• Sonuç bulunamadı

On generalized fractional integral inequalities for twice differentiable convex functions

N/A
N/A
Protected

Academic year: 2021

Share "On generalized fractional integral inequalities for twice differentiable convex functions"

Copied!
15
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Journal of Computational and Applied

Mathematics

journal homepage:www.elsevier.com/locate/cam

On generalized fractional integral inequalities for twice

differentiable convex functions

Pshtiwan Othman Mohammed

a,∗

, Mehmet Zeki Sarikaya

b

aDepartment of Mathematics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq bDepartment of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey

a r t i c l e i n f o

Article history:

Received 11 January 2019

Received in revised form 17 September 2019 MSC: 26D07 26D10 26D15 26A33 60E15 Keywords:

Generalized fractional integral Convex function

Integral inequalities Random variable

a b s t r a c t

In this article, some new generalized fractional integral inequalities of midpoint and trapezoid type for twice differentiable convex functions are obtained. In view of this, we obtain new integral inequalities of midpoint and trapezoid type for twice differentiable convex functions in a form classical integral and Riemann–Liouville fractional integrals. Finally, we apply our new inequalities to construct inequalities involving moments of a continuous random variable.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A function g

:

I

R

R is said to be convex on the interval I, if the inequality

g(

ζ

x

+

(1

ζ

)y)

ζ

g(x)

+

(1

ζ

)g(y) (1)

holds for all x

,

y

Iand

ζ ∈ [

0

,

1]. We say that g is concave if

g is convex.

For differentiable convex functions, many equalities or inequalities have been established by many authors; for example Hermite–Hadamard type inequality [1], Ostrowski type inequality [2], Hardy type inequality [3], Olsen type inequality [4] and Gagliardo–Nirenberg type inequality [5]. But for twice differentiable convex functions, the most important inequalities are midpoint type inequality [6] and trapezoidal type inequality [7] which are defined by:

v u g(x)dx

(

v −

u)g

(

u

+

v

2

)⏐

(

v −

u) 3 24

g ′′

,

(2)

v u g(x)dx

v −

u 2

[

g(u)

+

g(

v

)]

(

v −

u) 3 12

g ′′

,

(3)

respectively, where g

: [

u

, v] ⊂

R

R is assumed to be twice differentiable function on an open interval (u, v) with the second derivative bounded on (u

, v

). That is,

g′′

:=

supx(u,v)

|

g ′′

(x)|

< ∞

. For more details and applications on inequalities(2)and(3), see [6–9].

Corresponding author.

E-mail addresses: pshtiwansangawi@gmail.com(P.O. Mohammed),sarikayamz@gmail.com(M.Z. Sarikaya). https://doi.org/10.1016/j.cam.2020.112740

0377-0427/©2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).

(2)

Now, we recall some necessary definitions and mathematical preliminaries of the generalized fractional integrals which are defined by Sarikaya and Ertugral [10].

Let

ϑ : [

0

, ∞

)

→ [0

, ∞

) which satisfies the following conditions:

1

0

ϑ

(

ζ

)

ζ

d

ζ < ∞.

We define the following left-sided and right-sided generalized fractional integral operators, respectively, as follows: u+Iϑg(x)

=

x u

ϑ

(x

ζ

) x

ζ

g(

ζ

)d

ζ,

x

>

u

,

(4) v−Iϑg(x)

=

v x

ϑ

(

ζ −

x)

ζ −

x g(

ζ

)d

ζ,

x

< v.

(5)

The most important feature of generalized fractional integrals is that they generalize some types of fractional integrals such as Riemann–Liouville fractional integral [1,11,12], k-Riemann–Liouville fractional integral [13], Katugampola fractional integrals [14,15], conformable fractional integral [16], Hadamard fractional integrals [6], and so on. These important special cases of the integral operators(4)and(5)are mentioned below:

(a) if

ϑ

(

ζ

)

=

ζ

, the operators(4)and(5)reduce to the Riemann integral:

Iu+g(x)

=

x u g(

ζ

)d

ζ,

x

>

u

,

Ivg(x)

=

v x g(

ζ

)d

ζ,

x

< v.

(b) if

ϑ

(

ζ

)

=

Γζα

(α), the operators(4)and(5)reduce to the Riemann–Liouville fractional integral [6]: Iu+g(x)

=

1 Γ(

α

)

x u (x

ζ

)α−1g(

ζ

)d

ζ,

x

>

u

,

Ivg(x)

=

1 Γ(

α

)

v x (

ζ −

x)α−1g(

ζ

)d

ζ,

x

< v.

(c) if

ϑ

(

ζ

)

=

ζ α k

kΓk(α), the operators(4)and(5)reduce to the k-Riemann–Liouville fractional integral:

Iu+,kg(x)

=

1 kΓk(

α

)

x u (x

ζ

k−1g(

ζ

)d

ζ,

x

>

u

,

Iv,kg(x)

=

1 kΓk(

α

)

v x (

ζ −

x)αk−1g(

ζ

)d

ζ,

x

< v,

where Γk(

α

)

=

∞ 0

ζ

α−1e−ζk k d

ζ,

R(α)

>

0

,

and Γk(

α

)

=

k α k−1Γ

(

α

k

) ,

R(α)

>

0;k

>

0

which are given by Mubeen and Habibullah in [17].

Recently, in [10], Sarikayal and Ertugra established the following generalized fractional integral inequalities of trapezoid type for differentiable convex function:

Theorem 1.1. Let g

: [

u

, v] ⊂

R

R be a differentiable function on (u, v) with u

< v

. If

|

g

|

is convex on

[

u

, v]

. Then

g(u)

+

g(

v

) 2

1 2Λ(1)[u+Iϑg(

v

)

+

v−Iϑg(u)]

v −

u Λ(1)

1 0

ζ|

Λ(1

ζ

)

Λ(

ζ

)|d

ζ

( |

g(u)| + |g′ (

v

)| 2

)

,

where Λ(

ζ

)

=

ζ 0

ϑ

((

v −

u)z) z dz

< ∞.

(3)

Theorem 1.2. Let g

: [

u

, v] ⊂

R

R be a differentiable function on (u, v) with u

< v

. If

|

g

|

qis convex on

[

u

, v]

. Then

g(u)

+

g(

v

) 2

1 2Λ(1)[u+Iϑg(

v

)

+

v −Iϑg(u)]

v −

u 2Λ(1)

(∫

1 0

|

Λ(1

ζ

)

Λ(

ζ

)|pd

ζ

)

1 p

( |

g(u)|q

+ |

g′ (

v

)|q 2

)

1q

,

where 1p

+

1 q

=

1

,

q

>

1.

Furthermore, in [18], Ertugral and Sarikaya established the following generalized fractional integral inequalities of trapezoid type for differentiable convex function:

Theorem 1.3. Let g

: [

u

, v] ⊂

R

R be an absolutely continuous function on

[

u

, v]

such that g

L1([u

, v]

), where u

, v ∈ [

u

, v]

with u

< v

. If the function

|

g

|

is convex on

[

u

, v]

. Then

∇(0)g(

v

)

+

(0)g(u)

v −

u

1

v −

u[u+Iϑg(

v

)

+

v−Iϑg(u)]

v −

x

v −

u

|

g(x)|

1 0

|∇(

ζ

)|

ζ

d

ζ +

x

u

v −

u

|

g(x)|

1 0

|

∆(

ζ

)|

ζ

d

ζ

+

v −

x

v −

u

|

g ′ (

v

)|

1 0

|∇(

ζ

)|(1

ζ

)d

ζ +

x

u

v −

u

|

g(u)|

1 0

|

∆(

ζ

)|(1

ζ

)d

ζ,

where ∆(

ζ

)

=

1 ζ

ϑ

((x

u)z) z dz

< ∞, ∇

(

ζ

)

=

1 ζ

ϑ

((

v −

x)z) z dz

< ∞.

Theorem 1.4. Let g

: [

u

, v] ⊂

R

R be a differentiable function on (u, v) with u

< v

. If the function

|

g

|

qis convex on

[

u

, v]

. Then

g(u)

+

g(

v

) 2

1 2Λ(1)[u+Iϑg(

v

)

+

v−Iϑg(u)]

v −

x

v −

u

(∫

1 0

|∇(

ζ

)|pd

ζ

)

1p

( |

g(u)|q

+ |

g′ (

v

)|q 2

)

1q

+

v −

x

v −

u

(∫

1 0

|

∆(

ζ

)|pd

ζ

)

1 p

( |

g(u)|q

+ |

g′ (

v

)|q 2

)

1q

,

where 1p

+

1q

=

1

,

q

>

1.

Tomar et al. [11] established the following Hermite–Hadamard type inequalities via Riemann–Liouville fractional integrals for twice differentiable functions:

Lemma 1.1. Let g

:

I

R

R be twice differentiable function on the interior Ioof an interval I such that g′′

L(

[

u

, v]

),

where u

, v ∈

Iwith u

< v

. Then for each h

(0

,

1) and

α >

0 the following equality holds:

Hg(g;

α,

u

, v

)

=

(

v −

u)2 8

×

[

1 0

ζ

α+1g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ +

1 0

ζ

α+1g′′

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ

],

(6) where Hg(g;

α,

u

, v

)

=

2α−1Γ(

α +

2) (

v −

u)α

[

Iα

(

u+v 2

)

+g(

v

)

+

Iα

(

u+v 2

)

g(u)

]

(

α +

1)g

(

u

+

v

2

)

.

Theorem 1.5. With the similar assumptions ofLemma 1.1, if

|

g′′

|

is convex on

[

u

, v]

, then for each h

(0

,

1). Then

Hg(g;

α,

u

, v

)

⏐ ≤

(

v −

u)2 8(

α +

2)

(|

g ′′ (u)| + |g′′(

v

)|

)

.

(7)

(4)

Theorem 1.6. With the similar assumptions ofLemma 1.1, if

|

g′′

|

qis convex on

[

u

, v]

. Then

Hg(g;

α,

u

, v

)

⏐ ≤

(

v −

u)2 8(

α +

2)

(

2 (

α +

1)p

+

1

)

1p

(|

g′′(u)| + |g′′(

v

)|

)

.

(8) where 1p

+

1 q

=

1

,

q

>

1.

Theorem 1.7. With the similar assumptions ofLemma 1.1, if

|

g′′

|

q

is convex on

[

u

, v]

for q

>

1. Then

Hg(g;

α,

u

, v

)

⏐ ≤

(

v −

u)2 8

(

1

α +

2

)

1−1q

[

(

1 2(

α +

3)

|

g ′′ (u)|q

+

(

1

α +

2

1 2(

α +

3)

)

|

g′′(

v

)|q

)

1q

+

((

1

α +

2

1 2(

α +

3)

)

|

g′′(u)|q

+

1 2(

α +

3)

|

g ′′ (

v

)|q

)

1q

]

.

There are many papers which study and give significant results for twice differentiable functions via fractional integrals; for more details see [12,19–23].

In this paper, we established some new midpoint and trapezoid type inequalities for twice differential convex functions via generalized fractional integrals.

2. Midpoint type inequalities for twice differentiable functions with generalized fractional integrals

Here we give midpoint type inequalities for twice differential convex functions via generalized fractional integral operator. To obtain these results, we need the following lemma:

Lemma 2.1. Let g

:

I

R

R be twice differentiable function on Iosuch that g′′

L(

[

u

, v]

), where u

, v ∈

Iowith u

< v

. Then

[

(

u+v 2

)

+Iϑg(

v

)

+(

u+v 2

)

Iϑg(u)

]

(1)g

(

u

+

v

2

)

=

(

v −

u) 2 4

[∫

1 0 Ω(

ζ

)g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ +

1 0 Ω(

ζ

)g′′

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ

]

,

(9) where Ω(

ζ

)

=

ζ 0 Υ(s)ds

,

Υ(s)

=

s 0

ϑ ((

v−u 2

)

z

)

z dz

< ∞.

(10)

Proof. First, we let

¯

h1

+ ¯

h2

:=

1 0 Ω(

ζ

)g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ +

1 0 Ω(

ζ

)g′′

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ .

(11)

On integrating by parts twice one can have

¯

h1

=

1 0 Ω(

ζ

)g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ

=

2

v −

u

[

Ω(

ζ

)g

(

ζ

2u

+

2

ζ

2

v

)⏐

1 0

+

1 0 Υ(

ζ

)g

(

ζ

2u

+

2

ζ

2

v

)

d

ζ

]

=

2

v −

u

[

(1)g

(

u

+

v

2

)

+

1 0 Υ(

ζ

)g

(

ζ

2u

+

2

ζ

2

v

)

d

ζ

]

=

4 (

v −

u)2

[

v −

u 2 Ω(1)g

(

u

+

v

2

)

Υ(1)g

(

u

+

v

2

)

+

1 0

ϑ ((

v−u 2

)

t

)

ζ

g

(

ζ

2u

+

2

ζ

2

v

)

d

ζ

]

.

(5)

By changing the variable x by x

=

ζ2u

+

2−2ζ

v

, we get

¯

h1

=

4 (

v −

u)2

[

v −

u 2 Ω(1)g

(

u

+

v

2

)

Υ(1)g

(

u

+

v

2

)

+

v u+v 2

ϑ

(

v −

x)

v −

x g(x)dx

]

=

4 (

v −

u)2

[

v −

u 2 Ω(1)g

(

u

+

v

2

)

Υ(1)g

(

u

+

v

2

)

+(

u+v 2

)

+Iϑg(

v

)

]

.

Analogously, we have

¯

h2

=

1 0 Ω(

ζ

)g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ

=

2

v −

u

[

(1)g

(

u

+

v

2

)

1 0 Υ(

ζ

)g

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ

]

=

4 (

v −

u)2

[ v −

u 2 Ω(1)g

(

u

+

v

2

)

Υ(1)g

(

u

+

v

2

)

+

1 0

ϑ ((

v−u 2

)

t

)

ζ

g

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ

]

=

4 (

v −

u)2

[

v −

u 2 Ω(1)g

(

u

+

v

2

)

Υ(1)g

(

u

+

v

2

)

+(

u+v 2

)

Iϑg(u)

]

.

Usingh

¯

1andh

¯

2in(11)and multiplying the result by (v−u)

2

4 , we get equality(9). □

Remark 2.1. With the similar assumptions ofLemma 2.1, if

ϑ

(

ζ

)

=

ζ

, then identity(9)reduces to the following identity: 1

v −

u

v u g(x)dx

g

(

u

+

v

2

)

=

(

v −

u) 2 16

[∫

1 0

ζ

2g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ +

1 0

ζ

2g′′

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ

]

which is proved by Sarikaya and Kiris in [24].

Remark 2.2. With the similar assumptions ofLemma 2.1, if

ϑ

(

ζ

)

=

Γζ(αα), then identity(9)reduces to identity(6).

Corollary 2.1. With the similar assumptions ofLemma 2.1, if

ϑ

(

ζ

)

=

ζ

α

k

kΓk(

α

)

, then we get the following identity:

(

v −

u)2 8

[∫

1 0

ζ

αk+1g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ +

1 0

ζ

αk+1g′′

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ

]

=

2 α k−1Γk(

α +

2k) (

v −

u)αk

[

Iα

(

u+v 2

)

+ ,kg(

v

)

+

I α

(

u+v 2

)

− ,kg(u)

]

(

α +

k)g

(

u

+

v

2

)

.

Theorem 2.1. Let g

:

I

R

R be twice differentiable function on Iosuch that g′′

L(

[

u

, v]

), where u

, v ∈

Iowith u

< v

. If the function

|

g′′

|

is convex on

[

u

, v]

. Then

[

(

u+v 2

)

+Iϑg(

v

)

+(

u+v 2

)

Iϑg(u)

]

(1)g

(

u

+

v

2

)⏐

(

v −

u) 2 4

(

|

g′′ (u)| + |g′′ (

v

)|

)

1 0

|

Ω(

ζ

)|d

ζ.

(12)

Proof. Using equality(9)and the convexity of

|

g′′

|

on

[

u

, v]

, we have

[

(

u+v 2

)

+Iϑg(

v

)

+(

u+v 2

)

Iϑg(u)

]

(1)g

(

u

+

v

2

)⏐

(

v −

u) 2 4

1 0 Ω(

ζ

)g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ +

1 0 Ω(

ζ

)g′′

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ

(

v −

u) 2 4

[∫

1 0

|

Ω(

ζ

)|

g′′

(

ζ

2u

+

2

ζ

2

v

)⏐

d

ζ +

1 0

|

Ω(

ζ

)|

g′′

(

2

ζ

2 u

+

ζ

2

v

)⏐

d

ζ

]

(6)

(

v −

u) 2 4

[∫

1 0

|

Ω(

ζ

)|

(

ζ

2

|

g ′′ (u)| +2

ζ

2

|

g ′′ (

v

)|

)

d

ζ +

1 0

|

Ω(

ζ

)|

(

2

ζ

2

|

g ′′ (u)| +

ζ

2

|

g ′′ (

v

)|

)

d

ζ

]

(

v −

u) 2 8

[

|

g′′(u)|

1 0

|

Ω(

ζ

)|t d

ζ + |

g′′(

v

)|

1 0

|

Ω(

ζ

)|(2

ζ

)d

ζ

+ |

g′′(u)|

1 0

|

Ω(

ζ

)|(2

ζ

)d

ζ + |

g′′(

v

)|

1 0

|

Ω(

ζ

)|t d

ζ

]

=

(

v −

u) 2 4

(

|

g′′(u)| + |g′′(

v

)|

)

1 0

|

Ω(

ζ

)|d

ζ.

Hence the proof is completed. □

Remark 2.3. With the similar assumptions ofTheorem 2.1, if

ϑ

(

ζ

)

=

ζ

, then inequality(12)reduces to the following inequality:

1

v −

u

v u g(x)dxf

(

u

+

v

2

)⏐

(

v −

u) 2 24

[ |

g′′ (u)| + |g′′ (

v

)| 2

]

which is proved by Sarikaya and Kiris in [24].

Remark 2.4. With the similar assumptions ofTheorem 2.1, if

ϑ

(

ζ

)

=

ζ

α

Γ(

α

), then inequality(12)reduces to the inequality

(7).

Corollary 2.2. With the similar assumptions ofTheorem 2.1, if

ϑ

(

ζ

)

=

ζ

α k kΓk(

α

) . Then

k−1Γk(

α +

2k) (

v −

u)αk

[

Iα

(

u+v 2

)

+ ,kg(

v

)

+

I α

(

u+v 2

)

− ,kg(u)

]

(

α +

k)g

(

u

+

v

2

)

(

v −

u) 2 8(

α +

2k)

(

|

g′′(u)| + |g′′(

v

)|

).

Theorem 2.2. Let g

:

I

R

R be twice differentiable function on Iosuch that g′′

L(

[

u

, v]

), where u

, v ∈

Iowith u

< v

.

If the function

|

g′′

|

qis convex on

[

u

, v]

. Then

[

(

u+v 2

)

+Iϑg(

v

)

+(

u+v 2

)

Iϑg(u)

]

(1)g

(

u

+

v

2

)⏐

(

v −

u) 2 4

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1p

{

( |

g′′ (u)|q

+

3|g′′ (

v

)|q 4

)

1q

+

(

3|g′′ (u)|q

+ |

g′′ (

v

)|q 4

)

1q

}

(

v −

u) 2 22q

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1p

(

|

g′′ (u)| + |g′′ (

v

)|

),

(13) where 1p

+

1 q

=

1

,

q

>

1.

Proof. Using equality(9), the convexity of

|

g′′

|

qon

[

u

, v]

and Hölder’s inequality, we have

[

(

u+v 2

)

+Iϑg(

v

)

+(

u+v 2

)

Iϑg(u)

]

(1)g

(

u

+

v

2

)⏐

(

v −

u) 2 4

{

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1p

(∫

1 0

g′′

(

ζ

2u

+

2

ζ

2

v

)⏐

q d

ζ

)

1q

+

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1 p

(∫

1 0

g′′

(

2

ζ

2 u

+

ζ

2

v

)⏐

q d

ζ

)

1 q

}

(

v −

u) 2 4

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1 p

{

(∫

1 0

(

ζ

2

|

g ′′ (u)|q

+

2

ζ

2

|

g ′′ (

v

)|q

)

d

ζ

)

1 q

(7)

+

(∫

1 0

(

2

ζ

2

|

g ′′ (u)|q

+

ζ

2

|

g ′′ (

v

)|q

)

d

ζ

)

1 q

}

(

v −

u) 2 4

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1p

{

( |

g′′(u)|q

+

3|g′′(

v

)|q 4

)

1q

+

(

3|g′′(u)|q

+ |

g′′(

v

)|q 4

)

1q

}

.

Let c1

= |

g ′′ (u)|q

,

c2

=

3|g ′′ (u)|q

,

d1

=

3|g ′′ (

v

)|q

,

d2

= |

g ′′

(

v

)|q, then using the fact that n

i=1

(

ci

+

di

)

m

n

i=1 cm i

+

n

i=1

+

dm i

,

0

m

<

1

,

and 1

+

31q

4, we have

[

(

u+v 2

)

+Iϑg(

v

)

+(

u+v 2

)

Iϑg(u)

]

(1)g

(

u

+

v

2

)⏐

(

v −

u) 2 22q

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1p

(

|

g′′ (u)| + |g′′ (

v

)|

).

This completes the proof of(13). □

Remark 2.5. With the similar assumptions ofTheorem 2.2, if

ϑ

(

ζ

)

=

ζ

, then inequalities(13)reduce to the following inequalities:

1

v −

u

v u g(x)dxg

(

u

+

v

2

)⏐

(

v −

u) 2 16(2p

+

1)1p

{

( |

g′′ (u)|q

+

3|g′′ (

v

)|q 4

)

1q

+

(

3|g′′ (u)|q

+ |

g′′ (

v

)|q 4

)

1q

}

(

v −

u) 2 22+1q(2p

+

1) 1 p

(

|

g′′(u)| + |g′′(

v

)|

)

which are proved by Sarikaya and Kiris in [24].

Remark 2.6. With the similar assumptions ofTheorem 2.2, if

ϑ

(

ζ

)

=

Γζα

(α), then inequalities(13)reduce to the inequalities

(8).

Corollary 2.3. With the similar assumptions ofTheorem 2.2, if

ϑ

(

ζ

)

=

ζ

α k kΓk(

α

) . Then

k−1Γk(

α +

2k) (

v −

u)αk

[

Iα

(

u+v 2

)

+ ,kg(

v

)

+

I α

(

u+v 2

)

− ,kg(u)

]

(

α +

k)g

(

u

+

v

2

)

(

v −

u) 2 8

(

k (

α +

k)p

+

k

)

1p

{

( |

g′′ (u)|q

+

3|g′′ (

v

)|q 4

)

1q

+

(

3|g′′ (u)|q

+ |

g′′ (

v

)|q 4

)

1q

}

(

v −

u) 2 23q

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1p

(

|

g′′(u)| + |g′′(

v

)|

).

3. Trapezoid type inequalities for twice differentiable functions with generalized fractional integrals

Here we give trapezoid type inequalities for twice differential convex functions via generalized fractional integral operator. To obtain these results, we need the following lemma:

Lemma 3.1. Let g

:

I

R

R be twice differentiable function on Iosuch that g′′

L(

[

u

, v]

), where u

, v ∈

Iowith u

< v

. Then g(u)

+

g(

v

) 2

1 2Φ(0)

[

(

u+v 2

)

+Iϑg(

v

)

+ (

u+v 2

)

Iϑg(u)

]

(14)

=

(

v −

u) 2 8Φ(0)

[∫

1 0 Ω

(ζ)

g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ +

1 0 Ω

(ζ )

g′′

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ

]

.

(8)

where the functions

(ζ)

andΦ(

ζ

) are defined by

(ζ ) =

ζ 0 Φ(s)ds

,

Φ(s)

=

1 s

ϑ (

v−u 2 z

)

z dz

< ∞.

(15)

Proof. On integrating by parts twice one can have J1

=

1 0 Ω

(ζ )

g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ

= −

2

v −

u

(ζ)

g

(

ζ

2a

+

2

ζ

2

v

)⏐

1 0

+

2

v −

u

1 0 Φ(

ζ

)g

(

ζ

2u

+

2

ζ

2

v

)

d

ζ

= −

2

v −

u

(

1

)

g

(

u

+

v

2

)

+

2

v −

u

×

[

2

v −

uΦ(

ζ

)g

(

ζ

2u

+

2

ζ

2

v

)⏐

1 0

2

v −

u

1 0

ϑ (

v−u 2 t

)

ζ

g

(

ζ

2u

+

2

ζ

2

v

)

d

ζ

]

= −

2

v −

u

(

1

)

g

(

u

+

v

2

)

+

4Φ(0)

(v −

u

)

2g(

v

)

4

(v −

u

)

2

1 0

ϑ (

v−u 2 t

)

ζ

g

(

ζ

2u

+

2

ζ

2

v

)

d

ζ.

By changing the variable x by x

=

ζ2u

+

2−2ζ

v

, we get

J1

= −

2

v −

u

(

1

)

g

(

u

+

v

2

)

+

4Φ(0)

(v −

u

)

2g(

v

)

4

(v −

u

)

2

v u+v 2

ϑ

(

v −

x)

v −

x g(x)dx

= −

2

v −

u

(

1

)

g

(

u

+

v

2

)

+

4Φ(0)

(v −

u

)

2g(

v

)

4

(v −

u

)

2

(

u+2v

)

+Iϑg(

v

)

.

Analogously, we have J2

=

1 0 Ω

(ζ )

g′′

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ

=

2

v −

u

(

1

)

g

(

u

+

v

2

)

+

4Φ(0)

(v −

u

)

2g(

v

)

4

(v −

u

)

2

(

u+2v

)

Iϑg(u)

.

FromJ1andJ2, we get

(v −

u

)

2 8Φ(0)

(

J1

+

J2

) =

g(u)

+

g(

v

) 2

1 2Φ(0)

[

(

u+v 2

)

+Iϑg(

v

)

+ (

u+v 2

)

Iϑg(u)

] ,

which completes the proof of(14). □

Corollary 3.1. With the similar assumptions ofLemma 3.1if

ϑ (ζ) = ζ

, we have the following important identity: g(u)

+

g(

v

) 2

1

v −

u

v u

(

ζ −

1 2

ζ

2

)

g(

ζ

)d

ζ

=

(

v −

u) 2 8

[∫

1 0

(

ζ −

1 2

ζ

2

)

g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ +

1 0

(

ζ −

1 2

ζ

2

)

g′′

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ

]

.

Corollary 3.2. With the similar assumptions ofLemma 3.1if

ϑ (ζ) =

Γζ(αα), then for x

=

u+2v, we get g(u)

+

g(

v

) 2

2α−1Γ(

α +

1)

(v −

u

)

α

[

Iα

(

u+v 2

)

+g(

v

)

+

Iα

(

u+v 2

)

g(u)

]

=

(

v −

u) 2 8

[

1 0

(

ζ −

1

α +

1

ζ

α+1

)

g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ

+

1 0

(

ζ −

1

α +

1

ζ

α+1

)

g′′

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ

]

.

(9)

Corollary 3.3. With the similar assumptions ofLemma 3.1if

ϑ (ζ) =

ζ α k kΓk(α), then g(u)

+

g(

v

) 2

k−1Γk(

α +

k)

(v −

u

)

αk

[

Iα,k

(

u+v 2

)

+g(

v

)

+

Iα, k

(

u+v 2

)

g(u)

]

=

(

v −

u) 2 8

[

1 0

(

ζ −

k

α +

k

ζ

α k+1

)

g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ

+

1 0

(

ζ −

k

α +

k

ζ

α k+1

)

g′′

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ

]

.

Theorem 3.1. Let g

:

I

R

R be twice differentiable function on Iosuch that g′′

L(

[

u

, v]

), where u

, v ∈

Io with u

< v

. If the function

|

g′′

|

is convex on

[

u

, v]

, then

g(u)

+

g(

v

) 2

1 2Φ(0)

[

(

u+v 2

)

+Iϑg(

v

)

+ (

u+v 2

)

Iϑg(u)

]

(

v −

u) 2 8Φ(0)

(∫

1 0

|

Ω(

ζ

)|d

ζ

)

(

|

g′′ (u)| + |g′′ (

v

)|

).

(16)

Proof. Using equality(14)and the convexity of

|

g′′

|

on

[

u

, v]

, we have

g(u)

+

g(

v

) 2

1 2Φ(0)

[

(

u+v 2

)

+Iϑg(

v

)

+ (

u+v 2

)

Iϑg(u)

]

(

v −

u) 2 8Φ(0)

[∫

1 0 Ω

(ζ )

g′′

(

ζ

2u

+

2

ζ

2

v

)

d

ζ +

1 0 Ω

(ζ )

g′′

(

2

ζ

2 u

+

ζ

2

v

)

d

ζ

]⏐

(

v −

u) 2 8Φ(0)

[∫

1 0

|

Ω(

ζ

)|

g′′

(

ζ

2u

+

2

ζ

2

v

)⏐

d

ζ +

1 0

|

Ω(

ζ

)|

g′′

(

2

ζ

2 u

+

ζ

2

v

)⏐

d

ζ

]

(

v −

u) 2 8Φ(0)

[∫

1 0

|

Ω(

ζ

)|

(

ζ

2

|

g ′′ (u)| +2

ζ

2

|

g ′′ (

v

)|

)

d

ζ +

1 0

|

Ω(

ζ

)|

(

2

ζ

2

|

g ′′ (u)| +

ζ

2

|

g ′′ (

v

)|

)

d

ζ

]

=

(

v −

u) 2 8Φ(0)

(∫

1 0

|

Ω(

ζ

)|d

ζ

)

(

|

g′′(u)| + |g′′(

v

)|

),

which completes the proof of(16). □

Corollary 3.4. With the similar assumptions ofTheorem 3.1if

ϑ (ζ) = ζ

, we have

g(u)

+

g(

v

) 2

1

v −

u

v u g(

ζ

)d

ζ

(

v −

u) 2 24

(

|

g′′(u)| + |g′′(

v

)|

).

Corollary 3.5. With the similar assumptions ofTheorem 3.1if

ϑ (ζ) =

Γζ(αα), then for x

=

u+v

2 , we have

g(u)

+

g(

v

) 2

2α−1Γ(

α +

1)

(v −

u

)

α

[

Iα

(

u+v 2

)

+g(

v

)

+

Iα

(

u+v 2

)

g(u)

]⏐

(

v −

u) 2 8

(

α

(

α +

3) 2(

α +

1)(

α +

2)

)

(

|

g′′(u)| + |g′′(

v

)|

).

Corollary 3.6. With the similar assumptions ofTheorem 3.1if

ϑ (ζ) =

ζ α k kΓk(α), we have

g(u)

+

g(

v

) 2

k−1Γk(

α +

k)

(v −

u

)

αk

[

Iα,k

(

u+v 2

)

+g(

v

)

+

Iα, k

(

u+v 2

)

g(u)

]

(

v −

u) 2 8

(

α

(

α +

3k) 2(

α +

k)(

α +

2k)

)

(

|

g′′(u)| + |g′′(

v

)|

).

(10)

Theorem 3.2. Let g

:

I

R

R be twice differentiable function on Iosuch that g′′

L(

[

u

, v]

), where u

, v ∈

Iowith u

< v

. If the function

|

g′′

|

q is convex on

[

u

, v]

, then

g(u)

+

g(

v

) 2

1 2Φ(0)

[

(

u+v 2

)

+Iϑg(

v

)

+ (

u+v 2

)

Iϑg(u)

]

(

v −

u) 2 8Φ(0)

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1p

{

( |

g′′(u)|q

+

3|g′′(

v

)|q 4

)

1q

+

(

3|g′′(u)|q

+ |

g′′(

v

)|q 4

)

1q

}

(

v −

u) 2 23qΦ(0)

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1 p

(

|

g′′(u)| + |g′′(

v

)|

),

(17) where 1 p

+

1 q

=

1

,

q

>

1.

Proof. Using equality(14), the convexity of

|

g′′

|

q

,

q

>

1 and Hölder’s inequality, we get

g(u)

+

g(

v

) 2

1 2Φ(0)

[

(

u+v 2

)

+Iϑg(

v

)

+ (

u+v 2

)

Iϑg(u)

]

(

v −

u) 2 8Φ(0)

{

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1 p

(∫

1 0

g′′

(

ζ

2u

+

2

ζ

2

v

)⏐

q d

ζ

)

1 q

+

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1p

(∫

1 0

g′′

(

2

ζ

2 u

+

ζ

2

v

)⏐

q d

ζ

)

1q

}

(

v −

u) 2 8Φ(0)

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1 p

{

(∫

1 0

(

ζ

2

|

g ′′ (u)|q

+

2

ζ

2

|

g ′′ (

v

)|q

)

d

ζ

)

1 q

+

(∫

1 0

(

2

ζ

2

|

g ′′ (u)|q

+

ζ

2

|

g ′′ (

v

)|q

)

d

ζ

)

1 q

}

(

v −

u) 2 8Φ(0)

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1p

{

( |

g′′ (u)|q

+

3|g′′ (

v

)|q 4

)

1q

+

(

3|g′′ (u)|q

+ |

g′′ (

v

)|q 4

)

1q

}

.

Let c1

= |

g′′(u)|q

,

c2

=

3|g′′(u)|q

,

d1

=

3|g′′(

v

)|q

,

d2

= |

g′′(

v

)|q, then using the fact that

n

i=1

(

ci

+

di

)

m

n

i=1 cim

+

n

i=1

+

dmi

,

0

m

<

1

,

and 1

+

31q

4, we get

g(u)

+

g(

v

) 2

1 2Φ(0)

[

(

u+v 2

)

+Iϑg(

v

)

+ (

u+v 2

)

Iϑg(u)

]

(

v −

u) 2 23qΦ(0)

(∫

1 0

|

Ω(

ζ

)|pd

ζ

)

1 p

(

|

g′′(u)| + |g′′(

v

)|

).

This ends the proof of(17). □

Corollary 3.7. With the similar assumptions ofTheorem 3.2if

ϑ (ζ) = ζ

, we get the following inequality:

g(u)

+

g(

v

) 2

1

v −

u

v u

(

ζ −

1 2

ζ

2

)

g(

ζ

)d

ζ

(

v −

u) 2 8

(

1 p

+

1

1 3

(

1 2

)

p

)

1p

{

( |

g′′ (u)|q

+

3|g′′ (

v

)|q 4

)

1q

+

(

3|g′′ (u)|q

+ |

g′′ (

v

)|q 4

)

1q

}

(

v −

u) 2 23q

(

1 p

+

1

1 3

(

1 2

)

p

)

1p

(

|

g′′(u)|q

+ |

g′′(

v

)|q

).

(11)

Corollary 3.8. Under assumption ofTheorem 3.2if

ϑ (ζ) =

Γζ(αα), then for x

=

u+2v, we get

g(u)

+

g(

v

) 2

2α−1Γ(

α +

1)

(v −

u

)

α

[

Iα

(

u+v 2

)

+g(

v

)

+

Iα

(

u+v 2

)

g(u)

]⏐

(

v −

u) 2 8

(

1 p

+

1

(

1

α +

1

)

p

(

1 (

α +

1)p

+

1

))

1p

×

{

( |

g′′ (u)|q

+

3|g′′ (

v

)|q 4

)

1q

+

(

3|g′′ (u)|q

+ |

g′′ (

v

)|q 4

)

1q

}

(

v −

u) 2 23q

(

1 p

+

1

(

1

α +

1

)

p

(

1 (

α +

1)p

+

1

))

1p

(

|

g′′(u)|q

+ |

g′′(

v

)|q

).

Corollary 3.9. With the similar assumptions ofTheorem 3.2if

ϑ (ζ) =

ζ α k kΓk(α), then we get

g(u)

+

g(

v

) 2

k−1Γk(

α +

k)

(v −

u

)

αk

[

Iα,k

(

u+v 2

)

+g(

v

)

+

Iα, k

(

u+v 2

)

g(u)

]

(

v −

u) 2 8

(

1 p

+

1

(

k

α +

k

)

p

(

k (

α +

k)p

+

1

))

1p

×

{

( |

g′′ (u)|q

+

3|g′′ (

v

)|q 4

)

1q

+

(

3|g′′ (u)|q

+ |

g′′ (

v

)|q 4

)

1q

}

(

v −

u) 2 23q

(

1 p

+

1

(

k

α +

k

)

p

(

k (

α +

k)p

+

1

))

1p

(

|

g′′(u)|q

+ |

g′′(

v

)|q

).

4. Application: Moments of the random variable

Distribution functions and density functions provide complete descriptions of the distribution of probability for a given random variable. However, they do not allow us to easily make comparisons between two different distributions. The set of moments that uniquely characterizes the distribution under reasonable conditions are useful in making comparisons. Knowing the probability function, we can determine moments if they exist. Applying the mathematical inequalities, some estimations for the moments of random variables were recently studied by many authors, for more details see [25–32].

Let

χ

be a random variable whose probability function is h

:

I

R

R+, where h is a convex function on the interval

of real numbers I such that u

, v ∈

Iwith u

< v

. Denote by Mr(x) the rth moment about any arbitrary point x of the random variable

χ,

r

0, defined as

Mr(x)

=

v

u

(

z

x

)

rh(z)dz

,

r

=

0

,

1

,

2

, . . .

(18)

In view of(18), we obtain the following propositions:

Proposition 4.1. Let

χ

be a random variable whose probability function is h

:

I

R

R+, where h is a convex function on the interval of real numbers I such that u

, v ∈

Iwith u

< v

. Then

[

(

u+v 2

)

+IϑMr(

v

)

+(

u+v 2

)

IϑMr(u)

]

(1)Mr

(

u

+

v

2

)

=

r(r

1)(

v −

u) 4

[∫

1 0 Ω(

ζ

)Mr−2

(

ζ

2a

+

2

ζ

2

v

)

d

ζ +

1 0 Ω(

ζ

)Mr−2

(

2

ζ

2 u

+

ζ

2b

)

d

ζ

]

=

r(r

1)(

v −

u) 4

{

1 0 Ω(

ζ

)

(

v u

(

z

(

ζ

2a

+

2

ζ

2

v

))

r−2 h(z)dz

)

d

ζ

+

1 0 Ω(

ζ

)

(

v u

(

z

(

2

ζ

2 u

+

ζ

2b

))

r−2 h(z)dz

)

d

ζ

}

(19) for r

2k

,

k

=

1

,

2

, . . .

.

(12)

Proposition 4.2. Let

χ

be a random variable whose probability function is h

:

I

R

R+, where h is a convex function on the interval of real numbers I such that u

, v ∈

Iwith u

< v

. If the function

|

h

|

is bounded, then

[

(

u+v 2

)

+IϑMr(

v

)

+(

u+v 2

)

IϑMr(u)

]

(1)Mr

(

u

+

v

2

)⏐

r

(

1

+

(−1) r

)

(

v −

u)r

h

∞ 2r+1

1 0 Ω(

ζ

)

(

ζ

r−1

(

ζ −

2)r−1

)

d

ζ

for r

2k

,

k

=

1

,

2

, . . .

.

Proof. By usingProposition 4.1and since

|

h

|

is a bounded function, we have

[

(

u+v 2

)

+IϑMr(

v

)

+(

u+v 2

)

IϑMr(u)

]

(1)Mr

(

u

+

v

2

)⏐

r(r

1)(

v −

u) 4

{

1 0 Ω(

ζ

)

(

v u

(

z

(

ζ

2a

+

2

ζ

2

v

))

r−2

|

h(z)

|

dz

)

d

ζ

+

1 0 Ω(

ζ

)

(

v u

(

z

(

2

ζ

2 u

+

ζ

2b

))

r−2

|

h(z)

|

dz

)

d

ζ

}

r

(

1

+

(−1) r

)

(

v −

u)r

h

∞ 2r+1

1 0 Ω(

ζ

)

(

ζ

r−1

(

ζ −

2)r−1

)

d

ζ .

This completes the proof. □

Corollary 4.1. Under the similar assumptions ofProposition 4.2, if 1.

ϑ (ζ) = ζ

, then

1

v −

u

v u g(

ζ

)d

ζ −

f

(

u

+

v

2

)⏐

r

(

1

+

(−1) r

)

(

v −

u)r+1

h

∞ 2r+4

(

1 r

+

2

+

(−1) r2r+2

β

1 2 (3

,

r)

)

.

2.

ϑ (ζ) =

Γζ(αα), then for x

=

u+v 2 , we have

2α−1Γ(

α +

1)

(v −

u

)

α

[

Iα

(

u+v 2

)

+g(

v

)

+

Iα

(

u+v 2

)

g(u)

]

(

α +

1)f

(

u

+

v

2

)⏐

r

(

1

+

(−1) r

)

(

v −

u)α+r

h

∞ 2α+r+2Γ(

α +

2)

(

1

α +

r

+

1

+

(−1) r2α+r+1

β

1 2(

α +

2

,

r)

)

.

Proposition 4.3. Let

χ

be a random variable whose probability function is h

:

I

R

R+, where h is a convex function on the interval of real numbers I such that u

, v ∈

Iwith u

< v

and h

Lp

[

u

, v],

p

>

1. If the function

|

h

|

is bounded, then

[

(

u+v 2

)

+IϑMr(

v

)

+(

u+v 2

)

IϑMr(u)

]

(1)Mr

(

u

+

v

2

)⏐

r(r

1)

(

1

+

(−1) (r2)q+1 q

)

h

p

×

[

(

v −

u)(r1)q+1 2rq+1((r

2)q

+

1)

]

1q

1 0 Ω(

ζ

)

(

ζ

(r2)q+1

(

ζ −

2)(r2)q+1

)

1qd

ζ

for r

2k

,

k

=

1

,

2

, . . .

and 1p

+

1 q

=

1.

Proof. Since h

Lp

[

u

, v]

, then by Holder’s integral inequality we have

v u

(

z

(

ζ

2a

+

2

ζ

2

v

))

r−2 h(z)dz

(∫

v u gp(z)dz

)

1p

(

v u

(

z

(

ζ

2a

+

2

ζ

2

v

))

(r2)q dz

)

1q

= ∥

h

p

[

(

v −

u)(r2)q+1

(

ζ

(r2)q+1

(

ζ −

2)(r2)q+1

)

2(r2)q+1((r

2)q

+

1)

]

1q

.

(20)

(13)

Analogously,

v u

(

z

(

2

ζ

2 u

+

ζ

2b

))

r−2 h(z)dz

(∫

v u gp(z)dz

)

1p

(

v u

(

z

(

2

ζ

2 u

+

ζ

2b

))

(r2)q dz

)

1q

= ∥

h

p

[

(−1)(r2)q+2(

v −

u)(r2)q+1

(

ζ

(r2)q+1

(

ζ −

2)(r2)q+1

)

2(r2)q+1((r

2)q

+

1)

]

1q

.

(21)

Using(20)and(21)in(19), we get the desired result. □

Proposition 4.4. Let

χ

be a random variable whose probability function is h

:

I

R

R+, where h is a convex function on the interval of real numbers I such that u

, v ∈

Iwith u

< v

. Then

Mr(u)

+

Mr(

v

) 2

1 2Φ(0)

[

(

u+v 2

)

+IϑMr(

v

)

+(

u+v 2

)

IϑMr(u)

]

=

r(r

1)(

v −

u) 8Φ(0)

[∫

1 0 Ω(

ζ

)Mr−2

(

ζ

2a

+

2

ζ

2

v

)

d

ζ −

1 0 Ω(

ζ

)Mr−2

(

2

ζ

2 u

+

ζ

2b

)

d

ζ

]

=

r(r

1)(

v −

u) 8Φ(0)

{

1 0 Ω(

ζ

)

(

v u

(

z

(

ζ

2a

+

2

ζ

2

v

))

r−2 h(z)dz

)

d

ζ

1 0 Ω(

ζ

)

(

v u

(

z

(

2

ζ

2 u

+

ζ

2b

))

r−2 h(z)dz

)

d

ζ

}

(22) for r

2k

,

k

=

1

,

2

, . . .

.

Proof. Proof of this proposition follows from setting g(x)

=

Mr(x) in the equality(14). □

Proposition 4.5. Let

χ

be a random variable whose probability function is h

:

I

R

R+, where h is a convex function on the interval of real numbers I such that u

, v ∈

Iwith u

< v

. If the function

|

h

|

is bounded, then

Mr(u)

+

Mr(

v

) 2

1 2Φ(0)

[

(

u+v 2

)

+IϑMr(

v

)

+(

u+v 2

)

IϑMr(u)

]

r

(

1

+

(−1) r

)

(

v −

u)r

h

∞ 2r+2Φ(0)

1 0 Ω(

ζ

)

(

ζ

r−1

(

ζ −

2)r−1

)

d

ζ

for r

2k

,

k

=

1

,

2

, . . .

.

Proof. By usingProposition 4.4and since

|

h

|

is a bounded function, we have

Mr(u)

+

Mr(

v

) 2

1 2Φ(0)

[

(

u+v 2

)

+IϑMr(

v

)

+(

u+v 2

)

IϑMr(u)

]

r(r

1)(

v −

u) 8Φ(0)

{

1 0 Ω(

ζ

)

(

v u

(

z

(

ζ

2a

+

2

ζ

2

v

))

r−2

|

h(z)

|

dz

)

d

ζ

+

1 0 Ω(

ζ

)

(

v u

(

z

(

2

ζ

2 u

+

ζ

2b

))

r−2

|

h(z)

|

dz

)

d

ζ

}

r

(

1

+

(−1) r

)

(

v −

u)r

h

∞ 2r+2Φ(0)

1 0 Ω(

ζ

)

(

ζ

r−1

(

ζ −

2)r−1

)

d

ζ.

Referanslar

Benzer Belgeler

The comparison results of the Duncan test on the factor levels of moisture content, type of varnish, thermal processing temperature, and thermal processing time,

The aim of this study was to investigate the effect of the Tinuvin derivatives widely used as UV stabilizers in the plastics industry on EPDM rubber.. The EPDM rubber plates

RBSÖ açısından benlik saygısı, anne-baba ilgisi ve babayla ilişki hasta grubunda kontrol grubuna göre daha düşük iken, eleştiriye duyarlılık, depresif

However, the most successful results for all tested properties were determined in the styrene pretreated samples in which hygroscopicity decreased and dimensional stability

In diabetic aorta, the relaxation response to acetyl- choline (Ach) was found to be significantly decreased compared with control subjects, and resveratrol treatment reversed this;

Bu romanda önermek istediğim, sizin okur katında çok güzel algıladığınız, tıpkı bu roman yazarının bunu oluştururken bir şeyle­ re şöyle bakması gibi sen bu

Sayısal örnek için seçilen bir taşıyıcı sistem modeli, x ve y yönünde dört açıklıklı, zemin+dört katlı üç boyutlu çerçeve sistem olup,

Betonun mekaniksel özelliklerinin çarpma dayanımına etkisinin incelenmesi konusundaki çalıĢmada; 30x15 cm ve 20x10 cm boyutlarında standart silindir ile 10x10x50 cm´