,HIgGbindsinaregularmannerviatheFCregiontoproteinGdomains.

thecirculationtime.Theverificationofthiseffectrequiresfurther investigationsinvivo,whichisforeseeninourforthcomingstudies. 5. Conclusions

The present study introduces CurcuEmulsomes coated with rSbpA-GG as a nanoparticulate DDS that mimics a viral enve-lope.The S-layer fusion protein wasshown to forma uniform monomolecularlatticeonthesurfaceoftheemulsomesandthe CurcuEmulsomes,alteringthesurfacecharacteristicsofthe lipid-basednanocarrierandbestowingIgGbindingfunctionalityonthe nanocarrier.Entrappedcurcuminataconcentrationof30␮gmL−1 didnotinfluencetheself-assemblycharacteristicsoftheS-layer protein.ThisstudyindicatesthatS-layer fusiontechnologyis a highlyeffectiveapproachforimmobilizationof foreignproteins suchas proteinG domains onemulsomes. Thedistinct advan-tageof usingS-layer proteinsis thattheycanbe recrystallized inanorientedfashiononavarietyofsupportsincluding spheri-calsurfacescoveredbyphospholipids[46].Previousstudieshave alsoshown thatmixtures ofnativeS-layerproteins[47] and S-layerfusion proteinsincorporatingdifferentfunctional domains [46]assemble intocoherent monomolecularlayersondifferent surfacesincludingliposomes[48].Moreover,thepredetermined orientationoftheproteinsintheS-layerlatticeensuresthatthe functionalregionsoftheforeignprotein(suchasFabregions)will beaccessibleforfunctionssuchasantigenbinding.Thehigh affin-ityofHIgGtowardrSbpA-GGonthesurfaceofCurcuEmulsomes underlinesthepotentialoftheproposedsystemforinvivodrug delivery.Suchmulti-facetedandversatilenanocarriersanddrug deliverysystemspromiseasubstantialincreaseintheefficacyof diagnosticandtherapeuticapplicationsinpharmaceuticalsciences. Acknowledgements

TheworkwassupportedbyUS AirForceOffice of Scientific Research (AFOSR), Agreement Award Nr.:FA9550-09-0342 and AgreementAwardNr.:FA9550-10-1-0223,andtheAustrian Sci-enceFund(FWF),projectP-20256-B11.TheauthorsthankMarcin LaskiewiczandJaquelineFriedmannfortheirassistanceinAFM experiments.TheauthorsalsothanktoDr.MonikaDebreczenyfor theconfocallaserscanningmicroscopyanalysiscarriedoutatthe ImagingCenteroftheViennaInstituteofBioTechnology(VIBT). AppendixA. Supplementarydata

Supplementary material related to this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.colsurfb.2015.01.055.

References

[1]O.C.Farokhzad,R.Langer,ACSNano3(2009)16–20.

[2]V.P.Torchilin,AAPSJ.9(2007)E128–E147.

[3]Z.M.Qian,H.Y.Li,H.Z.Sun,K.Ho,Pharmacol.Rev.54(2002)561–587.

[4]M.Baclayon,G.J.L.Wuite,W.H.Roos,SoftMatter6(2010)5273–5285.

[5]U.B.Sleytr,P.Messner,D.Pum,M.Sara,Angew.Chem.Int.Ed.38(1999) 1035–1054.

[6]U.B.Sleytr,B.Schuster,E.M.Egelseer,D.Pum,FEMSMicrobiol.Rev.38(2014) 823–864.

[7]U.B.Sleytr,T.J.Beveridge,TrendsMicrobiol.7(1999)253–260.

[8]U.B.Sleytr,M.Sára,D.Pum,B.Schuster,in:A.Ciferri(Ed.),Supra-molecular Polymers,CRCPress,Taylor&FrancisGroup,BocaRaton,FL,2005,pp.583–616.

[9]N.Habibi,L.Pastorino,F.C.Soumetz,F.Sbrana,R.Raiteri,C.Ruggiero,Colloids Surf.B:Biointerfaces88(2011)366–372.

[10]M.H.Ucisik,S.Küpcü,M.Debreczeny,B.Schuster,U.B.Sleytr,Small9(2013) 2895–2904.

[11]S.S.Suri,H.Fenniri,B.Singh,J.Occup.Med.Toxicol.2(2007)16.

[12]S.P.Vyas,V.Sihorkar,Adv.DrugDeliv.Rev.43(2000)101–164.

[13]X.Qiu,X.Zhu,L.Zhang,Y.Mao,J.Zhang,P.Hao,G.Li,P.Lv,Z.Li,X.Sun,L. Wu,J.Zheng,Y.Deng,C.Hou,P.Tang,S.Zhang,Y.Zhang,CancerRes.63(2003) 6488–6495.

[14]D.Peer,J.M.Karp,S.Hong,O.C.Farokhzad,R.Margalit,R.Langer,Nat. Nanotech-nol.2(2007)751–760.

[15]A.S.Amselem,A.Yogev,E.Zawoznik,D.Friedman,InternationalSymposium ontheControlandReleaseofBioactiveMaterials,vol.21,1994,p.1369.

[16]S.P.Vyas,R.Subhedar,S.Jain,J.Pharm.Pharmacol.58(2006)321–326.

[17]A.Pal,S.Gupta,A.Jaiswal,A.Dube,S.P.Vyas,J.LiposomeRes.22(2012) 62–71.

[18]A.S.Amselem,E.Zawoznik,A.Yogev,D.Friedman,in:Y.Barenholz,D.D.Lasic (Eds.),HandbookofNonmedicalApplicationsofLiposomes,vol.III,CRCPress, Florida,1996,pp.209–223.

[19]M.H.Ucisik,S.Kupcu,B.Schuster,U.B.Sleytr,J.Nanobiotechnol.11(2013)37.

[20]T.M.Allen,P.R.Cullis,Adv.DrugDeliv.Rev.65(2013)36–48.

[21]R.R.Sawant,V.P.Torchilin,SoftMatter6(2010)4026–4044.

[22]F.Perche,V.P.Torchilin,J.DrugDeliv.2013(2013)705265.

[23]M.Jarosch,E.M.Egelseer,D.Mattanovich,U.B.Sleytr,M.Sara,Microbiology146 (Pt2)(2000)273–281.

[24]C.Völlenkle,S.Weigert,N.Ilk,E.Egelseer,V.Weber,F.Loth,D.Falkenhagen, U.B.Sleytr,M.Sara,Appl.Environ.Microbiol.70(2004)1514–1521.

[25]A.Rath,C.M.Deber,Anal.Biochem.434(2013)67–72.

[26]R.C.Duhamel,P.H.Schur,K.Brendel,E.Meezan,J.Immunol.Methods31(1979) 211–217.

[27]J.M. Woof,D.R. Burton,in:M.D.P. Boyle(Ed.),Bacterial Immunoglobulin-bindingProteins,AcademicPress,1990,pp.305–316.

[28]Y.Kaminaga,A.Nagatsu,T.Akiyama,N.Sugimoto,T.Yamazaki,T.Maitani,H. Mizukami,FEBSLett.555(2003)311–316.

[29]U.B.Sleytr,M.Sára,D.Pum,B.Schuster,Prog.Surf.Sci.68(2001)231–278.

[30]F.Meng,G.H.M.Engbers,J.Feijen,J.Control.Release101(2005)187–198.

[31]N.Ilk,S.Kupcu,G.Moncayo,S.Klimt,R.C.Ecker,R.Hofer-Warbinek,E.M. Egelseer,U.B.Sleytr,M.Sara,Biochem.J379(2004)441–448.

[32]N.Ilk,C.Vollenkle,E.M.Egelseer,A.Breitwieser,U.B.Sleytr,M.Sara,Appl. Environ.Microbiol.68(2002)3251–3260.

[33]M.Pleschberger,A.Neubauer,E.M.Egelseer,S.Weigert,B.Lindner,U.B.Sleytr, S.Muyldermans,M.Sara,Bioconjug.Chem.14(2003)440–448.

[34]E.Gyorvary,A.Schroedter,D.V.Talapin,H.Weller,D.Pum,U.B.Sleytr,J.Nanosci. Nanotechnol.4(2004)115–120.

[35]G.Kuttan,K.B.Kumar,C.Guruvayoorappan,R.Kuttan,Adv.Exp.Med.Biol.595 (2007)173–184.

[36]A.Diederich,C.Sponer,D.Pum,U.B.Sleytr,M.Lösche,ColloidsSurf.B: Bioint-erfaces6(1996)335–346.

[37]L.Björck,G.Kronvall,J.Immunol.133(1984)969–974.

(8)

[39]E.S.Györvary,A.O’Riordan,A.J.Quinn,G.Redmond,D.Pum,U.B.Sleytr,Nano Lett.3(2003)315–319.

[40]C.Weiner,M.Sára,G.Dasgupta,U.B.Sleytr,Biotechnol.Bioeng.44(1994) 55–65.

[41]J.Xie,S.Lee,X.Chen,Adv.DrugDeliv.Rev.62(2010)1064–1079.

[42]S.Salmaso,P.Caliceti,J.DrugDeliv.2013(2013)19.

[43]F.F.Davis,Adv.DrugDeliv.Rev.54(2002)457–458.

[44]M.M.Picher,S.Küpcü,C.-J.Huang,J.Dostalek,D.Pum,U.B.Sleytr,P.Ertl,Lab Chip13(2013)1780–1789.

[45]M.Rothbauer,S.Küpcü,D.Sticker,U.B.Sleytr,P.Ertl,ACSNano7(2013) 8020–8030.

[46]N. Ilk, E.M. Egelseer, U.B. Sleytr, Curr. Opin. Biotechnol. 22 (2011) 824–831.

[47]U.B.Sleytr,Nature257(1975)400–402.

[48]U.B.Sleytr,B.Schuster,E.M.Egelseer,D.Pum,C.M.Horejs,R.Tscheliessnig,N. Ilk,in:H.Stefan(Ed.),ProgressinMolecularBiologyandTranslationalScience, vol.103,AcademicPress,2011,pp.277–352.

Şekil

Fig. 1. SDS/PAGE pattern of protein extract of E. coli BL21 (DE3) Star cells: (1) before induction; (2) 2 h after induction; (3) 4 h after induction; and (4) after purification.
Fig. 3. TEM images of (A) an emulsome; (B) a CurcuEmulsome completely covered by the S-layer fusion protein rSbpA-GG; (C) an emulsome coated with wtSbpA
Fig. 4. (A) Schematic drawing illustrating two-step indirect approach verifying the antibody binding to rSbpA-GG coated emulsomes
Fig. 5. Schematic drawing illustrating the immobilization of HIgG on rSbpA-GG coated emulsomes

Referanslar

Benzer Belgeler

Changes in the amino acid sequence in the variable region of the heavy and light chain of the Ig molecule. Determines

We attribute this to having considerably more samples with lower lRMSD values in training and test datasets generated by RosettaDock due to its local sampling nature, while

隨著國內醫療環境競爭日益激烈,醫院高階主管對於

: 專案規劃因素對於護理計劃系統的導入有影響 H4.1:專案小組技能對於護理計劃系統的導入有影響

Zakir Husain always realized the urgency of educational reforms and, therefore, deeply involved himself in evolving a scheme of national

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical contuct.. I also declare that,

The adsorbent in the glass tube is called the stationary phase, while the solution containing mixture of the compounds poured into the column for separation is called