• Sonuç bulunamadı

Some inequalities for double integrals and applications for cubature formula

N/A
N/A
Protected

Academic year: 2021

Share "Some inequalities for double integrals and applications for cubature formula"

Copied!
25
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

DOI: 10.2478/ausm-2019-0021

Some inequalities for double integrals and

applications for cubature formula

Samet Erden

Department of Mathematics, Faculty of Science, Bartın University,

Bartın-Turkey email: erdensmt@gmail.com

Mehmet Zeki Sarikaya

Department of Mathematics,

Faculty of Science and Arts, D¨uzce University, Konuralp Campus,

D¨uzce-Turkey

email: sarikayamz@gmail.com

Abstract. We establish two Ostrowski type inequalities for double in-tegrals of second order partial derivable functions which are bounded. Then, we deduce some inequalities of Hermite-Hadamard type for dou-ble integrals of functions whose partial derivatives in absolute value are convex on the co-ordinates on rectangle from the plane. Finally, some applications in Numerical Analysis in connection with cubature formula are given.

1

Introduction

Let f : [a, b]→ R be a differentiable mapping on (a, b) whose derivative f0

: (a, b)→ R is bounded on (a, b), i.e., kf0k = sup

t∈(a,b)|f 0(t)| < ∞. Then, the inequality holds: f(x) − 1 b − a b Z a f(t)dt ≤ " 1 4 + (x −a+b2 )2 (b − a)2 # (b − a) f0 ∞ (1)

2010 Mathematics Subject Classification: 26D07, 26D15, 41A55

Key words and phrases: Ostrowski inequality, Hermite-Hadamard inequality, co-ordinated convex mapping, cubature formula

(2)

for all x ∈ [a, b] [15]. The constant 14 is the best possible. This inequality is well known in the literature as the Ostrowski inequality.

Let f : I ⊂ R → R be a convex mapping defined on the interval I of real numbers and a, b ∈ I, with a < b. The following double inequality is well known in the literature as the Hermite-Hadamard inequality [9]:

f a + b 2  ≤ 1 b − a Zb a f(x)dx≤ f(a) + f(b) 2 .

This inequality has attracted considerable attention and interest from math-ematicians and other researchers as shown by hundreds of papers published in the last decade one can find by making a simple search in the MathSciNet database of the American Mathematical Society. For example, Bakula et al. presented some Hermite-Hadamard type inequalities for m-convex and (α, m)-convex functions in [3].

In a recent paper [2], Barnett and Dragomir proved the following Ostrowski type inequality for double integrals:

Theorem 1 Let f : [a, b]×[c, d]→ R be continuous on [a, b]×[c, d], f00 x,y= ∂

2f

∂x∂y

exists on (a, b) × (c, d) and is bounded, i.e., f00x,y ∞=(x,y)∈(a,b)×(c,d)sup ∂2f(x, y) ∂x∂y <∞. Then, we have the inequality:

b Z a d Z c f(s, t)dtds − (d − c)(b − a)f(x, y) −  (b − a) d Z c f(x, t)dt + (d − c) b Z a f(s, y)ds   ≤ 1 4(b − a) 2+ (x − a + b 2 ) 2  1 4(d − c) 2+ (y − d + c 2 ) 2  f00x,y ∞ (2)

for all (x, y) ∈ [a, b] × [c, d].

In [2], the inequality (2) is established by the use of integral identity involv-ing Peano kernels. In [16], Pachpatte obtained a new inequality in the view of (2) by using elementary analysis. Latif et al. proved some Ostrowski type

(3)

inequalities for functions that are co-ordinated convex in [12]. Sarikaya gave integral inequalities for bounded functions in [20]. Authors deduced weighted version of Ostrowski type inequalities for double integrals involving functions of two independent variables by using fairly elementary analysis in [1], [18], [19] and [24].

Let us now consider a bidimensional interval ∆ =: [a, b] × [c, d] in R2 with a < b and c < d. A mapping f : ∆ → R is said to be convex on ∆ if the following inequality:

f (tx + (1 − t) z, ty + (1 − t) w)≤ tf (x, y) + (1 − t) f (z, w)

holds, for all (x, y) , (z, w) ∈ ∆ and t ∈ [0, 1]. A function f : ∆ → R is said to be on the co-ordinates on ∆ if the partial mappings fy : [a, b]→ R, fy(u) =

f (u, y) and fx : [c, d] → R, fx(v) = f (x, v) are convex where defined for all

x∈ [a, b] and y ∈ [c, d] (see, [5]).

A formal definition for co-ordinated convex function may be stated as fol-lows:

Definition 1 A function f : ∆ → R will be called co-ordinated convex on ∆, for all t, s ∈ [0, 1] and (x, y) , (u, v) ∈ ∆, if the following inequality holds:

f(tx + (1 − t)y, su + (1 − s)v)

≤ tsf(x, u) + s(1 − t)f(y, u) + t(1 − s)f(x, v) + (1 − t)(1 − s)f(y, v). Clearly, every convex function is a co-ordinated convex. Furthermore, there exists co-ordinated convex function which is not convex, (see, [5]).

Also, in [5], Dragomir established the following similar inequality of Hadamard’s type for co-ordinated convex mapping on a rectangle from the plane R2.

Theorem 2 Suppose that f : ∆ → R is co-ordinated convex on ∆. Then one has the inequalities:

f a + b 2 , c + d 2  ≤ 1 2  1 b − a Zb a f  x,c + d 2  dx + 1 d − c Zd c f a + b 2 , y  dy  ≤ 1 (b − a) (d − c) Zb a Zd c f (x, y) dydx ≤ 1 4  1 b − a Zb a f (x, c) dx + 1 b − a Zb a f (x, d) dx + 1 d − c Zd c f (a, y) dy + 1 d − c Zd c f (b, y) dy  ≤ f (a, c) + f (a, d) + f (b, c) + f (b, d) 4 . (3)

(4)

The above inequalities are sharp.

In recent years, researchers have studied some integral inequalities by using variety convex functions on the co-ordinates on a rectangle from the plane R2. For example, authors gave some Hadamard’s type inequalities involving Riemann-Liouville fractional integrals for convex and s-convex functions on the co-ordinates in [4] and [21]. in [6], Dragomir et al. worked an Ostrowski type inequality for two dimensional integrals in term of Lp-norms. Erden and

Sarikaya deduced weighted version of Hermite-Hadamard type inequalities for functions whose partial derivatives in absolute value are convex on the co-ordinates on rectangle from the plane in [7] and [8]. In [10], [12]-[14], [22] and [23], some integral inequalities for differentiable co-ordinated convex mappings are obtained. In [21], Sarikaya et al. proved some new inequalities that give estimate of the difference between the middle and the most right terms of (3) for differentiable co-ordinated convex functions. In [7], [11] and [17], some Hermite-Hadamard type inequalities are developed for variety co-ordinated convex functions.

In this study, we firstly establish an identity for second order partial deriva-tive functions. Then, two inequalities of Ostrowski type for double integrals is gotten by using this identity. Also, Hermite-Hadamard type inequalities for convex mappings on the co-ordinates on the rectangle from the plane are ob-tained. Finally, some applications of the Ostrowski type inequality developed in this work for cubature formula are given.

2

Main results

We need the following lemma so as to prove our main results.

Lemma 1 Let f : [a, b] × [c, d]→ R be an absolutely continuous function such that the partial derivative of order 2 exists for all (t, s) ∈ [a, b] × [c, d]. Then, for all (x, y) ∈ [a, b] × [c, d], we have the equality

b Z a d Z c Ph(x, t) Qh(y, s) fts(t, s) dsdt = b Z a d Z c f (t, s) dsdt + mh(x) d Z c [f (b, s) − f (a, s)] ds (4)

(5)

+ mh(y) b Z a [f (t, d) − f (t, c)] dt − (d − c) b Z a f (t, y) dt − (b − a) d Z c f (x, s) ds + (b − a) (d − c) f (x, y) + mh(x)mh(y) [f (a, c)−f (a, d)−f (b, c) + f (b, d)] − (d − c) mh(x) [f (b, y)−f (a, y)]−(b − a) mh(y) [f (x, d) − f (x, c)]

= Sh(x, y, s, t) for Ph(x, t) :=    (t − a − mh(x)) , a≤ t < x (t − b − mh(x)) , x≤ t ≤ b Qh(y, s) :=    (s − c − mh(y)) , c≤ s < y (s − d − mh(y)) , y≤ s ≤ d

where mh(x) = h x − a+b2  and mh(y) = h y − c+d2  , h ∈ [0, 2].

Proof. By definitions of Ph(x, t) and Qh(y, s) , we have b Z a d Z c Ph(x, t) Qh(y, s) fts(t, s) dsdt = x Z a y Z c [t − a − mh(x)] [s − c − mh(y)] fts(t, s) dsdt + x Z a d Z y [t − a − mh(x)] [s − d − mh(y)] fts(t, s) dsdt + b Z x y Z c [t − b − mh(x)] [s − c − mh(y)] fts(t, s) dsdt + b Z x d Z y [t − b − mh(x)] [s − d − mh(y)] fts(t, s) dsdt. (5)

(6)

the first integral in the right hand side of (5), we find that x Z a y Z c [t − a − mh(x)] [s − c − mh(y)] fts(t, s) dsdt

= [x − a − mh(x)] [y − c − mh(y)] f (x, y) + [y − c − mh(y)] mh(x)f (a, y)

− [y − c − mh(y)] x

Z

a

f (t, y) dt + mh(y) [x − a − mh(x)] f (x, c)

+ mh(x)mh(y)f (a, c) − mh(y) x Z a f (t, c) dt − [x − a − mh(x)] y Z c f (x, s) ds − mh(x) y Z c f (a, s) ds + x Z a y Z c f (t, s) dsdt.

If we calculate the other integrals in a similar way and then we substitute the results in (5), we obtain desired equality (4) which completes the proof.  Now, we establish a new integral inequality for double integrals and also give some results related to this theorem.

Theorem 3 Suppose that all the assumptions of Lemma 1 hold. If fts= ∂

2f

∂t∂s

exists on (a, b) × (c, d) and is bounded, i.e., kftsk= sup (t,s)∈(a,b)×(c,d) ∂2f(t, s) ∂t∂s <∞.

Then, we have the inequality: |Sh(x, y, s, t)| ≤ "  b − a 2 2 +  x −a + b 2 2 + (h − 2)  x −a + b 2  mh(x) # × "  d − c 2 2 +  y −c + d 2 2 + (h − 2)  y −c + d 2  mh(y) # kftsk (6)

for all (x, y) ∈ [a, b] × [c, d], where mh(x) = h x −a+b2



and mh(y) =

(7)

Proof. Taking absolute value of (4) and using bounded of the mapping fts, we find that |Sh(x, y, s, t)| ≤ kftsk b Z a d Z c |Ph(x, t)| |Qh(y, s)| dsdt =kftsk   x Z a |t − a − mh(x)| dt + b Z x |t − b − mh(x)| dt   ×   y Z c |s − c − mh(y)| dt + d Z y |s − d − mh(y)| ds   . (7)

We shall observe the above integrals for the cases a ≤ x ≤ a+b2 and a+b2 ≤ x≤ b;

For all a ≤ x ≤ a+b2 ,we have

x Z a |t − a − mh(x)| dt = (x − a)2 2 − (x − a) mh(x) and b Z x |t − b − mh(x)| dt = (b − x)2 2 + (b − x) mh(x) + [mh(x)] 2 . For all a+b2 ≤ x ≤ b, we write

x Z a |t − a − mh(x)| dt = (x − a)2 2 − (x − a) mh(x) + [mh(x)] 2 and b Z x |t − b − mh(x)| dt = (b − x)2 2 + (b − x) mh(x). Then, we get x Z a |t − a − mh(x)| dt + b Z x |t − b − mh(x)| dt = (b − x) 2 + (x − a)2 2 + 2  a + b 2 − x  mh(x) + [mh(x)]2. (8)

(8)

Similarly, we obtain y Z c |s − c − mh(y)| dt + d Z y |s − d − mh(y)| ds = (d − y) 2 + (y − c)2 2 + 2  c + d 2 − y  mh(y) + [mh(y)]2. (9)

If we substitute the equality (8) and (9) in (7), we easily deduce required

inequality (6) which completes the proof. 

Remark 1 If we take x = a+b2 and y = c+d2 in Theorem 3, then we have the mid-point inequality b Z a d Z c f (t, s) dsdt + (b − a) (d − c) f a + b 2 , c + d 2  − (d − c) b Z a f  t,c + d 2  dt − (b − a) d Z c f a + b 2 , s  ds ≤ 1 16(b − a) 2 (d − c)2kftsk

which was given by Barnett and Dragomir in [2].

Remark 2 Under the same assumptions of Theorem3with h = 1 and (x, y) = (a, c) , then the following inequality holds:

f (a, c) + f (a, d) + f (b, c) + f (b, d) 4 + 1 (b − a) (d − c) b Z a d Z c f (t, s) dsdt −1 2   1 d − c d Z c [f (b, s) + f (a, s)] ds + 1 b − a b Z a [f (t, d) + f (t, c)] dt   ≤ (b − a) (d − c) 16 kftsk∞.

Similarly, if we choose (x, y) = (a, d) or (x, y) = (b, c) or (x, y) = (b, d) for h = 1 in Theorem 3, then we deduce inequalities which are the same as the above result.

(9)

Remark 3 If we choose h = 0 in Theorem 3, then the inequality (6) reduce to (2).

Theorem 4 Suppose that all the assumptions of Lemma 1 hold. If fts ∈

Lp(∆), p1 +q1 = 1 and q > 1, then we have the inequality

|Sh(x, y, s, t)| ≤ " [b − x + mh(x)]q+1+ [x − a − mh(x)]q+1 q + 1 #q1 " [d − y + mh(y)]q+1+ [y − c − mh(y)]q+1 q + 1 #q1 kftskp (10)

for all (x, y) ∈ [a, b] × [c, d], where mh(x) = h x −a+b2

 and mh(y) = h y − c+d2  , h ∈ [0, 2]. Also, kftskp is defined by kftskp=   b Z a d Z c ∂2f(t, s) ∂t∂s p dsdt   1 p .

Proof. Taking absolute value of (4) and using H¨older’s inequality, we find that

|Sh(x, y, s, t)| ≤   b Z a d Z c |Ph(x, t)|q|Qh(y, s)|qdsdt   1 q  b Z a d Z c ∂2f(t, s) ∂t∂s p dsdt   1 p =   x Z a |t − a − mh(x)|qdt + b Z x |t − b − mh(x)|qdt   1 q ×   y Z c |s − c − mh(y)| dt + d Z y |s − d − mh(y)| ds   1 q kftskp.

We need to examine the above integrals for the cases a ≤ x ≤ a+b2 and

a+b

2 ≤ x ≤ b;

For the case of a ≤ x ≤ a+b2 ,we get

x Z a |t − a − mh(x)|qdt = [x − a − mh(x)]q+1− [−mh(x)]q+1 q + 1

(10)

and b Z x |t − b − mh(x)|qdt = [b − x + mh(x)]q+1+ [−mh(x)]q+1 q + 1 .

For the case of a+b2 ≤ x ≤ b, we obtain

x Z a |t − a − mh(x)|qdt = [x − a − mh(x)]q+1+ [mh(x)]q+1 q + 1 and b Z x |t − b − mh(x)|qdt = [b − x + mh(x)]q+1− [mh(x)]q+1 q + 1 .

Then, we can write

x Z a |t − a − mh(x)|qdt + b Z x |t − b − mh(x)|qdt = [b − x + mh(x)] q+1+ [x − a − m h(x)]q+1 q + 1 . (11)

Similarly, we easily deduce the identity

y Z c |s − c − mh(y)|qdt + d Z y |s − d − mh(y)|qds = [d − y + mh(y)] q+1+ [y − c − m h(y)]q+1 q + 1 . (12)

Using the equality (11) and (12), we easily deduce required inequality (10).

Hence, the proof is completed. 

Remark 4 If we take x = a+b2 and y = c+d2 in Theorem 4, then we have the mid-point inequality b Z a d Z c f (t, s) dsdt + (b − a) (d − c) f a + b 2 , c + d 2 

(11)

− (d − c) b Z a f  t,c + d 2  dt − (b − a) d Z c f a + b 2 , s  ds ≤ (b − a) 1+1q (d − c)1+1q 4 (q + 1)q2 kftskp which was given by Dragomir et al. in [6].

Remark 5 If we choose h = 0 in Theorem 4, then we have (b − a) (d − c) f(x, y) − (d − c) b Z a f(t, y)dt − (b − a) d Z c f(x, s)ds + b Z a d Z c f(t, s)dsdt ≤ ∂n+mf ∂tn∂sm p " (x − a)q+1+ (b − x)q+1 q + 1 #q1 × " (y − c)q+1+ (d − y)q+1 q + 1 #q1

which was proved by Dragomir et al. in [6].

Remark 6 Under the same assumptions of Theorem4with h = 1 and (x, y) = (a, c) , then the following inequality holds:

f (a, c) + f (a, d) + f (b, c) + f (b, d) 4 + 1 (b − a) (d − c) b Z a d Z c f (t, s) dsdt −1 2   1 d − c d Z c [f (b, s) + f (a, s)] ds + 1 b − a b Z a [f (t, d) + f (t, c)] dt   ≤ (b − a) 1+q1 (d − c)1+q1 4 (q + 1)q2 kftsk.

Similarly, if we choose (x, y) = (a, d) or (x, y) = (b, c) or (x, y) = (b, d) for h = 1 in Theorem 4, then we deduce inequalities which are the same as the above result.

(12)

For convenience, we give the following notations used to simplify the details of the next theorem,

A = (b − a) " (x − a)2 2 − (x − a) mh(x) # +(b − x) 3 − (x − a)3 3 + "  b − a 2 2 +  x −a + b 2 2# mh(x) − [mh(x)] 3 3 , B = (b − a) " (b − x)2 2 + (b − x) mh(x) # − (b − x) 3 − (x − a)3 3 − "  b − a 2 2 +  x −a + b 2 2# mh(x) + [mh(x)] 3 3 , C = (d − c) " (y − c)2 2 − (y − c) mh(y) # + (d − y) 3− (y − c)3 3 + "  d − c 2 2 +  y −c + d 2 2# mh(y) − [mh(y)] 3 3 and D = (d − c) " (d − y)2 2 + (d − y) mh(y) # −(d − y) 3− (y − c)3 3 − "  d − c 2 2 +  y −c + d 2 2# mh(y) + [mh(y)] 3 3 .

We give some inequalities by using convexity of |fts(t, s)| in the following

theorem.

Theorem 5 Suppose that all the assumptions of Lemma 1 hold. If |fts(t, s)|

is a convex function on the co-ordinates on [a, b] × [c, d], then the following inequalities hold: |Sh(x, y, s, t)| ≤ |fts(a, c)| (b − a) (d − c)AC + |fts(a, d)| (b − a) (d − c)A h D + (d − c) [mh(y)]2 i + |fts(b, c)| (b − a) (d − c) h B + (b − a) [mh(x)]2 i C + |fts(b, d)| (b − a) (d − c) h B + (b − a) [mh(x)]2i hD + (d − c) [mh(y)]2i (13)

(13)

for all a ≤ x ≤ a+b2 and c ≤ y ≤ c+d2 |Sh(x, y, s, t)| ≤ |fts(a, c)| (b − a) (d − c)A h C + (d − c) [mh(y)]2 i + |fts(a, d)| (b − a) (d − c)AD + |fts(b, c)| (b − a) (d − c) h B + (b − a) [mh(x)]2i hC + (d − c) [mh(y)]2i + |fts(b, d)| (b − a) (d − c) h B + (b − a) [mh(x)]2 i D (14)

for all a ≤ x ≤ a+b2 and c+d2 ≤ y ≤ d |Sh(x, y, s, t)| ≤ |fts(a, c)| (b − a) (d − c) h A + (b − a) [mh(x)]2 i C + |fts(a, d)| (b − a) (d − c) h A + (b − a) [mh(x)]2i hD + (d − c) [mh(y)]2i + |fts(b, c)| (b − a) (d − c)BC + |fts(b, d)| (b − a) (d − c)B h D + (d − c) [mh(y)]2i (15)

for all a+b2 ≤ x ≤ b and c ≤ y ≤ c+d2 |Sh(x, y, s, t)| ≤ |fts(a, c)| (b − a) (d − c) h A + (b − a) [mh(x)]2i hC + (d − c) [mh(y)]2i + |fts(a, d)| (b − a) (d − c) h A + (b − a) [mh(x)]2 i D + |fts(b, c)| (b − a) (d − c)B h C + (d − c) [mh(y)]2i+ |fts(b, d)| (b − a) (d − c)BD (16)

for all a+b2 ≤ x ≤ b and c+d

2 ≤ y ≤ d, where mh(x) = h x − a+b 2  and mh(y) = h y − c+d2  , h ∈ [0, 2].

Proof. If we take absolute value of (4), then we get

|Sh(x, y, s, t)| ≤ b Z a d Z c |Ph(x, t)| |Qh(y, s)| |fts(t, s)| dsdt.

(14)

Since |fts(t, s)| is a convex function on the co-ordinates on [a, b] × [c, d], we have fts b − t b − aa + t − a b − ab, d − s d − cc + s − c d − cd  ≤ (b − t) (d − s) (b − a) (d − c)|fts(a, c)| + (b − t) (s − c) (b − a) (d − c)|fts(a, d)| + (t − a) (d − s) (b − a) (d − c)|fts(b, c)| + (t − a) (s − c) (b − a) (d − c)|fts(b, d)| . (17)

Utilizing the inequality (17), we obtain |Sh(x, y, s, t)| ≤ |fts(a, c)| (b − a) (d − c)   b Z a (b − t)|Ph(x, t)| dt     d Z c (d − s)|Qh(y, s)| ds   + |fts(a, d)| (b − a) (d − c)   b Z a (b − t)|Ph(x, t)| dt     d Z c (s − c)|Qh(y, s)| ds   + |fts(b, c)| (b − a) (d − c)   b Z a (t − a)|Ph(x, t)| dt     d Z c (d − s)|Qh(y, s)| ds   + |fts(b, d)| (b − a) (d − c)   b Z a (t − a)|Ph(x, t)| dt     d Z c (s − c)|Qh(y, s)| ds   . (18) We observe that b Z a (b − t)|Ph(x, t)| dt = (b − a) x Z a |t − a − mh(x)| dt − x Z a (t − a)|t − a − mh(x)| dt + b Z x (b − t)|t − b − mh(x)| dt. (19)

Now, let us observe that

r Z p |t − p| |t − q| dt = q Z p (t − p) (q − t) dt + r Z q (t − p) (t − q) dt = (q − p) 3 3 + (r − p)3 3 − (q − p) (r − p)2 2 (20)

(15)

for all r, p, q such that p ≤ q ≤ r.

We investigate integrals given in the equality (19) for the cases a ≤ x ≤ a+b2 and a+b2 ≤ x ≤ b;

For all a ≤ x ≤ a+b2 ,we have

x Z a |t − a − mh(x)| dt = (x − a)2 2 − (x − a) mh(x), x Z a (t − a)|t − a − mh(x)| dt = (x − a) 3 3 − (x − a)2 2 mh(x) and using the equality (20) for second integral, we get

b Z x |b − t| |t − b − mh(x)| dt = − [mh(x)]3 3 + (b − x)3 3 + (b − x)2 2 mh(x). For all a+b2 ≤ x ≤ b, we have

x Z a |t − a − mh(x)| dt = (x − a)2 2 − (x − a) mh(x) + [mh(x)] 2, b Z x |b − t| |t − b − mh(x)| dt = (b − x)3 3 + (b − x)2 2 mh(x) and using the equality (20), we obtain

x Z a |a − t| |t − a − mh(x)| dt = [mh(x)]3 3 + (x − a)3 3 − (x − a)2 2 mh(x). Then, we can write

b

Z

a

(b − t)|Ph(x, t)| dt = A for all a ≤ x ≤ a+b2 and

b

Z

a

(16)

for all a+b2 < x≤ b.

Similarly, we can easily find the other integrals given in the inequality (18) for cases a ≤ x ≤ a+b2 , a+b2 < x ≤ b, c ≤ y ≤ c+d

2 and c+d

2 ≤ y ≤ d. If

we substitute the resulting inequalities for all cases in (18), we obtain desired

inequalities. The proof is thus completed. 

Remark 7 If we take x = a+b2 and y = c+d2 in Theorem 5, then we have the mid-point inequality b Z a d Z c f (t, s) dsdt + (b − a) (d − c) f a + b 2 , c + d 2  − (d − c) b Z a f  t,c + d 2  dt − (b − a) d Z c f a + b 2 , s  ds ≤ (b − a) 2(d − c)2 16 |f ts(a, c)| + |fts(a, d)| + |fts(b, c)| + |fts(b, d)| 4 

which was given by Latif and Dragomir in [12].

Corollary 1 Under the same assumptions of Theorem 5 with h = 0, we get the inequality b Z a d Z c f(s, t)dtds + (d − c)(b − a)f(x, y) −  (b − a) d Z c f(x, t)dt + (d − c) b Z a f(s, y)ds   ≤ " (b − a)(x − a) 2 2 + (b − x)3− (x − a)3 3 # ×  |fts(a, c)| (b − a) (d − c) " (d − c)(y − c) 2 2 + (d − y)3− (y − c)3 3 # + |fts(a, d)| (b − a) (d − c) " (d − c)(d − y) 2 2 − (d − y)3− (y − c)3 3 # + " (b − a)(b − x) 2 2 − (b − x)3− (x − a)3 3 #

(17)

×  |fts(b, c)| (b − a) (d − c) " (d − c)(y − c) 2 2 + (d − y)3− (y − c)3 3 # + |fts(b, d)| (b − a) (d − c) " (d − c)(d − y) 2 2 − (d − y)3− (y − c)3 3 #

for all (x, y) ∈ [a, b] × [c, d].

Remark 8 If we take (x, y) = (a, c) for h = 1 in the inequality (13), then we have the result

f (a, c) + f (a, d) + f (b, c) + f (b, d) 4 + 1 (b − a) (d − c) b Z a d Z c f (t, s) dsdt −1 2   1 d − c d Z c [f (b, s) + f (a, s)] ds + 1 b − a b Z a [f (t, d) + f (t, c)] dt   ≤ (b − a) (d − c) 16 |f ts(a, c)| + |fts(a, d)| + |fts(b, c)| + |fts(b, d)| 4 

which was proved Sarikaya et al. in [21].

Similarly, if we choose (x, y) = (a, d) in (14) or (x, y) = (b, c) in (15) or (x, y) = (b, d) in (16) for h = 1, then we obtain inequalities which are the same as the above result.

Theorem 6 Suppose that all the assumptions of Lemma 1 hold. If |fts(t, s)|q

is a convex function on the co-ordinates on [a, b] × [c, d], p1+q1 = 1and q > 1, then the following inequality holds:

|Sh(x, y, s, t)| ≤ (b − a)q1(d − c) 1 q " [b − x + mh(x)]p+1+ [x − a − mh(x)]p+1 p + 1 #p1 × " [d − y + mh(y)]p+1+ [y − c − mh(y)]p+1 p + 1 #p1 × |fts(a, c)|q+|fts(a, d)|q+|fts(b, c)|q+|fts(b, d)|q 4 1 q (21)

for all (x, y) ∈ [a, b] × [c, d], where mh(x) = h x −a+b2



and mh(y) =

(18)

Proof. Taking absolute value of (4) and using H¨older’s inequality, we find that |Sh(x, y, s, t)| ≤   b Z a d Z c |Ph(x, t)|p|Qh(y, s)|pdsdt   1 q  b Z a d Z c |fts(t, s)|qdsdt   1 q . By similar methods in the proof of Theorem 4, we obtain

  b Z a d Z c |Ph(x, t)|p|Qh(y, s)|pdsdt   1 q = " [b − x + mh(x)]p+1+ [x − a − mh(x)]p+1 p + 1 #p1 × " [d − y + mh(y)]p+1+ [y − c − mh(y)]p+1 p + 1 #1p .

Since |fts(t, s)|q is a convex function on the co-ordinates on ∆, we have

fts b − t b − aa + t − a b − ab, d − s d − cc + s − c d − cd  q ≤ (b − t) (d − s) (b − a) (d − c)|fts(a, c)| q+ (b − t) (s − c) (b − a) (d − c)|fts(a, d)| q + (t − a) (d − s) (b − a) (d − c)|fts(b, c)| q + (t − a) (s − c) (b − a) (d − c)|fts(b, d)| q . (22)

Using the inequality (22), it follows that   b Z a d Z c |fts(t, s)|qdsdt   1 q ≤ (b − a)1q(d − c) 1 q × |fts(a, c)|q+|fts(a, d)|q+|fts(b, c)|q+|fts(b, d)|q 4 1 q .

The proof is thus completed. 

Remark 9 If we take x = a+b2 and y = c+d2 in Theorem 6, then we have the mid-point inequality b Z a d Z c f (t, s) dsdt + (b − a) (d − c) f a + b 2 , c + d 2 

(19)

− (d − c) b Z a f  t,c + d 2  dt − (b − a) d Z c f a + b 2 , s  ds ≤ (b − a) 2(d − c)2 4 (q + 1)2q |fts(a, c)|q+|fts(a, d)|q+|fts(b, c)|q+|fts(b, d)|q 4 1 q

which was deduced by Latif and Dragomir in [12].

Corollary 2 If we choose h = 0 in Theorem 6, then we have (b − a) (d − c) f(x, y) − (d − c) b Z a f(t, y)dt − (b − a) d Z c f(x, s)ds + b Z a d Z c f(t, s)dsdt ≤ (b − a)1q " (b − x)p+1+ (x − a)p+1 p + 1 #1p × (d − c)1q " (d − y)p+1+ (y − c)p+1 p + 1 #1 p × |fts(a, c)|q+|fts(a, d)|q+|fts(b, c)|q+|fts(b, d)|q 4 1 q

which is a Ostrowski type inequality for co-ordinated convex mappings. Remark 10 Under the same assumptions of Theorem 6 with h = 1 and (x, y) = (a, c) , then the following inequality holds:

f (a, c) + f (a, d) + f (b, c) + f (b, d) 4 + 1 (b − a) (d − c) b Z a d Z c f (t, s) dsdt −1 2   1 d − c d Z c [f (b, s) + f (a, s)] ds + 1 b − a b Z a [f (t, d) + f (t, c)] dt   ≤ (b − a) 2(d − c)2 4 (q + 1)q2 |fts(a, c)|q+|fts(a, d)|q+|fts(b, c)|q+|fts(b, d)|q 4 1 q

(20)

Similarly, if we choose (x, y) = (a, d) or (x, y) = (b, c) or (x, y) = (b, d) for h = 1 in Theorem 6, then we deduce inequalities which are the same as the above result.

3

Applications to cubature formulae

We now consider applications of the integral inequalities developed in the previous section, to obtain estimates of cubature formula which, it turns out have a markedly smaller error than that which may be obtained by the classical results.

Let In : a = x0 < x1 < . . . < xn−1 < xn = b and Jm : c = y0 < y1 < . . . <

ym−1 < ym = d be divisions of the intervals [a, b] and [c, d] , ξi ∈ [xi, xi+1]

(i = 0, . . . , n − 1) and ηj∈ [yj, yj+1] (j = 0, . . . , m − 1) . Consider the sum

T (f, In, Jm, ξ, η) : = n−1 X i=0 m−1X j=0 lj xi+1Z xi f (t, ηj) dt + n−1 X i=0 m−1X j=0 ki yj+1Z yj f (ξi, s) ds − n−1 X i=0 m−1X j=0 kiljf (ξi, ηj) − n−1 X i=0 m−1X j=0 mhi) yj+1Z yj [f (xi+1, s) − f (xi, s)] ds − n−1 X i=0 m−1X j=0 mh(ηj) xi+1Z xi [f (t, yj+1) − f (t, yj)] dt + n−1 X i=0 m−1X j=0 ljmh(ξi) [f (xi+1, ηj) − f (xi, ηj)] + n−1 X i=0 m−1X j=0 kimh(ηj) [f (ξi, yj+1) − f (ξi, yj)] − n−1 X i=0 m−1X j=0 mhi)mhj) [f (xi, yj) − f (xi, yj+1) −f (xi+1, yj) + f (xi+1, yj+1)] (23) where ki = xi+1 − xi, lj = yj+1 − yj (i = 0, . . . , n − 1; j = 0, . . . , m − 1) ,

(21)

mh(ξi) = h ξi−xi+x2i+1 and mh(ηj) = h



ηj− yj+y2j+1

 .

Theorem 7 Let f : [a, b] × [c, d]→ R be an absolutely continuous function such that the partial derivative of order 2 exists for all (t, s) ∈ [a, b] × [c, d]. If fts = ∂

2f

∂t∂s exists on (a, b) × (c, d) and is bounded, i.e.,

kftsk= sup (t,s)∈(xi,xi+1)×(yj,yj+1) ∂2f(t, s) ∂t∂s <∞. Then we have the representation

b Z a d Z c f(t, s)dsdt = T (f, In, Jm, ξ, η) + R(f, In, Jm, ξ, η)

where S(f, f0, ξ, In) is defined as in (23) and the remainder satisfies the

esti-mations: |R(f, In, Jm, ξ, η)| ≤ n−1 X i=0 m−1X j=0 " k2 i 4 +  ξi− xi+ xi+1 2 2 + (h − 2)  ξi− xi+ xi+1 2  mh(ξi) # × " l2j 4 +  ηj− yj+ yj+1 2 2 + (h − 2)  ηj− yj+ yj+1 2  mhj) # kftsk (24)

for all (ξi, ηj)∈ [xi, xi+1]× [yj, yj+1] with (i = 0, . . . , n − 1; j = 0, . . . , m − 1) ,

where mh(ξi) = h ξi− xi+x2i+1  and mh(ηj) = h  ηj− yj+yj+1 2  with h ∈ [0, 2].

Proof. Applying Theorem3on the interval [xi, xi+1]×[yj, yj+1], (i = 0, . . . , n−1;

j = 0, . . . , m − 1), we obtain xi+1Z xi yj+1Z yj f(t, s)dsdt − lj xi+1Z xi f (t, ηj) dt − ki yj+1Z yj f (ξi, s) ds + kiljf (ξi, ηj) + mh(ξi) yj+1Z yj [f (xi+1, s) − f (xi, s)] ds + mh(ηj) xi+1Z xi [f (t, yj+1) − f (t, yj)] dt − ljmhi) [f (xi+1, ηj) − f (xi, ηj)] − kimhj) [f (ξi, yj+1) − f (ξi, yj)]

(22)

+mhi)mhj) [f (xi, yj) − f (xi, yj+1) − f (xi+1, yj) + f (xi+1, yj+1)]| ≤ kftsk " k2i 4 +  ξi− xi+ xi+1 2 2 + (h − 2)  ξi− xi+ xi+1 2  mhi) # × " l2i 4 +  ηj−yj+ yj+1 2 2 + (h − 2)  ηj− yj+ yj+1 2  mhj) # for all i = 0, . . . , n − 1; j = 0, . . . , m − 1.

Summing over i from 0 to n − 1 and over j from 0 to m − 1 using the generalized triangle inequality we obtain the estimation (24).  Remark 11 If we take h = 0 in Theorem 7, then we recapture the cubature formula b Z a d Z c f(t, s)dsdt = T (f, In, Jm, ξ, η) + R(f, In, Jm, ξ, η)

where the remainder R(f, In, Jm, ξ, η) satisfies the estimation:

|R(f, In, Jm, ξ, η)| ≤ kftsk n−1 X i=0 m−1X j=0 " k2i 4 +  ξi− xi+ xi+1 2 2# "l2 j 4 +  ηj− yj+ yj+1 2 2# (25)

which was given by Barnett and Dragomir in [2]. Remark 12 If we choose ξi = xi+x2i+1 and ηj =

yj+yj+1

2 in Theorem 7, then

we recapture the midpoint cubature formula

b Z a d Z c f(t, s)dsdt = TM(f, In, Jm) + RM(f, In, Jm)

where the remainder RM(f, In, Jm) satisfies the estimation:

|RM(f, In, Jm)| ≤ kftsk 16 n−1 X i=0 k2i m−1X j=0 l2j.

Theorem 8 Let f : [a, b] × [c, d]→ R be an absolutely continuous function such that the partial derivative of order 2 exists for all (t, s) ∈ [a, b] × [c, d]. If

(23)

|fts(t, s)|q is a convex function on the co-ordinates on [a, b] × [c, d], p1+q1 = 1

and q > 1, then we have the representation

b Z a d Z c f(t, s)dsdt = T (f, In, Jm, ξ, η) + R(f, In, Jm, ξ, η)

where S(f, f0, ξ, In) is defined as in (23) and the remainder satisfies the esti-mations: |R(f, In, Jm, ξ, η)| ≤ n−1 X i=0 m−1X j=0 k 1 q i l 1 q j " [xi+1− ξi+ mhi)]p+1+ [ξi− xi− mhi)]p+1 p + 1 #p1 × " [yj+1− ηj+ mhj)]p+1+ [ηj− yj− mhj)]p+1 p + 1 #1 p × |f ts(xi, yj)|q+|fts(xi, yj+1)|q+|fts(xi+1, yj)|q+|fts(xi+1, yj+1)|q 4 1 q

for all (ξi, ηj)∈ [xi, xi+1]× [yj, yj+1] with (i = 0, . . . , n − 1; j = 0, . . . , m − 1) ,

where mh(ξi) = h ξi− xi+x2i+1  and mh(ηj) = h  ηj− yj+yj+1 2  with h ∈ [0, 2].

Proof. Applying similar methods in the proof of Theorem 7 and then using

the inequality (21), we obtain desired result. 

References

[1] F. Ahmad, N. S. Barnett and S. S. Dragomir, New Weighted Ostrowski and Cebysev Type Inequalities, Nonlinear Analysis: Theory, Methods & Appl., 71 (12) (2009), 1408–1412.

[2] N. S. Barnett and S. S. Dragomir, An Ostrowski type inequality for double integrals and applications for cubature formulae, Soochow J. Math., 27 (1) (2001), 109–114.

[3] M. K. Bakula, M. E. ¨Ozdemir and J. Peˇcari´c, Hadamard type inequalities for m –convex and (α, m)–convex functions, J. Inequal. Pure and Appl. Math. 9 (4) (2008), Art. 96.

(24)

[4] F. Chen, On Hermite–Hadamard type inequalities for s–convex functions on the coordinates via Riemann–Liouville fractional integrals, J. of Appl. Math., Volume 2014, Article ID 248710, 8 pages.

[5] S. S. Dragomir, On Hadamard’s inequality for convex functions on the co– ordinates in a rectangle from the plane, Taiwanese J. of Math., 4 (2001), 775–788.

[6] S. S. Dragomir, N. S. Barnett and P. Cerone, An Ostrowski type inequality for double integrals in term of Lp–norms and Applications in numerical

integrations, Anal. Num. Theor. Approx., 2 (12) (1998), 1–10.

[7] S. Erden and M. Z. Sarikaya, On the Hermite– Hadamard’s and Os-trowski’s inequalities for the co–ordinated convex functions, RGMIA Re-search Report Collection, Vol. 18 (2015). Art. 57.

[8] S. Erden and M. Z. Sarikaya, On the Hermite–Hadamard–Type and Os-trowski Type inequalities for the co–ordinated convex functions, Palestine J. of Math., in press.

[9] J. Hadamard, Etude sur les proprietes des fonctions entieres et en partic-ulier d’une fonction considree par, Riemann, J. Math. Pures. et Appl. 58 (1893), 171–215.

[10] M. A. Latif and M. Alomari, Hadamard–type inequalities for product two convex functions on the co–ordinetes, Int. Math. Forum, 4 (47) (2009), 2327–2338.

[11] M. A. Latif and M. Alomari, On the Hadamard–type inequalities for h– convex functions on the co–ordinetes, Int. J. of Math. Analysis, 3 (33) (2009) 1645–1656.

[12] M. A. Latif and S.S. Dragomir, On some new inequalities for differen-tiable co–ordinated convex functions, J. of Inequalities and Appl., (2012), 2012:28.

[13] M. A. Latif, S. Hussain and S. S. Dragomir, New Ostrowski type inequal-ities for co–ordinated convex functions, TJMM, 4 (2) (2012), 125–136. [14] M. E. Ozdemir, E. Set and M.Z. Sarikaya, New some Hadamard’s type

inequalities for coordinated m–convex and (α, m)n–convex functions, Hacettepe J. of Math. and Statistics, 40 (2) (2011), 219–229.

(25)

[15] A. M. Ostrowski, ”Uber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv. 10 (1938), 226–227.

[16] B. G. Pachpatte, On a new Ostrowski type inequality in two independent variables, Tamkang J. Math., 32 (1) (2001), 45–49.

[17] J. Park, Some Hadamard’s type inequalities for co–ordinated (s;m)– convex mappings in the second sense, Far East J. of Mathematical Sci-ences, 51 (2) (2011), 205–216.

[18] A. Rafiq and F. Ahmad, Another weighted Ostrowski–Gr¨uss type inequal-ity for twice differentiable mappings, Kragujevac J. of Math., 31 (2008), 43–51.

[19] M. Z. Sarikaya and H. Ogunmez, On the weighted Ostrowski type inte-gral inequality for double inteinte-grals, The Arabian J. for Science and Eng. (AJSE )–Math., (2011) 36: 1153–1160.

[20] M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, Vol. LXXIX, 1 (2010), 129–134.

[21] M. Z. Sarikaya, E. Set, M. E. ¨Ozdemir and S. S. Dragomir, New some Hadamard’s type inequalities for co–ordineted convex functions, Tamsui Oxford J. of Information and Mathematical Sciences, 28 (2) (2012), 137– 152.

[22] M. Z. Sarikaya, On the Hermite–Hadamard–type inequalities for co– ordinated convex function via fractional integrals, Integral Transforms and Special Functions, Vol. 25, No. 2 (2014), 134–147.

[23] M. Z. Sarikaya, Some inequalities for differentiable co–ordinated convex mappings, Asian–European J. of Math., Vol: 08, 1550058 (2015), 21 pages. [24] M. Z. Sarikaya, On the generalized weighted integral inequality for double integrals, Annals of the Alexandru Ioan Cuza University – Math., 61 (1) (2015), 169–179.

Referanslar

Benzer Belgeler

türlerinin bulunduğu su örneklerindeki klor miktarlarına bakıldığında sadece iki örneğin klor miktarı 0.3ppm’den yüksek (0.4 ppm) çıkmıştır. Klor miktarı

ECoG recordings from the experiments were analyzed using the PowerLab Chart v.7.2.1 software package (ADInstruments Pty Ltd, Castle Hill, NSW, Australia).

Analysis of variance (ANOVA) results of total color change (ΔE*) values of samples applied with acetic acid, ammonia, hydrogen peroxide and sodium silicate at different

Numerous experimental studies have been carried out to investigate the effect of deep cryogenic heat treatment on the mechanical properties of tool steels; however, very little

The Effects of Densification and Heat Post-Treatment on Hardness and Morphological Properties of Wood Materials Mehmet Budakçı,a,* Hüseyin Pelit,a Abdullah Sönmez,b and Mustafa

Bu romanda önermek istediğim, sizin okur katında çok güzel algıladığınız, tıpkı bu roman yazarının bunu oluştururken bir şeyle­ re şöyle bakması gibi sen bu

Bu oluşturulan serilerden her birinden 9 adet (150x150x150 mm) küp numuneler hazırlanmıştır. İkinci aşamada ise maksimum agrega çapı 4, 8, 16 mm olan beton karışımlarla

Yarma deneylerinde kullanılmak üzere boyut değişim aralığı 1/4 olan silindir ve küp numuneler ile birlikte basınç dayanımı, eğilmede çekme dayanımı