• Sonuç bulunamadı

Microfluidic bio-particle manipulation for biotechnology

N/A
N/A
Protected

Academic year: 2021

Share "Microfluidic bio-particle manipulation for biotechnology"

Copied!
20
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Biochemical

Engineering

Journal

j ou rn a l h o m ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / b e j

Microfluidic

bio-particle

manipulation

for

biotechnology

Barbaros

C¸etin

a,∗

,

Mehmet

Bülent

Özer

b

,

Mehmet

Ertu˘grul

Solmaz

c,d

aMechanicalEngineeringDepartment,Microfluidics&Lab-on-a-ChipResearchGroup, ˙IhsanDo˜gramacıBilkentUniversity,Ankara06800,Turkey bDepartmentofMechanicalEngineering,TOBBUniversityofEconomicsandTechnology,Ankara06560,Turkey

cDepartmentofElectricalandElectronicsEngineering, ˙IzmirKatipelebiUniversity, ˙Izmir35620,Turkey dNationalNanotechnologyResearchCenter,Ankara06800,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received23March2014

Receivedinrevisedform8July2014 Accepted14July2014

Availableonline21July2014 Keywords: Biomedical Bioprocessdesign Bioseparations Fluidmechanics Microfluidics Bio-particlemanipulation

a

b

s

t

r

a

c

t

Microfluidicsandlab-on-a-chiptechnologyoffersuniqueadvantagesforthenextgenerationdevices fordiagnostictherapeuticapplications.Forchemical,biologicalandbiomedicalanalysisinmicrofluidic systems,therearesomefundamentaloperationssuchasseparation,focusing,filtering,concentration, trapping,detection,sorting,counting,washing,lysisofbio-particles,andPCR-likereactions.The combi-nationoftheseoperationsledtothecompleteanalysissystemsforspecificapplications.Manipulationof thebio-particlesisthekeyingredientfortheseapplications.Therefore,microfluidicbio-particle manip-ulationhasattractedasignificantattention fromtheacademiccommunity.Consideringthesizeof thebio-particlesandthethroughputofthepracticalapplications,manipulationofthebio-particles isachallengingproblem.Differenttechniques areavailableforthemanipulationofbio-particlesin microfluidicsystems.Inthisreview,someofthetechniquesforthemanipulationofbio-particles;namely hydrodynamicbased,electrokinetic-based,acoustic-based,magnetic-basedandoptical-basedmethods havebeendiscussed.Thecomparisonofdifferenttechniquesandtherecentapplicationsregardingthe microfluidicbio-particlemanipulationfordifferentbiotechnologyapplicationsarepresented.Finally, challengesandthefutureresearchdirectionsformicrofluidicbio-particlemanipulationareaddressed.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Theminiaturizationtrendofintegratedcircuitssince1970s,and thedevelopmentofadvancedfabricationtechniquesformicroand nano-scaledevices[1]since1980sledtotheusageofdevices hav-ingthedimensionsofmicrometersandnanometersinmanyfields. Thistrendhashelpedmicrofluidics,whichistheflowphysicsat micro scale,becomean activeresearchareaat theintersection ofchemistry,physics,biologyandengineering.Thisintersection eliminatedtheboundariesbetweenthesedisciplines.The elimi-nationoftheseboundarieshasposedmanychallengesandnew directionsfororganizationsofeducationandresearch.Oneofthe importantchallengesistherapiddevelopmentofbiochips, minia-turizedanalysissystemsorlab-on-a-chip(LOC)deviceswhichare microfluidicplatformsonwhichonecanhandlechemicaland bio-logicalanalyses,point-of-caretesting,clinicalandforensicanalysis, molecularandmedicaldiagnosticsforbiological,biomedicaland

∗ Correspondingauthor.Tel.:+903122902108;fax:+903122664126. E-mailaddresses:barbaros.cetin@bilkent.edu.tr,barbaroscetin@gmail.com (B.C¸etin),bulent.ozer@gmail.com(M.B.Özer),mehmete.solmaz@ikc.edu.tr (M.E.Solmaz).

chemical applications. LOC devices can perform the same spe-cializedfunctionsastheirbench-topcounterparts.Theycanalso perform clinical diagnoses, scan DNA, run electrophoretic sep-arations, act as microreactors, detect cancer cells and identify bacteriaandviruses[2].Onasinglechip,hundredsofdifferent reac-tionsand/oranalysescanbeperformedatthesametimethrough hundredsofparallelmicrochannels.Originallyitwasthoughtthat themostsignificantbenefitoftheseLOCdeviceswouldhavebeen theanalyticalimprovementsassociatedwiththescalingdownof thesize.Furtherdevelopmentsrevealedothersignificant advan-tagessuchas:(i)smallamountofsample(inthenanotopicoliter range,openingthedoortothepossibilityofanalyzingcomponents fromsinglecells),(ii)smallamountofreagents,(iii)veryshort reac-tionandanalysistimecomparedtobench-topcounterparts,(iv) reducedmanufacturingcosts,(v)increasedautomation,(vi)high portability,and(vii)opportunityformassivelyparallelchemical analyseseitheronthesameormultiplesamples[3].

Forchemical,biologicalandbiomedicalanalysesin microflu-idic systems, there are some fundamental operations such as separation, focusing, filtering, concentration, trapping, sorting, detection,counting,washing,lysis ofbio-particles,andPCR-like reactions. Thecombination oftheseoperations ledtothe com-plete analysis system or LOC system for a certain application.

http://dx.doi.org/10.1016/j.bej.2014.07.013 1369-703X/©2014ElsevierB.V.Allrightsreserved.

(2)

Manipulation of the bio-particles is the key ingredient for the aforementioned operations. Therefore, microfluidic bio-particle manipulation has attracted significant attention from the aca-demiccommunity.Consideringthesizeofthebio-particlesandthe requiredthroughputforthepracticalapplications,manipulationof thebio-particlesisachallengingproblem.Manyresearchgroups andscientistshaveproposeddifferenttechniquestomanipulate bio-particlessuch ashydrodynamic-based, electrokinetic-based, acoustic-based,magnetic-based,optical-basedetc.Inthisreview, thesedifferenttechniquesarediscussed.Moreover,thecomparison ofdifferenttechniquesandtherecentbiotechnologyapplications regardingthemicrofluidicbio-particlemanipulationarepresented. Finally, challenges and the future research directions are also addressed.

2. Manipulationmethods

Manipulationmethodscanbecategorizedaspassiveoractive methods dependingon thepresence of an external force field. Passivesystemsutilizetheflowfield togetherwiththechannel geometryortopologychangestomanipulatethemotionof par-ticles.Ontheotherhand,activesystemsutilizeanexternalforce fieldsuchaselectric,acoustic,magneticandoptictomanipulatethe motionofparticles.Thesemethodscanalsobecategorizedas label-basedorlabel-freemethodsdependingontheneedforanylabeling (ortags)forthebio-particles.Thelabel-freemethodsutilizethe intrinsicpropertiesofthebio-particlessuchassize,shape, den-sity,dielectricproperties,acousticpropertiesandrefractiveindex. Ontheotherhand,thelabel-basedtechniquesrequireadditional labelstomanipulatebio-particles.Asanexample,twoconventional cellsortingtechniquenamelyfluorescence-activatedcellsorting (FACS)andmagnetic-activated cellsorting(MACS) require cell-specificlabelingthroughfluorophore-conjugatedantibodiesand magneticbeadsconjugatedwithantibodies,respectively[4].

Consideringthemanipulationofabio-particleinamicrofluidic system,dependingonthemethodstheremayexistmultipleforces onabio-particle,someofwhich canbedominantornegligible. Therefore,theorderofmagnitudeestimateofthevariousforces experiencedbyabio-particleis crucialformicrofluidic applica-tionstopredicttheresultantmotionofbio-particles.Asanexample, Brownianmotionistherandommovementofparticlesduetothe thermaleffects;however,Brownianmotionisnegligibleforthe particleswithasizelargerthan1␮mformicrofluidicapplications

[5].

There are several techniques to manipulate bio-particles in microfluidicsystems.Severalofthosemethodsarereviewedwithin thispaper.Stand-alonereviewpapersarepresentforeachofthese methods[6–14]sincetherehasbeena vastamountofresearch effortonthesetechniquesformicrofluidicplatformsforthelast twodecades.Inthisreview,ourobjectiveistogivethebasicsof eachmethod.Moreworkisdedicatedforthecomparisonofthe techniquesinterms ofassociated samplepreparation, through-put,channelgeometry,materialandfabrication,andtherequired hardware.Webelievethatsuchacomparisonwillprovidevaluable helpfortheresearchersfrommanydisciplineswhowouldliketo applymicrofluidictechnologytobio-particlerelatedbiotechnology applications.

2.1. Hydrodynamic-based(HD)

Inmicrofluidicapplications,theflowcanbeinducedbypressure difference(pressure-drivenflow)and/orbyelectricalfield (electro-osmoticflow).Sinceelectricfieldisintroducedforelectro-osmotic flow,otherforces(whichwillbediscussedinthefollowing sub-section)otherthandragforcegeneratedontheparticlecomeinto

picture.Inthecaseofpressure-drivenflow,pressuredifferenceis themainparameterwhichcontroltheincompressiblefluidflow inmicrochannels.Thedragforceis theonlyforcegenerated on theparticlesasaresultoftheinteractionoftheparticlewiththe flowfield.Hydrodynamic-basedmethodsarepassivemethodsin whichthebio-particlemanipulationisperformedbyuseofthedrag forcegeneratedontheparticlesthroughspeciallydesigned chan-nelgeometriesandtopologies.Thedimensionlessnumberswhich characterizetheparticleflowinamicrochannelarethechannel Reynoldsnumber(Re)andtheparticleReynoldsnumber(Rep)[15]:

Re= UmaxDh  , Rep= Umaxd2 Dh =Re



d Dh

2

, (1)

whereUmax isthemaximumvelocity inthemicrochannel,is

thefluiddensity,isthedynamicfluidviscosity,distheparticle diameter,andDhisthehydraulicdiameterofthechannel.

Typi-cally,flowswithinmicrochannelsareinStoke’sflowregime(lowRe flows)whichmeanstheflowfollowstheboundariesofthedomain. Whenparticlesarepresentwithinthechannel,theyalsofollowthe streamlinesoftheflowfieldinadeterministicmanner.However, whenanobstacleand/orflowcontraction/expansionispresented withinthechannel,theparticletrajectoriesrevealsizedependence. Therefore,byspeciallydesignedchannelgeometries,bio-particles canbemanipulatedaccordingtotheirsizeanddeformability.

Introducing obstacles and posts with a critical spacing can be utilized as filter structure to capture (trap) or isolate spe-cific bio-particle of interest witha size largerthan the critical size[6].However,pore-based filtrationmaybeineffective with deformablebio-particlesand/orbio-particleswithuniqueshapes. Byintroducingseriesofposts,asizedependentlateral displace-ment of bio-particles canalso beachieved, which is knownas deterministiclateraldisplacement(DLD)(seeFig1a)[16–20].DLD canbeutilizedforbio-particleseparation,sortingandfocusing.The presenceofslantedoranisotropicobstacleswithinthe microchan-nelcanalsoinducesize-basedmotionoftheparticlesduetothe particle-obstacle interaction induced rotational flows, which is knownashydrophoresis (see Fig.1b) andcan beimplemented forbio-particleseparation,sortingandfocusing[21–26].Withthe introductionofcontraction/expansion(pinchsegment)withinthe microchannelnetworktogetherwiththelaminarflowprofile, bio-particlescanalsobemanipulatedtoflowatdifferentstreamlines, whichisknownaspinch-flowfractionation(PFF)(seeFig1c)and canbeimplementedforbio-particleseparation,sortingand focus-ing[27–31].

TheStoke’sflowregimeisvaliduptoRe∼1.WhenRereaches unityandbeyond,theinertialeffectsbecomesignificantand mod-ifytheflowcharacteristics,whichisknownasinertialmicrofluidics. Inthisregime,particlesdonotfollowthestreamlinesoftheflow field.Whentheinertialeffectscomeintopicture,twoinertiallift forcesareinducedontheparticle:(i)asheargradientliftforce and(ii)awall-effectliftforce[15].Awall-effectliftforceinduces arepellingforceaway formthewall.Ontheotherhand, shear-gradientliftforceinducesanattractiveforcetowardsthewall[15]. Whenthechannelgeometrybecomes curved,a secondary rota-tionalflowbeginstobeobserveddue totheinertiaofthefluid whichisknownasDeanflow.Thedimensionlessnumberswhich characterizesthissecondaryflowaretheDeannumber(De)and thecurvatureratio(ı)[15,32]:

De=Re



D h 2r

1/2

, ı=Dh 2r, (2)

wherer istheradiusofcurvature ofthechannel.Deand ıare twoimportantparameterswhichaffectthemotionoftheparticles withincurvedchannels.Inertialmicrofluidicscanbeutilizedfor separation,sorting,focusing,andisolationofbio-particles[33–39].

(3)

Fig.1. Basicprinciplesofhydrodynamic-basedmethods:(a)DLD,(b)hyrdophoresis,(c)pinchedflowfractionation,(d)inertialmicrofluidics. Aschematicsofaninertialmicrofluidicsbasedsortingcanbeseen

in(seeFig1d).

TheHD manipulationcanbealsoutilized for theseparation byshape,sincethetrajectoryoftheparticleswithina microflu-idicchannelmayalsopossessshapedependencedependingonthe channelgeometryandcharacteristicsofflow.Morespecifically,the flowofasphericalparticleandnon-sphericalparticlemaydiffer. Separationandsortingofsphericalandnon-sphericalparticlesis importantforclinicalapplicationssuchasseparationofyeastcells atdifferentcellstageandseparationofparasitesformblood.More recently,someresearcheffortshavebeenfocusedonthe imple-mentationofHDapplicationsonseparationbyshape usingDLD

[19,18,20],PFF[28]andinertialmicrofluidics[40].

2.2. Electrokinetic-based(EK)

Electricalforceslikeelectrophoresis(EP)anddielectrophoresis (DEP)arethesubtlesolutionstomanipulateparticlesinLOCdevices duetotheirfavorablescalingforthereducedsizeofthesystem

[41].EPisthemovementoftheelectrically-chargedparticlesinan electricalfieldduetotheCoulombicbodyforce(electrophoretic force)actingontheparticlesbecauseoftheirsurfacecharge.For theutilizationoftheEP,theparticleneedstobechargedandthe appliedelectricfieldneedstobeconstantordirectcurrent(DC).

TheEPforceonaparticlesubjectedtoanelectricfieldofEcan bewrittenas:

FEP=qE, (3)

whereqisthenetchargeoftheparticle[2].EPiscommonlyused inconventionalandwell-developedseparationtechniquessuchas capillaryelectrophoresistoseparateDNAandproteins.

DEPisthemovementofparticlesinanon-uniformelectricfield duetotheinteractionoftheparticle’sdipoleandspatialgradientof theelectricfield.DEPisapplicableevenfornon-conducting parti-clesandcanbegeneratedeitherbyusingDCoralternatingcurrent (AC)field.

TheDEPforceonasphericalparticlesubjectedtoaDCfieldofE

canbewrittenas[8]:

FDEP=2εmfCMR3

(E·E)=2εmfCMR3



E



2

, (4)

whereEistheelectricfieldvector,εmistheabsolutepermittivity

ofthesuspendingmedium,andRistheparticleradius.fCMisthe

Clausius-Mossotti(CM)factor,whichisgivenby fCM=

εp−εm

εp+2εm, (5)

whereεisthepermittivity,andsubscriptspandmstandforthe particleandthemedium,respectively.CMfactor hasnumerical limitsfrom−0.5to1.0.FornegativeCM,negative-DEP(nDEP)force (whichisinthedirectionofminimaofthegradientofthe elec-tricfieldstrength)isgeneratedontheparticle.ForpositiveCM, positive-DEP (pDEP)force(whichisin thedirectionof maxima ofthegradientoftheelectricfieldstrength)isgeneratedonthe particle.

Similarly, for a spherical particle in an AC-field, the time-averagedDEPforcecanbeexpressedas[8]

FDEP(t)=2εmRe[fCM]R3

E2rms, (6)

whereErmsistheroot-mean-squareoftheAC-field,Re[fCM]isthe

realpartoftheClausius-Mossottifactorwhichisdefinedas fCM(˜εp, ˜εm)=

˜εp− ˜εm

˜εp+2˜εm

, (7)

where ˜ε isthecomplexpermittivityanddefinedas ˜ε=ε−j





ω



. (8)

Time-averagedDEPforce,Eq.(6),isvalidforastationary AC-field.IfthephaseoftheAC-fieldhasaspatialvariation,Eq.(6)needs tobemodifiedtoincludethiseffect.Ingeneralsense,time-averaged DEPforcecanbewrittenas[8]:

FDEP(t)=2εmRe[fCM]R3

E2rms+4εmIm[fCM]R3



E2rms,i

ϕi



, (9)

(4)

whereϕisthephaseoftheAC-field.Subscriptireferstoeach com-ponentoftheelectricfieldandthephasegradient.Thelasttermin theparenthesisisatensornotationandreferstothesummation ofthecomponentsofthevectorquantitiesinsidethebracket.Im[·] referstotheimaginarypartofacomplexquantity.Thefirstterm dependsonthenon-uniformityintheelectricfieldstrength,and thesecondtermdependsonthenon-uniformityinthephaseof theelectricfieldwhichisthedrivingforceforthetraveling-wave DEP(twDEP)applications.Inthecaseofseriesofplanarelectrodes patternedatthebottomsubstrateofaLOCdevicewhichareexcited withdifferentphases,thefirsttermleadstolevitationofparticles withn-DEPresponse,andthesecondtermleadstoanaxialmotion oftheparticlesovertheelectrodes.Directionoftheaxialmotion dependsonthesignoftheimaginarypartoftheCM.

DEPforce depends ontheparticlesize, dielectric properties oftheparticleandthemedium.Moreover,inthecaseofanAC field,DEPforce(throughCMfactor)alsobecomesfunctionofthe frequencyoftheACfield.Dependingonthedielectricproperties ofthe medium and particle, DEPresponse of a particle canbe switchedfromnDEPtopDEP.Thefrequencyatwhichthis tran-sitionoccurs(i.e.thefrequencyatwhichDEPforcebecomeszero) iscalledthecross-overfrequency.Actually,theremayexist multi-plecross-overfrequenciesforbio-particles[4].SinceDEPdepends onthebio-particles’intrinsicelectricalproperties,EKmanipulation techniquesdonotrequireanylabeling,andarelabel-free. Dielec-tricproperties ofa bio-particledependonthemorphology and chemicalcomposition oftheinternal matrixofthebio-particle. Therefore,eachbio-particlehasitsowndielectricsignature[41]. Thisissueintroducesabio-particlespecificselectivity;however, alsointroducesachallenge.Sincethebiologicalbasisofthe dielec-tricsignatureofthebio-particlesisnotwell-known,theprediction ofthedielectrophoreticmotionofthebio-particlesinanelectric fieldis notstraightforward.For EKmanipulation,both negative andpositiveforcescanbegeneratedwithdifferentconfiguration oftheelectrodesand/orthemicrofluidicchannelstructures,and switchingthepolarityand/orthefrequencyoftheelectricfield.In additiontothat,DEPhasafavorablescalingeffectwhichmakes itperfectcandidateforthemanipulationofmicro/nano-sized par-ticles[8].OnerequirementfortheDEPforcetobeinducedisthe non-uniformelectricfieldgeneratedwithinthemicrofluidicdevice. Non-uniformelectricfield caneitherbegenerated bymeansof (i)insulatorstructuresor(ii)byspeciallydesignedmicroelectrode arrays.

2.2.1. Insulator-basedDEP(iDEP)

Thenon-uniformelectricfieldcanbegenerated bymeansof the specially designed microchannel network (such as serpen-tinechannelandspiralchannel)orspeciallydesignedstructures inside themicrochannelnetwork (suchas electricallyinsulated hurdlesandobstacles). Typically,theelectricfield isappliedby usingexternalelectrodesthataresubmergedintothereservoirs, andtheflowisalsoinducedbytheelectricfield(i.e.electro-osmotic flow).Highelectricvoltageisrequiredtogeneratethesufficient electrokineticforcewithinthemicrochannel networkforthese applicationswhichmakestheuseofDC field(orDC-biased AC) feasible.Therefore,commonlyiDEPapplicationsareDC-DEP appli-cations.However,specialcareisneededsincethehighelectrical voltagemayleadtoaseriousJouleheatingeffectinsidethe chan-nel.Thisseveretemperatureincreaseinside thechanneldueto Jouleheatingmayleadtoabubbleformationwhichcanseverely interferewiththeoperationofthedevice[42].Ontheotherhand, duetotheabsenceoftheelectrodesinsidethedevice,iDEPdevices arerobust,chemicallyinertanddonotrequireany photolithogra-phy,thin-filmdepositionandlift-offand/oretchingforelectrode fabrication.

2.2.2. Electrode-basedDEP(eDEP)

Thenon-uniformelectricfieldcanbegeneratedbymeansofthe speciallydesignedmicroelectrodearrays(i.e.interiorelectrodes) patternedwithinthemicrochannels.Toavoidtheadverseeffects ofDCfieldsuchasmigrationofchargedparticlestowardsthe elec-trodes,ACfieldisappliedforeDEPapplications.Mostofthetime, embeddedinternal electrodesareplanar(2D) (i.e.heightofthe electrodesareintheorderofhundrednanometers),andare fabri-catedwithinthedevicebymeansofcomplex,timeconsumingand relativelyexpensivemanufacturingtechniquessuchasthin-film deposition,sputtering,chemicalvapordeposition,etc.Moreover, foulingoftheelectrodesmaydistorttheoperationofthedevice whenworkingwithbio-particles[43].However,withan appropri-atedesign(i.e.closelyspacedelectrodes),operatingvoltagecanbe lowered(whichpreventsanysufferingfromJouleheating)foreDEP applications.Moreover,lowvoltagessimplifytheequipmentand circuitry.ForeDEPapplications,theinterfacialeffectsmayoccur attheinterfacebetweenthefluidmediumandtheelectrode sur-face,andmayleadtoadverseeffectssuchaselectrodepolarization, localheatingaroundtheelectrodes(whichmayresultinAC elec-troconvection),bubbleformationanddissolutionoftheelectrodes

[8].Therefore,someconstraintsneedtobeconsideredinthedesign ofsuchsystems.

2.3. Acoustic-based(ACT)

Theuseofultrasonicstandingwavesforbio-particle manipu-lationreliesonthecreationofultrasonicstandingwaveswithina channel.Thegenerationofacousticradiationforcehasbeen stud-iedforalongtime.Theformulationforacousticradiationforceon inelastic[44]andelasticsphereswasderived[45]andlater general-izedbyGorkov[46].Ingeneral,equationsofacousticsconsiderthe compressibleNavier–Stokesequationandthefirstorderharmonic variationsonthestaticmeanofacousticproperties.However,the time-averagevaluesofthesevariablesleadtozeroforharmonic inputs.Realistically,havingzeromeanfortheacousticvariables overonecyclecannotbethecasesincefromthetestsitisknown thatthereisnetdisplacementofparticlesovertimewhichmeans thattheaverageoftheacousticforceover onecyclecannotbe zero.Therefore,forthecalculationofacousticradiationforcetime averagedsecondorderradiationforcesneedtobeused[47].The gradientoftheacousticradiationpotentialcanberelatedtothe acousticradiationforceas:

Frad=−

Urad, (10)

whereUradis theradiation potential.Under theassumptions of

particlesbeingsmallwithrespecttothewavelengthofthe acous-ticwavesandnotconsideringacousticwavescatteringfromother particles(i.e.smallparticleswithlowconcentration),theacoustic radiationforcecanbeobtainedas:

Urad= 4 3 R 3



f1 1 2fcf2 p2 in−f2 3 4fv 2 in



, (11) f1=1− fcf2 pc2p , f2= 2(p−f) 2p+f . (12)

Eq.(12)containsthevariablesrelatedtotheacousticproperties ofthefluidmediumaswellastheparticlestobemanipulated. pinandvinaretheincidentacousticpressureandacousticparticle

velocity,andfandcfindicatesthedensityandthespeedofsound

ofthesuspensionfluid,respectively.pandcpindicatesthedensity

andthespeedofsoundofparticles,Ristheradiusoftheparticle. Theaboveexpressionsaretrueforanyacousticfield.Forthecase ofanacousticstandingwavewhereacousticpressureismaximum, theparticlevelocityisminimumatthechannelwalls.Thefollowing

(5)

Fig.2.Arepresentationofacousticbasedbio-particle(a)washingand(b)separation. equationshowstheacousticradiationforceduetoa1Dstanding

waveasfollows:

Frad=4R2(kR)Eac sin(2ky)ˆj, (13)

wherekisthewavenumber,yisthelocationdirectionalongwhich theacousticpressurewavechanges,andistheacoustophoretic contrastfactorwhichcreatesdifferentamountofforcingon parti-clesduetotheiracousticproperties

=p+2/3(p−f) 2p−f − fc2f 3pc2p , Eac= 1 4fu 2 y· (14)

ThesignofEq.(14)alsodeterminesthedirectionofthe parti-cles’motionwhentheyarepushedbytheacousticradiationforce. Ifthecontrastfactorispositive,theparticleswillmovetowards thenodalpointsand ifthecontrastfactor isnegative,particles movetotheantinodesoftheacousticpressurewaves.Hence,Eqs.

(13)and(14)canbeusedtodeterminetheacousticradiationforce appliedonabio-particlesolutionwithlowconcentrationsuchthat theacousticpressurefieldisnotdistortedduetoexistenceofthe particles.Moreover,thederivationalsoassumesthattheradiusof eachparticleissmallcomparedtotheacousticwavelength.

Theacousticstandingwavefieldcreatesanacousticradiation forceonbio-particleswhosemagnitudedependsonthesizeand acousticpropertiesofthebio-particle.Thedifferenceinthe mag-nitudeof theacousticradiationforcecausestheparticles tobe manipulatedintothedifferentlocationswithinthemicrochannel basedontheirproperties.Propertydependentparticle manipula-tioncanbeexploitedfordifferentapplicationsinbiotechnology. Bio-particlewashingisoneoftheseapplicationsinwhichdeflection ofbio-particlesisusedtomovethebio-particlesfromonecarrying mediumtoanother.Forthistooccur,thereneedtobetwodifferent typesof carrying medium(buffer) flowing inthe microchannel andtheReynoldsnumberoftheflowneedstobelowtosatisfy

minimalmixingofthetwobuffersolutions.Theideabehindthe bio-particlewashingistomovetheparticlesfromonebufferto anotherthroughtheuseofacousticradiationforceinducedbythe ultrasonicstandingwavesinsidethemicrofluidicchannel.The pro-cesscanbeseeninFig.2(a).Ultrasonicwavescanalsobeutilized totrapbio-particles(acoustictrapping)tocertainlocations(nodal planes)ofamicrochannel.Theacousticradiationforcemaybeused toovercomethedragforceonthebio-particlesandholdthem sta-tionary(i.e.trappedparticles).Thesameprinciplecanbeusedto cleanthemediumfrombio-particlesorincreasethenumber con-centrationofthebio-particlesinthemedium.Sincethemagnitude oftheacousticradiationforceinducedonabio-particledepends onthesizeandacousticpropertiesofthebio-particle,standing ultrasonicwavescanbeusedinbio-particleseparation,whichis alsoknownasacoustophoresis.Bio-particlescanbemanipulated toarriveatcertainlocationsinsidethemicrochannelatdifferent instants.Forinstance,whenbio-particlesaredirectedtothecenter ofthechannelbytheacousticradiationforce,thetimetoreachthe centerofthechannelwillbedifferentfordifferentbio-particles,and thisdifferenceintimecanenabletheseparationofbio-particles. Ifseparationintermsofsizeisdesired,thenthelargestdiameter particleswillreachthecenterchannelfirstwheretheycanbe chan-neledoutfromthecenter,whereasthesmallerdiameterparticles canbechanneledoutfromlocationsthatareclosertothechannel sidewalls.ThisprocessisschematicallyshowninFig.2(b). 2.4. Magnetic-based(MG)

Magneticfieldcanbeusedasanexternalforcetomanipulate bio-particles.Theforceappliedbythemagneticfieldonaparticle canbewrittenas[48]:

FMG=V

p− m

0

(6)

Fig.3.Theprinciplestepsofimmunomagneticbio-particleseparation.

where prepresentsmagneticsusceptibilityoftheparticle, mis

themagneticsusceptibilityofthemedium,0isthemagnetic

per-meabilityofthefreespace,Visthevolumeoftheparticle,andBis themagneticfluxdensity.Theimportantparameterswhichaffect themagneticforceonaparticlearethedifferencebetweenthe magneticsusceptibilitiesoftheparticleandthemedium,aswell asthemagnitudeandthegradientofthemagneticflux.Moreover, themagneticforcedependsonthevolumeoftheparticle(i.e.the magnitudeoftheforcehassizedependence).

Typically, it is not possible to generate large enough mag-neticforceonabio-particlesuspendinginaconventionalaqueous solution. To be able to create large enough force, the differ-encebetween the magnetic susceptibilities of the particle and themediumneedsto belarge. Thisdifferencemayberealized eitherby increasingthemagnetic susceptibilityof bio-particles orthesuspensionmedium.Itisdifficulttoincreasetheinherent magneticsusceptibilityofbio-particles;however,anengineered paramagnetic micro-particle with high magnetic susceptibility canbeattachedtobio-particleswhichcausesbio-particlestobe manipulatedbytheparamagneticmicro-particle.Forthebinding processtooccur,thesurfaceoftheparamagneticmicro-particle iscoveredwithantibodieswhichhaveaffinitytobindontothe bio-particle(see Fig. 3). The magnetic manipulation using this processiscalledasimmunomagneticbio-particlemanipulation. Alternatively, a ferrofluid or a paramagnetic suspension rather thanatypicalsuspensionmedium suchas salineorPBS (phos-phatebufferedsaline)canbeusedtogeneratealargedifferencein magneticsusceptibilitiesofthesuspensionfluidandbio-particle. The use of such suspension medium eliminates the need for attachingamagneticmicro-particlesontothebio-particles.Once the field is introduced, the bio-particles can be pushed away fromthe magnetic field whereas in the immunomagneticcase theparamagneticparticles (hencethebinded bio-particles)are attractedtothemagneticfield. Therepulsionofbio-particles is duetosignchangeinEq. (15)sincethemagneticsusceptibility ofthemediumbecomes largerthantheparticles.Themagnetic

manipulationinwhichthebio-particlesaresuspendedina param-agneticorferrofluidsuspensionmediumisalsocalleddiamagnetic bio-particlemanipulation.The diamagneticcellmanipulation is commonlyusedforfocusingpurposes.However,thediamagnetic cell manipulation approach can also beused for concentration and separation of particles of different sizes as illustrated in

Fig.4.

2.5. Optic-based(OP)

The use of radiation pressure of light to displace and trap micron-sized dielectric particles was first hypothesized and demonstratedin1970sbyAshkin[49].Itwasnotuntil1980sthat thepracticalapplicationsofopticalforcesinphysics[50]and biol-ogy[51]haveshownitstruepotential.Thescientificcommunity hassincebeenusingthetermopticaltweezerstoidentifytheuseof opticalforcesasameanstomanipulatenanometerto micrometer-sizedobjects.Someofthesignificantachievementsusingoptical trapsarestudyingmolecularmotorswithsubnanometerresolution

[52],fundamentalpropertiesofcolloidsandinterfacescience[53], mechanicalpropertiesoflivingcells[54],andpolymerelasticity

[55].Theabilitytopreciselycontrolsmallobjectswithno mechan-icalcontactisdefinitelyadvantageousformicrofluidicapplications. Recentadvancesonmicrofluidicdevicefabricationbroughta dif-ferent perspective to the utilization of optical forces. Practical applications such as sorting, separation, and self-assembly are nowpossibleusinglight-matterinteractionand basicprinciples ofmicrofluidics.

The basic instrumentation behind an optical trap is a high numericalaperture(NA)microscopeobjectivethatisabletotightly focusalightbeam.Thedielectricparticlenearthefocus,withhigher refractiveindexcomparedtoitssurroundings,receivesthe inci-dentphotons,whicharescatteredand/orabsorbed.Scatteringof incidentphotonscreatesamomentumtransfer,hencetheoptical forcecomponent.Thephysicalprinciplebehindopticaltrapscan beexplainedbythebalanceoftwoforces:(i)scatteringforcesin

(7)

Fig.5. (a)Thelightrayswithdifferentintensitiesresultindifferentforcevectors,thevectorsumoftheforcespullstheparticletothebeamaxiswhilealsopushingitinthe directionofbeampropagation.(b)Therayparalleltoz−axishitstheintersectionplanewithananglewithrespecttox–zplane.

thedirectionofpropagationand(ii)gradientforcesinthe direc-tionofopticalfieldgradient.Scatteringforcegeneratesradiation pressurethat pushesthedielectricparticleawayfromthelight source.Gradientforce,ontheotherhand,actstheoppositeway andattractstheparticletowardsthepeakspatiallightintensity. Inthecaseoftightlyfocusedbeam,stabletrappingoccursifthe gradientforceexceedsthescatteringforce.Trappingdependson factorslikeparticlesize,refractiveindex,laserpowerandspatial characteristics.Theoreticaltreatmentofopticaltrapping catego-rizestheforcesonparticlesdependingontheirsizes.Thecondition wherethesizeoftheparticleismuchlargerthanthewavelength oflight(d )iscalledtheMieregime.Inthisregime,theforces actingonaparticlecanbecomputedbyRayopticsprinciples,i.e. reflectionand refraction. Reflection and refraction onthe front andbacksurfacescreatesperpendicularmomentumchangeona sphereasseeinFig.5(a).Inthefigure,adashedcirclerepresents crosssectionofthesphereandwaschosenfordemonstration pur-poses.

AssumingaGaussianintensityprofile,therayclosertobeam axiscreatesmorepointforcethantheraysituatedfurtheraway. Thenetforcepullstheobjecttowardsthebeamaxis,andpushesthe objectduetoscattering.Gradientforceonlydominatesandpulls theobjectwhenthereisasteepfieldgradientachievedbytightly focusingthebeam.InMieregime,theforceactingonasphereat anincidenceangleof andrefractionangleofˇisduetoasingle rayofpowerPis(n1QP/c).Therefractiveindexofthemedium

sur-roundingtheparticleisn1andtheparticlerefractiveindexisn2.Q

describestheamountofmomentumtransferatthefrontandback surfacesformultiplebounces,andisafunctionofFresnel reflec-tion(R)andtransmission(T)coefficients.Qvalueforalltherays actingonacircleweregivenbyAshkin[56],andthetotal scatter-ingandgradientforcesactingonadielectricparticleweregivenby Roosenandcoworkers[57].ThecircleonFig.5(a)canbetreatedas theintersectionofaplaneandasphereonFig.5(b),andthetotal scatteringandgradientforcescanbeintegratedovereverypoint onthesphereas:

Fs=−

/2 0 d

2 0 d

E2r2 oc2 sin cos

×

Rcos2 +1−T2cos2( −ˇ)+Rcos2 1+R2+2Rcos

, (16) Fg =−

/2 0 d

2 0 d

E2r2 oc2

sin cos sin

×

Rcos2 −T2sin2( −ˇ)+Rsin2 1+R2+2Rcos

, (17)

whereoisthefreespacepermittivity,cisthespeedoflight,Eis

theincidentelectricfieldandincludestheopticalbeaminformation suchasitsradius,ristheradiusofthesphere,andistheangle betweentheplanethattheraypropagatesandthex–yplane.

Thecondition (d ) iscalled theRayleighregime, describ-ing the diffraction-limited conditions. In this regime, particles are treated as point dipoles, and the gradient and scattering forcesareproportionaltotherealpartandimaginarypartofthe polarizabilityoftheparticle,respectively.Scatteringforce,which isinthedirectionofincidentpowerandthegradientforce,which isinthedirectionofintensitygradientcanbewrittenas[58]: Fs= Ion1 c 1285r6 3 4

m21 m2+2

2

, (18) Fg=− n3 1r3 2

m21 m2+2

E2, (19)

wheremistheindexcontrastratio,n2/n1,andIoistheintensity

oflight.Thescatteringforceisdependentonthelightintensity, theparticlesize,thewavelengthofthelight,andrefractiveindex contrast.Thegradientforceisdependentonthespatialvariation ofelectricfield,theparticlesizeandtherefractiveindex.Unlike scattering,gradientforcescaleswiththethirdpowerofparticle size.Hence,itiseasiertoachievetrappingforasmallerparticle thanalargeparticle.

Sincetheopticaltrappingtheoryissizeandgeometry depend-ent, researchers depend on empirical determination of optical forces.Theprocedureiscalledopticalforcecalibration(standard methodswiththeiradvantagesanddisadvantagescanbefound elsewhere[13]).Themainobjective oftheopticalforce calibra-tionistoextractthetrapstiffness(k)oftheopticaltrapthatis treatedasaHookeanspringwheretheforceislinearlyproportional todisplacement(F=−kx).Onecommonapproachisthedragforce calibrationwheretheparticleisheldstationaryusingthetrap,and thechambercontainingthefluidismovedatavelocitysothatthe particleescapesfromthetrap.Thevelocityinformationcanthen beusedtocalculatethedragforce,whichiscorrectedbasedon

(8)

thedistancetotheclosestsurface.Alternatively,Brownianmotion calibrationcanalsobeused.Inthisapproach,thefluctuationsin thepositionoftheparticlearerecorded,andapowerspectrum is formed and fitted to extract thetrap stiffness. This method alsorequiresknowingthedragontheparticle.Inbothmethods, accuratemeasurementsofdisplacementarecrucialforthe calcu-lationofappliedforceandeitheraquadrantphotodetectororvideo trackingisnecessary.

3. Assessmentofthemethods

3.1. Samplepreparationandselectivity

TheselectivityoftheHDmethodsisbasedonbio-particlesize anddeformability.Ifthereisanappreciablesizedifferenceamong bio-particles,theycanbemanipulatedtodifferentlocationswithin themicrofluidicnetwork.Onetypicalaspectofbio-particlesisthat theydonotpossessspecificsize,insteadtheypossesasize dis-tribution.Ifthere isasizeoverlapfortwo differentbio-particle populations,theselectivityoftheHD methodsdiminishes.One majoradvantageofHDmethodsisthattheydonotneedany label-ing.Althoughlabelingisnotnecessary,samplepreparationmay stillbeneeded,sincetheconcentrationoftheparticlesmayaffect theflowfield,andresultinaundesiredflowpatterns.For exam-pleinthecaseofwholeblood,dilutionofthewholebloodmaybe usefuldependingontheapplication.

TheselectivityoftheEKapplicationsrelyonthedielectric prop-ertiesofbio-particles.Thedielectricstateofabio-particledepends onphysical(size,shape,surfacemorphology)andchemicalstate of the bio-particle.For DC-DEP applications, DEP response can bepredictedeasilysinceitonlydependsontheconductivityof thebio-particleandthe medium.For AC-DEPapplications,DEP responsealsodependsonpermittivityofthemediumandthe bio-particle.Moreover,DEPresponseisalsoafunctionoffrequency oftheAC-field. Tomanipulate bio-particleseffectively, theDEP responseneedstobepre-determined.Althoughthere aremany studiesregarding DEP-based manipulationof bio-particles, it is stillchallenging topredicttheDEPresponse ofthebio-particle ofinterest.ThebestwayistomeasuretheDEPresponseofthe targetbio-particles.Therearesomeproposedmethodsinthe lit-eratureforthemeasurementofDEPresponse[8,59,60],however theprocessisnotstraightforward.Astand-alonemicrofluidic plat-formwithsomespecialcircuitryand/oropticaldetectionsystemis neededtodeterminetheDEPresponseofabio-particlepopulation. Ifthischallengeishandled,theselectivityofDEPcanbeutilizedto manipulatedifferentbio-particles.

Thepresence ofthe electricfield in EK applicationsinduces Jouleheatingwithinthefluid.Dependingontheconductivityof thebuffersolutionandthestrengthoftheelectricfield,theJoule heatingeffectcanbesevere,andcausedeteriorationofthesystem performance[8,42].Moreover,Jouleheatingmayalsocause unde-siredelectrothermaleffectswhichmayaffecttheflowfieldwithin themicrochannel[8].Sincethephysiologicalbuffersolutionsfor bio-particlestypicallyhavehighelectricalconductivity,dilutionof thebuffersolutionmaybenecessaryforEKapplications.Thisissue ismorecriticalforiDEPapplicationsinwhichDCelectricfieldis presentthroughoutthedevice.

ForACTapplications,nospecialsamplepreparationisneeded. Thebufferfluidcanbeanykindofbufferorsalinesincealmostall havesimilaracousticproperties.Particleswithhighcontrastfactors canbemanipulatedmoreeffectively.Asignorasignificantvalue differencein acoustic contrastfactor of bio-particles are desir-ableforeffectivedifferentiationofbio-particles.Whentheacoustic propertiesandsizesofparticlesthatneedtobeseparatedareclose toeachother,acousticpropertiesofthesuspensionmediumcan

beadjustedsuchthattheacousticcontrastfactorshowninEq.(14)

ispositiveforonetypeofparticlesandnegativefortheothertype. Utilizingthisidea,redbloodcells(RBCs)andplateletshavebeen separatedsuccessfully[61].Although,nobio-particlepreparation (otherthandilution)andlabelingisnecessaryforacoustic manip-ulation,labelingofparticleswereutilizedtohavebetterselectivity in a very limited number of studies where bio-particles were taggedwithbeadswhichhavenegativeacousticcontrastfactors

[62].Thiswaywhentheacousticfieldwasemployed,thelabeled bio-particlescanmoveintheoppositedirectionoftheremaining particles.Moreover,thebio-particlemaybelabeledwith fluores-centdyetoimprovethevisibilityoftheparticlesmovement[63].

Considering the MG applications, both the diamagnetic and immunomagneticmanipulationmethodsrequiresample prepara-tionpriortothebio-particlemanipulation.Inimmunomagnetic bio-particlemanipulation, theparticles need toincubated with thebio-particlesamplesothat thetargetcells arelabeled. The labelingoccurs dueto biochemicalreactionsbetween the anti-gensandantibodiesonthebio-particlesandthemagneticparticles. The duration of the incubation is in between 10 and 30min dependingonthemixing,temperatureandbead-cell concentra-tions.Moreover,ifthemanipulatedbio-particlesaretobeinfused backtothehost,themagneticparticlesneedtobewashedaway fromtheselectedbio-particles.However,thesamplepreparation stepallowstheimmunomagneticprocesstobehighlyselective. It is possibletoseparate targetedcells which do not have sig-nificantphysical differences fromother cell groups even ifthe number of total totarget cellratio is in theorder of 109 [64].

Forthecaseofadiamagneticparticleseparation,thebio-particles need to be suspended in a paramagnetic fluid or ferro fluid. Theselectivityofthismethodcanbeextendedbyswitchingthe magnetic field using an electro-magnet [65]. Common choices for paramagnetic fluids are MnCl2 (Managnese (II) Chloride),

GdCl3 (Gadolonium (III)Chloride)andGd-DTPA(gadolinium(III)

diethylene-triaminepentaaceticacid) whichis anFDA approved MRIcontrastagent.Inferrofluids,themostcommonchoiceisthe useofEMG408fromFerrrotecwhichisawaterbasedproductwith nano-sizedironparticles.Attheendofthemanipulationprocess, theparamagneticfluidorferrofluidmayneedtobewashedaway fromthebio-particlesifinfusionintoaliveorganismistobe fol-lowed.Duetothesample preparationand postprocessing,MG methodsrequirerelativelycomplexprocedures.Therearesome examplesofmicroscalesystemswhichperformtheincubationstep in-line.Onesuchsystemusessix rotatingmagnets[66] tomix micro-particlessothatincubationwiththebio-particlescanoccur onthemicrofluidicdevice.Aftertaggingthebio-particles,the incu-batedbio-particlesaresenttothemicrofluidicdeviceandcanbe positivelyselectedbymeansofamagneticfield.Theprocessof immunomagneticseparation is generallyused forseparation of rarebio-particlesratherthanfocusinglargenumberofbio-particles sincetheimmunomagnetictaggingofbio-particlesisnot econom-icallyfeasibleandistimeconsuminginlargenumbers.

In the case of OP applications, it is important to know the physicalcharacteristicsofthefluidandthetrappedobjectduring opticaltrappingexperiments.Refractiveindexchangesaccording tomediumwhichthebio-particleisinandthebio-particletype. Forinstance,therefractiveindexofthecellmediamaychange dur-ingcellculturegrowth,althoughtherefractiveindexofindividual cellstypicallystaysthesame(∼1.38).Itisbeneficialtomeasure themediumsrefractiveindex(usuallyaround∼1.33–1.35)with a refractometer if suspended bio-particles are used. Moreover, refractiveindexofanybio-chemical stimuliagentintroducedto microfluidic channels shouldbe knownbefore hand.The main advantageofOPmethodsistheabilitytosensedifferentcolorsof light emittedfromdifferent fluorophores. Broad-spectrumlight detectorscanbeadjustedwithopticalfilterstodetectonlycertain

(9)

portionsofspectral window.Thisability isusefulin activeand passivefeedbacksystemswheretheamountofspectralsensitivity is the identifier for the state of a bio-particle. Fluorescence or immunofluorescence staining (labeling) of bio-particles is per-formedusingin-vitromethodsdependingonthesizeofthedye molecule.Besidesdyestainingthecells,thepathogensintroduced togrowthmediaduringcellpreparationcanalsobefluorescently labeledandusedasthediagnosticmarkerduringoptical manip-ulation[67].InOPapplications,thechannelsneedtobeprimed withcertainchemicals priortoflow of bio-particles toprevent adhesionespeciallyduringanextendedstopoftheflow.Inthecase ofbiologicalcells,thecellmediacontainingproteins,glucose,salt, lipidsandothernutrientsaregoodprimingagents,andneedto beappliedpriortotheoperation.Bovineserumalbuminisalsoan effectiveagentthatpreventsadhesionofenzymestoglasssurfaces. 3.2. Flow-rateandthroughput

Forfilteringapplications,theparticleswithalargersizecanbe immobilizedand/orparticleswithsmallersizecanflowthroughthe desiredoutlet.Cloggingistypicalforfilterapplications.Moreover, theshearstressinducedonthebio-particlesmaycauselysis.As moreandmorebio-particlesaretrappedwithinthemicrochannels, highershearforcesareinduced,andhigherpressuresarerequired to maintain the desired flow rate. For other HD applications, bio-particlesflowinamicrochannelinaforce-freemanner. How-ever,forDLD,PFFandhydrophoresisapplications,theflowneeds to controlledprecisely, and regarding both thefabrication (for hydrophoresisthegapsizeofthecontractionsiscriticalandneeds tobecomparablewiththebio-particlesize)andtheoperational concerns,theyneedtobeoperatedwithrelativelysmallflow-rates (intheorderof␮L/h).Thisleadstolowthroughputformany clin-icalapplications.Asanexample,ithasbeenshownthatinertial effectsdecreasethesortingefficiencyforhydrophoresis applica-tions[26].Atthispoint,inertialmicrofluidicsoffersapromising perspectively.InertialmicrofluidicsutilizesthehighRe characteris-ticoftheflow;therefore,inherentlyflow-ratesarehighintheorder ofml/hwhichleadstohighthroughput(>∼106particles/min),and

thismakesinertialmicrofluidicssuitableformanyclinical appli-cations.However,thepredictionoftheflowfieldandtheparticle motioninthisregimeisalsochallenging.Thethroughputof sev-eralHDapplicationcanbeseeninFig.6.Thehighestthroughput forHDmanipulationisaround∼1011particles/min,andbelongsto

anapplicationinwhichtheplasmaisseparatedfromwholeblood ratherthanadifferentiationofbio-particles.

Thesuccessfulmanipulationofbio-particlesinEKapplications dependsonthebalancebetweenthedragforceandtheEKforces. AnincreaseindragforcerequiresanincreaseinEKforceandthis indicatestheuseofhigherelectricalfieldstrength.Sincehigher electricfieldsarenotdesirableduetoJouleheatingphenomena

[42],thedragforceandtheflow-ratearelimitedforthese applica-tions.InthecaseofeDEPapplications,theelectricfieldisanissue onlywithinthevicinityoftheelectrodes;therefore,higherelectric fieldscanbetolerated.However,onemajordisadvantageofthe eDEPdeviceswithplanarelectrodesisthattheelectricfield gradi-entdecreasesrapidlyastheparticlesflowawayfromtheelectrodes. Therefore,aneffectivemanipulationregionisgeneratedwithinthe vicinityoftheelectrodeswhichreducestheeffectivenessofthe manipulation.Iftheelectrodesaredepositedonthebottomwall ofthemicrofluidicchannel,thentheheightofthechannelneeds tobelimited.Thislimitationcanbesolvedbyintroducing3D elec-trodeswithinthedevice.Manyresearchershaverecentlyrealized thisaspectandproposeddifferentfabricationtechniquesto fabri-cateembedded3Delectrodes[68].Byintroducing3Delectrodes, theflow-ratesandthethroughputoftheDEP-baseddevicescanbe enhancedalthoughthroughputofEKmethodsisrelativelylow,and

atthispointnotsuitableforclinicalapplications.Thethroughput ofseveralEKapplicationscanbeseeninFig.6.

In terms of throughput, ACT devices have relatively higher throughputcompared tothat of othermethods. Theflow rates generally range from1␮l/minto 1L/h.The throughputof ACT devicesforsomestudiescanbeseeninFig.6.Thefigureshows eightordersofmagnitudedifferenceinthebio-particle through-puts.Thestudieswithhighthroughputsaregenerallystudieswhich processwholebloodsamples.Thenormalbloodcountofamaleis approximately5×109RBCsinamilliliterofblood.Forthe

appli-cationswhichdonotincludefractionationofdifferentcellgroups fromeachothersuchasseparationofplasmafromwholeblood, thethroughputreachesashighas1011particles/min[69].

ThroughputofMGmanipulationmethodsisalsopromising.The throughputofseveralMGapplicationscanbeseeninFig.6.The largestofthetwothroughputvalues[70,71]belongtoasystem wheretheborediameterofthechannelisroughly8mm.Itmay bearguedthatthisdiameteristoolargeforamicrofluidicsystem. Mostofthehigherflowratesbelongtosystemswith immunomag-neticbio-particlemanipulationsystems,anddiamagneticparticle manipulationsystemshavelowerthroughputs.However,itshould benotedthatthethroughputsarepurelybasedonthetimethat cellsspendinthemicrofluidiccircuit.Intheimmunomagnetic par-ticlemanipulationcases,asignificantportionofthetimeisspent on thepre-processing of bio-particles (considering the incuba-tiontimefortaggingofbio-particleswiththemagneticparticles), hencethethroughputsmaynotberepresentativeofthetotaltime requiredforthebio-particlestobeprocessed.Generally,flow veloc-itiesinthemicrochannelsareintheorderofmm/sorless.

ForOPapplications,activemicrofluidiccellsorterscompared toitspassivecounterpartsuseinformationsuchasfluorescence, sizeandshapebymeansofphotodetectorsorimageprocessing to dynamically steer thebio-particles to desired outlets.These systems canoperatequitefastbasedonthetype offorceused formanipulation. Forinstance,activesorterseitherutilize opti-cal forces for grabbing or deflection of bio-particles. Grabbing anddeflectionoccurwhenthegradientorscatteringforce dom-inates each other.Active sortersbased ondeflection are much faster since there is no need for steering the focused optical beam.6354cells/min[72] and 1320cells/min[67] hasbeenfor deflection-based sorters. Grabbing-based sorters are almost an orderofmagnitudeslowerwithreportedvaluesof300cells/min

[73]and84cells/min[74](thethroughputofseveralOP applica-tioncanbeseeninFig.6).Foractivemicrofluidicsystemsinvolving OPmanipulation,theflow-rateinthechannelandthedragforce onthebio-particlecompetesagainsttheopticalforce.Considering theopticalforceonaparticleintherangeofafewtotensofpN,the fluidvelocityneedstobeadjustedtoachievedesiredmanipulation forthebio-particle.

3.3. Channelgeometry

The filteringapplicationsin HD methods typically include a microfluidicchannelwithpoststructures.Thespacingofthepost structures is critical to trap the bio-particles with target size. Dependingonthesizeofthetargetparticles,thespacingcanvary between5and15␮m.Tointroduceasmany poststructuresas possibleforagivenvolume,thediameter(orwidth)ofthepost structuresaretypicallyaroundcoupleoftensofmicrometers.For DLDapplications,againsomepost(orpillar)structuresarealso needed.Thesepoststructuresmayhavedifferentshapes(circular, square,etc.).Sincesomeamountoflateraldisplacementisdesired tomanipulatethebio-particles,thesectionwiththepoststructures needstohavesomethresholdlengthwhichistypicallycoupleof centimeters.ForthePFFapplications,rectangularmicrochannels withsharpcornersarerequired.Althoughtheinletsectionofthe

(10)

Fig.6. (a)Throughputdataforseveralmicrofluidicdevices.(b)Throughputrangefordifferentmethods.

deviceiscomposedofamicrochannelwith∼100␮m,toachieve fractionationwithagoodresolution,theexitsectionofthedevice needstobewide,andthegeometryoftheexitsectionneedsto becriticallydesignedtoobtainthedesiredoutput.Fortheinertial applications,sincetheflow-ratesarehightoachievehighReflows, certainlengthisrequiredtoachievetherequiredlateral displace-mentofbio-particles.Toutilizeanycirculationwithintheflowfield, itistypicaltointroduceanexpansion/contractionsectionsand/or poststructureswithintheflow field.Morerecently,the expan-sion/contractionintheheightdirectionhasalsobeenutilizedfor bothsortingandfocusing[38].ToutilizetheDeanflowforparticle manipulation,spiralandserpentinechannelsarerequired,andthe radiusofcurvatureofthechannelsiscritical[32].For hydrophore-sisapplications,expansions/contractionsintheheightdirections arenecessary.Thesizeofthesecontractionsarecritical,and cer-taindesignproceduresneedtobefolloweddependingonthesizeof thebio-particleofinterest.Typicallytheminimumchannelheight inthecontractedpartneedsbelargerthanthebio-particlesizeto avoidclogging,andlessthantwotimestheparticlesizefor suc-cessfulmanipulation.Onecommonpoint aboutthemicrofluidic channelnetworkwithpoststructuresisthattheheightofthe chan-nelislimitedconsideringthelimitoftheaspectratioduetothe fabricationconstraints.

ForEKapplicationswithoutinternalelectrodes,atypical chan-nelwidthisintheorderof100␮mtogetherwithsomespecially designedstructures.Theheightofthemicrochannelisnotcritical

aslongasthefabricationisnotproblematic.ForeDEPapplications withinternalelectrodes,theheightiscriticalif3Delectrodesare notused.Typically,channelheightvariesbetween20and50␮m. ForeDEPapplicationswith3Delectrodes,microchannelstructures withlargerheightispossible(typically20–100␮m).Inthese appli-cations,thelimitationsfortheheightcomesfromthefabrication stepoftheelectrodes.

Channelgeometryisquiteimportantforsuccessful implemen-tationofACTmethods.Thechannelsgenerallyhave rectangular crosssections. It issignificantly easiertocouplea piezoelectric patchto a rectangularsurface compared toa circular one.The widthofthechannel(widthistheprimarydirectionalongwhich acousticradiationforceactsonbio-particles)needstobecarefully selectedasanintegermultipleofhalfwavelengthoftheacoustic waveswithinthefluidfortheselectedfrequency.Ifthetransversal configurationisselectedforthepiezoelectricmaterialplacement (piezoelectricmaterialssurfacenotalignedwiththeacoustic radia-tionforcedirection),thechannelwidthalsoneedstobeselectedas thehalfwavelengthoftheacousticwavesinthesuspensionfluid. However,ifthelayeredconfigurationispreferred,thenthechannel widthcanbeseveralwavelengthsoftheacousticwavesinthe sus-pensionmedium.Notonlythechannelwidth,butalsothewidthof thedeviceneedstobeselectedasanintegermultipleoftheacoustic wavelength.Thedepthofthechannelisgenerallyselected signifi-cantlylessthantheacousticwavelengthinthefluidtoavoidfitting astandingwavealongitsdirection.Thelengthofthechannelis

(11)

generallyintheorderofseveralcentimeterswhichcanfitseveral wavelengths.Sincetheacousticwavesarerequiredtofitbothinto thechannelandthedevice,thesensitivityoftheperformanceto thechannelanddevicegeometryissignificantlyhigh.Therefore, thedimensionsoftheACTbio-particlemanipulatordevicesneed tobecontrolledprecisely.

MGmanipulationhasveryfewconstraintsonthegeometryof thechannel.UnliketheACTmethod,theperformanceofthesystem isnothighlysensitivetochannelanddevicegeometry.Typically, thewidthofthemicrochannelsisintheorderof100–700␮m,the depthisintheorderof10–100␮m,andthelengthofthechannel isseveralcentimeters.Althoughpreferredgeometryisa rectan-gularcross-sectioned microchannel,thecapillarytubescanalso beutilized[75,76].Ifpermanentmagnetsareused,generallythe polesofeachmagnetisbroughttothevicinityofthechannelwalls. Thecloserthepolesaretoeachother,thestrongerthegradientof themagneticfieldis,the(B·

)BterminEq.(15),whichresultsin strongermagneticforceontheparticles.

InOPapplications,thechannelgeometryneedstobeadjusted dependingontheopticalbeamcharacteristics.ThefocusedTEM00

modebeamsize,dependingonthemicroscopeobjectiveused,is smallerthanmostbio-particles,anddoesnotbringanychannelsize limitations. However,rectangularchannel geometriesis prefer-abletoavoidopticalbeamshapechange(e.g.circulartoelliptical), andtoobtainbetterimaging.Opticalclarityisstronglyaffected bycurvedchannelwalls.FordivergingsinglemodeGaussian-like beams, thebeamdiameter and opticalpower both have direct impactontheopticalforceandstressprofile.Fortheapplications withhighnumericalaperture(NA)objectives,theworkingdistance oftheobjectivemaybelessthanamillimeter,andanindex match-inggelmaybeneededtotakeadvantageofhighNA.Thedistance betweenthebeamoriginandthelight-particleinteractionarea; hence,thechannelgeometryshouldbecarefullydesigned both toaccommodatetheopticalsetupandtoachievedesiredphysical effects.

3.4. Materialandfabrication

Whenthefabricationofthemicrofluidicdevicesisconcerned, there are basically two common approaches: direct substrate manufacturing(photolithography,etching,laserablationetc.)and mold-based techniques (hot embossing, injection molding or soft-lithography)[77].Photolithographyhasgoodabilityto manu-factureverysmallandcomplicatedmicrochannelstructures,butit usuallyinvolvesmulti-stepprocesseswhichtakeconsiderabletime and specificchemical requirementsespecially for etchingsteps inhightechfacilitiessuchasaclean-roomenvironment. Mold-basedtechniquesrequireamold(sometimesmoldisreferredas themask)tobefabricated.Althoughthefabricationofthemold may need lithography-based, relatively complicated fabrication process;oncethemoldisfabricated,themoldmaywellbeusedfor severaltimes.Afterthecompletionofthemold,therestofthe fab-ricationprocedureissimpleandhighlyreproducible(i.e.low-cost replication),whichmakesmold-basedtechniquesverysuitablefor massproduction.Acommonmaterialusedinthefabricationof themicrochannelsisthePolydimethylsiloxane(PDMS)duetoits lowcost,lowtoxityandtransparency.BondingPDMSwithglass canbeachievedusingastraightforwardsurfacetreatmentprocess withoxygenplasma(asealedPDMSmicrochannelcanwithstand pressuresuptofivebars[1]).Soft-lithographyusingPDMSisavery commontechniqueusedinthefabricationofmanymicrofluidic devicesfordifferentaforementionedapplications.

Fordirectsubstratemanufacturing,acommonapproachisto etchthewafer and seal it withPDMS.Especially, for microflu-idicchannels withhighaspect ratiopost structures(AR∼1–5), itis preferredtouseetchingof thesilicon waferinsteadofthe

fabricationofamold.Forlowaspectratiopoststructures,molding isabetterchoice.Fordirectsubstratemanufacturing,analternative techniqueislaserablation,whichislocalized,non-contactremoval ofthematerialfromthesurfacebyexposingthesurfacetoalaser beam.Unlikephotolithography,laserablationdoesnotrequirea maskandmaybeappliedtoawidevarietyofsubstratematerials

[1].Althoughthecostoftheprocessisrelativelylow,the invest-mentcostoftheequipmentisrelativelyhigh.Moreover,generally thesurfaceroughnessofthelaserablatedchannelsarenotsuperior thanthatofmold-basedtechniques[78].

For thefabrication of thedevices for HD applications, soft-lithography and photolithography is a common approach, and fusedsilica,PDMS,PMMAandsiliconarethecommonmaterials. Insomeinertial[38]andhydrophoretic[27–31]applications,3D geometriesareneeded.3Dgeometriescanbeachievedbyutilizing two-steplithography.If3Dstructuresarebothonthebottomand thetopwall,lithographicaligningprocedureisrequired[27,28].

For the fabrication of devices for EK applications, soft-lithography with PDMS is a common method. For many EK applications, embedded electrode structures are also required whicharedesignedandlocatedstrategicallywithinthe microflu-idicstructure.Asacommonpractice,theplanarelectrodeswithin themicrofluidicdevicesarefabricatedusingmetaldepositionona substrate.Additionalfabricationstepsneedstobeintroducedfor thedeviceswith3Delectrodes.Differentfabricationstrategiesfor DEP-basedmicrofluidicdeviceshavebeenreviewedrecentlybyLi etal.[68].Titanium,gold,silverandcarbonarecommonmaterials fortheelectrodes[68].Copperhasalsobeenusedintheliterature, butsomeadverseeffectswerereported[79,80].

ForthefabricationofdevicesforACTapplications,thereisawide varietyofmaterialsusedforthemicrofluidicdevicesuchassilicon

[61,81,69],steel[82–84],glass[85,86]andPDMS[87–91]aswell asotherpolymers[92,93].Thechoiceofmaterialforthe transver-salconfiguration shouldhave highacoustic impedancesuchas silicon,whereasthelayeredconfigurationmaybemanufactured fromawiderangeofmaterialsrangingfromdifferentpolymers tosteel.Thematerialofchoiceforacoustofluidicdevices,whichis excitedwithsurfaceacousticwaves,ispolymerswithlow acous-ticimpedanceandwithgoodshearwavecarryingcapacitysuchas PDMS[87–89].Forthesilicon-baseddevices,fabricationthrough standard photolithographyand wetor dryetchingarecommon approaches[61,94,69,95,47,96].Inthecaseofpolymersand partic-ularlyPDMSdevices,standardsoftlithographymethods[87,89,93]

andrapidprototypingarecommonlyemployed[97].Typically,a transparentmaterialwithhigheracousticimpedancesuchasglass orfusedsilicaisusedasalidtoformthechannel.Thislidisalso utilizedasanacousticreflectorintransversalconfigurations.

ForthefabricationofdevicesforMGapplications,thereisno significantconstraintotherthanmaterialofthedevicenotbeing amagneticmaterial.Duetotheeaseofprocessandpossibilityof embeddingthemagnetsintothedevice,mostwidelyusedmaterial isPDMS[48,64,98,99,65,100–102].Othermaterialsarealsousedin thismethodsuchasPMMA[66]andsilica[76].TheuseofNDFeB magnetic powdertogetherwithPDMScan formself-assembled magneticconfigurationandachievebetterdeviceperformancefor capturingapplications[99].

ForOPapplications,microfluidicchannelswithoptically trans-parentwallsarerequired.Mosttransparentmaterialssuchasglass, fusedsilica,PDMS,PMMAaresuitableowingtotheirtransparency tovisibleandnear-infraredspectrum.Siliconisreflectivetolight aboveitsbandgap(below∼1100nm),andthetrappinglasershould emitatopticalwavelengthsabovethislimitinthecaseofsilicon asthetrappingsurface. Asnotedinthenextsection,biological viabilityisreducedathigherwavelengthsduetoincreasedwater absorption.Thus,materialstransparenttovisiblelightarepreferred over siliconfor bio-particlemanipulation. Forthefabricationof

(12)

Fig.7.(a)PhotographofthemoldfabricatedwithconventionalCNC-machine.(b)Photographofthemicro-machiningcenter,themoldandthechannels.

devicesforOPapplications,standardaforementioned microfabri-cationtechniquescanbeapplied.Well-knownprocessessuchas softlithographytofabricatePDMSandwetordryetchingto fabri-categlasschannelsarepopularamongothertechniquesduetoease ofuse.Alternatively,3Dlasermicromachiningandhotembossing arealsogoodcandidatestoformrigidpolymericchannels.

One alternative method tofabricate the microfluidic device istousemechanicalmicromachining(i.e.CNC-machining)either for direct substratemanufacturing or forthe fabricationof the mold.For directsubstrate manufacturing,thelimitsofthe pro-cessisconstrainedbythesizeofthemillingtoolwhichmaylead tounsatisfactoryend-productformicrofluidicapplications. How-ever,for the fabrication ofthe mold,the process is limited by thexyz-accuracy ofthe tool-positionerof a CNC-machine since the negative of the microfluidic structure is fabricated as the mold.Withtoday’s technology, by usingmagnetic bearings for theirpositioningsystems,thexyz-accuracyofaconventional CNC-machinesarearound5␮m.Therefore, amoldcanbefabricated usingmechanicalmachiningwithincoupleofhourswithoutany need for clean-room equipment within the desirable accuracy limitsformicrofluidicdevices.Moreover,CNC-machiningcan gen-erate3Dstructureswithoutanydifficulty.Commonmoldmaterials formold-basedtechniquesaresilicon(quartz/glass),SU-8 photo-resist,polymerbasedmaterials(e.g.plexiglas)oranymetalbased materials(titanium,stainlesssteel,etc.).Polymer-andmetal-based mold materials are superior over silicon or photo-resist based moldmaterialsintermsofdurabilityandrobustness.Inthecase of mechanical micro-machining, any of thesematerials can be selected.Machinability,costandtheexpectedlife-spanofthemold aretheimportantparameterswhichneedtobeconsideredduring theselectionofthemoldmaterial.Anotherimportantparameter istheexpectedlifeofthemold.Consideringtheuseofthemold toproducemorethan7,000–10,0000parts,metal-basedmaterials arethebestchoice.However,usingmetal-basedmaterialscomes withaprice.Machiningofmetal-basedmaterialsiscostlydueto thereducedtoollifeandincreasedmachiningtime.Ontheother hand,machiningofpolymerbasedmaterialsislessproblematicin termsoftoollifeandmachiningtime,yetthemoldstillcanbeused formanytimes.

TheaccuracyoftheCNC-machiningcanbefurtherimproved bytheintroductionofspeciallydesigned micro-machining cen-ters.Thesemicro-machiningcenterscanoperatewithanimproved spindlespeed which leadstoa superior surface finish withan

improvedxyz-accuracy. WithinBilkentUniversityMicro System DesignandManufacturingCenter,oneconventionalCNCmachine withmagneticbearingsandonecustom-mademicro-machining centerisavailableandusedforthefabricationofthemoldsofthe variousmicrofluidicdevices[103,104].Anexamplemoldfabricated withconventionalCNC-machine,andamoldfabricatedwiththe micro-machiningcentercanbeseeninFig.7.Thefabricationof metalelectrodeswithCNCmachiningisalsopossiblewhichleadsto 3Dmetalelectrodes.Aninitialattempthasbeenmadeforthe fabri-cationofaneDEPdevicewith3Delectrodes.Amicrochannelwitha widthof100␮mandaheightof100␮mwasfabricated.Thedevice andthemoldcanbeseeninFig.8.Totalmachiningtimeforthe moldandtheelectrodestookapproximately180min.The embed-dedelectrodeswerealsoremovedfromthedeviceandreusedfor thefabricationofaduplicatedevicewithoutanyproblems.

Fig.8.TheDEP-basedmicrofluidicdevicewith3Delectrodesfabricatedby machin-ing:(a)themoldtogetherwiththeelectrodes,(b)theassembleddevice.

(13)

CNC-machining is rather an alternative method not a com-petitor for thelithography-based techniques. Especiallyfor the mold-basedfabrication,itoffersuniqueadvantages:(i)post struc-tureswithaspectratioaround1.0canbeintroducedwithoutany difficulty,(ii)the3Dgeometrieswithvaryingchannellengthcan befabricatedeasily,(iii)theangleofthemicrochannelsidewallon themoldandtheheightofthemicrochannelcanbecontrolled pre-ciselywithintheaccuracylimitofthemachiningcenter,anddeep channelscaneasilybefabricated.Ontheotherhand,structures withsharpcornersoranobstaclewithcornersisproblematicsince certainfilletsalwaysexistdependingontheradiusofthetool. 3.5. Hardware

ForHDapplications,theimportantparameteristheflowfield. Flowfieldneedstobecontrolledthroughprecisepumpsandvalves. Formicrofluidicapplications,theuseofsyringeand/orperistaltic pumpsare common.Duetothesuperior flowcontrol andease ofusesyringepumpsaremore popularin microfluidic applica-tionsespeciallyforlowflowrates(∼1–100ml/min).Morerecently, LabSmithInc.(www.labsmith.com)hasintroducedmicrosyringe pumps(flow-ratesrangingbetween50nl/minand5ml/min), auto-matedvalvesandmicrofluidiccomponentsspeciallydesignedfor microfluidicapplications.

ForEPandiDEPapplications,DCelectricfieldistypicallyapplied throughoutthechannel,andtheflowisinducedbyelectro-osmosis. Dependingontheelectrodegeometryandflowrate,ahighvoltage sourcemaybenecessary.ForeDEPapplications,ACelectricfieldis preferredandtheappliedfrequencyrangesfromfewkHztotens ofMHzwithamplitudesfrom5to100Vpeak-to-peakdepending ontheelectrodegeometrywithinthemicrochannels.Application ofDCvoltagesrequireslessauxiliaryequipment(e.g.signal ampli-ficationequipmentoranRFamplifier)withrespecttoACalthough conventionalfunctiongeneratorsmaybeenoughformost appli-cations.Typically,usingACfrequencycomplicatestheDEPsetup. Moreover,thefrequencyofACfieldneedstobetunableowingto frequencydependentCMfactor.Eventhoughitisdesirabletohave DEPoperationwithasinglesetfrequency,especiallyfor commer-cialpoint-of-careproducts,frequencytuningmayberequiredin practice.Conventionalfunctiongeneratorstypicallyareequipped withsuchfeature.TheEKsystemsand applicationsinclude fre-quencydependentcomponentswithtwoormoreelectricalports, andtheelectricalpropertiesofcomponentsandmaterialsare char-acterizedeither usingLCR meters orimpedance analyzers. LCR metersareusuallypresetandusedatcertainfrequenciesofkHz range. Impedance analyzers are preferred due to theability to sweepinfrequencydomainfromfewkHztoRFrange.Impedance measurementscanalsobeappliedtoextractdielectricproperties ofbio-particleswhentheyarenearbytheinducedelectricpotential

[105].Accurate determinationof bio-particlesdielectric proper-tiesisanothercriticalrequirementforcommercializationofDEP devicessincebio-particlesofsimilarsizesmayexhibitpositiveor negativeDEPforcesatthesameoperationfrequency.Similarto impedanceanalysis,DEPaffinityseparationorcrossoverfrequency determinationallowsmeasurementoffrequencydependentDEP forceandidentificationoftwodielectricallydissimilarbio-particles (e.g.bloodcellsandcancercells)[106].Crossoverfrequency deter-minationmethodinvolveselectro-rotationandrequiresaswept frequencygeneratorandelectronicstoenableaccuratephase shif-tingofthegeneratedsignal.

For ACTapplications,a voltagesourceis necessarytocreate theacousticwaveandacousticradiationforce.Typically,a piezo-electric patchis used asan acousticwave source.Piezoelectric patchesareidealduetotheirlowcostandefficientradiationat ultrasonic frequencies. The piezoelectric patch attachedexcites thematerialwhich carriesthewavestothemediumwherethe

particlesaresuspendedin.Theuseofpiezoelectricceramic mate-rial(suchasPZ26)iscommonduetotheirhighvoltageabilities. The position of the piezoelectric material with respect to the devicedetermines which type ofconfiguration theresonatoris in. Thereare threemain configurationswherethepiezoelectric material can be placed against the chip which are transversal

[61,92,107,94],layered[82,108,85,109]andsurfaceacousticwave (SAW)configurations[87–89].Inthetransversalconfiguration,the piezoelectricmaterialisplacedonthedevicesuchthatthe stand-ingwaveispositionedalonganaxisperpendiculartothenormalof thepiezoelectricpatchsurface.Thelayeredconfigurationrequires thesurfacenormalofthepiezoelectricpatchtobealignedwith thedirectionalongwhichstandingwavesarepositioned.Surface acousticwaveconfigurationgeneratestheacousticradiationforce throughpropagationofsurfacewavesonthedevice.Toactuatethe piezoelectricmaterial,apoweramplifierthatcanoperateatradio frequenciesandultrasonicfrequencyrangesisrequired.Typically, thepowerrequiredforACTapplicationsisintheorderofcouple ofWatts.However,insomehighthroughputstudieswithPDMS materials,itcangoupto10W[97]whichrequiresanadditional externalcoolingofthepiezoelectricmaterialandthechannel.The useofaluminumblockasaheatsinkmaybeapplied[85,97,110].

ForMGapplications,theonlyhardwarerequiredisamechanism tocreatemagneticfieldgradientinsidethemicrochannel. Gener-ally,permanentmagnetsareusedtocreatetherequiredmagnetic field,andthechoiceforthepermanentmagnetmaterialisalmost alwaysNdFeB(Neodymiumironboron)magnets.Theuseof per-manentmagnetsratherthanelectro-magnetssimplifiesthedesign andeliminatestheneedforpower.Onthedownside,theuseof permanentmagnetsmakesitdifficulttocontrolthemagneticfield strength,anditdoesnotallowtheuseofswitchingfieldwhichmay addadditionalselectivitytotheprocess[65].Thepole configura-tionofthepermanentmagnetdependsonthetypeofmanipulation beingperformed(focusing,concentrationorseparation)aswellas thechoiceofmethodformanipulation(diamagneticor immuno-magnetic).Thestrengthofthemagneticfieldfluxisgenerallyinthe orderof0.1–0.2Tesla,butthetotalmagneticfluxcanbeashighas 1Tesla.Thedistancebetweenthemagnetpairscanrangefromtens of␮m[111]toseveralmm[75].Bio-particlescanalsobe manipu-latedusingthemagneticfieldinducedbythepermanentmagnet onaferromagneticwireplacedinsidethemicrochannel[112,113]. Additionally,electrodescanalsobeintroducedwithinthedevice toswitchthemagneticfield[65],andtoprovidehighresolution controloverpositioningofbio-particles[100].

Anopticaltweezersetupisusuallybuiltaroundamicroscope, andalltheelectronicandopticalelementsareintegrated. Com-mercialopticaltweezersetupsareavailableforpurchase(Thorlabs Inc.,www.thorlabs.de),yetmostsetupsarebuiltfromscratch,and customizedaccordingtotheneed.Handlingbiologicalspecimen requiresextraattentionduringselectionofthelaserdueto opti-caldamageand heatingeffects.Sincebiological specimenshow lowindexcontrastwithrespecttoitssurroundings,theamountof laserpowertotrapandmovesuchanobjectishigherthanthat ofapolystyrenebead.Thetypicallaserpowersrangefromafew milliWattstoaWatt,andabsorptionincreaseslinearlywithpower. Thechoiceoflaserwavelengthisevenmorecriticalforbiological objectsduetolowwaterandproteinabsorptionrequirement. Visi-blespectrum(400–700nm)hasthelowerwater,buthigherprotein absorption.Onthecontrary,wavelengthspectrumabove1250nm introducesmany ordersof magnitudehigher waterabsorption; therefore,aheatingproblemthatmaydamagethebiological spec-imencanoccur.Themostpreferredwavelengthsfortrappingare around800and1064nm.Laserdiodesatthesewavelengthswith opticalfiberends,notonlyprovideshighopticalpower,butalso hasaverygoodqualitysingle-modebeamprofilesuitablefor opti-caltrapping.TraditionalopticaltweezersrequireacleanGaussian

Şekil

Fig. 1. Basic principles of hydrodynamic-based methods: (a) DLD, (b) hyrdophoresis, (c) pinched flow fractionation, (d) inertial microfluidics.
Fig. 2. A representation of acoustic based bio-particle (a) washing and (b) separation.
Fig. 4. Diamagnetic bio-particle manipulation types.
Fig. 5. (a) The light rays with different intensities result in different force vectors, the vector sum of the forces pulls the particle to the beam axis while also pushing it in the direction of beam propagation
+4

Referanslar

Benzer Belgeler

Cumhuriyet Döneminde, Maarif Kütüphanesi, Memleket Kütüphanesi, Gazi Kütüphanesi, Umumi Kütüphane, Halk Kütüphanesi, Halk Kitapsara- yı, Şehir Kütüphanesi,

Önceki araştırmaları destekler nitelikte örnek işletmeler olarak incelenen Turkcell, Vodafone ve Türk Telekom’un sivil toplum kuruluşları ile strateji

yfihutta(idarei hususiyelerin teadül cetveli) gibi ömrümde bir defa bir yaprağına göz atmiyacağua ciltlerden başliyarak bütün bir kısmından ayrılmak zarurî,

Sonuç olarak; çocuk suprakondiler humerus kırıkları ortopedistlerin sıkça karşılaştıkları ; gerek komplike anatomi , gerekse de yüksek komplikasyon

A direct com- parison of RCE versus conventional detector performance was performed by high speed measurements under optical excitation at resonant wavelength (895 nm) and at 840

Illumination levels on the observation desk were measured under each lighting arrangement and these are as follows; for existing fluorescent tubes 110 lux, for cove lighting

local tours - the cost is multiplied by the discount factor β, (3) the routing cost of flow sent directly from single assigned non-hub nodes to hub nodes, (4) the fixed cost

Promoting an international agreement on the legal status of the Caspian Sea would also not only advance regional peace and stability it would also facilitate access to natural