• Sonuç bulunamadı

Measurement of singly Cabibbo-suppressed decays D-0 -> pi(0)pi(0)pi(0), pi(0)pi(0)eta, pi(0)eta eta and eta eta eta

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of singly Cabibbo-suppressed decays D-0 -> pi(0)pi(0)pi(0), pi(0)pi(0)eta, pi(0)eta eta and eta eta eta"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

singly

Cabibbo-suppressed

decays

D

0

π

0

π

0

π

0

,

π

0

π

0

η

,

π

0

ηη

and

ηηη

BESIII

Collaboration

M. Ablikim

a

,

M.N. Achasov

i

,

4

,

S. Ahmed

n

,

M. Albrecht

d

,

A. Amoroso

bf

,

bh

,

F.F. An

a

,

Q. An

bc

,

ap

,

J.Z. Bai

a

,

Y. Bai

ao

,

O. Bakina

z

,

R. Baldini Ferroli

t

,

Y. Ban

ah

,

D.W. Bennett

s

,

J.V. Bennett

e

,

N. Berger

y

,

M. Bertani

t

,

D. Bettoni

v

,

J.M. Bian

az

,

F. Bianchi

bf

,

bh

,

E. Boger

z

,

2

,

I. Boyko

z

,

R.A. Briere

e

,

H. Cai

bj

,

X. Cai

a

,

ap

,

O. Cakir

as

,

A. Calcaterra

t

,

G.F. Cao

a

,

aw

,

S.A. Cetin

at

,

J. Chai

bh

,

J.F. Chang

a

,

ap

,

G. Chelkov

z

,

2

,

3

,

G. Chen

a

,

H.S. Chen

a

,

aw

,

J.C. Chen

a

,

M.L. Chen

a

,

ap

,

P.L. Chen

bd

,

S.J. Chen

af

,

X.R. Chen

ac

,

Y.B. Chen

a

,

ap

,

X.K. Chu

ah

,

G. Cibinetto

v

,

H.L. Dai

a

,

ap

,

J.P. Dai

ak

,

8

,

A. Dbeyssi

n

,

D. Dedovich

z

,

Z.Y. Deng

a

,

A. Denig

y

,

I. Denysenko

z

,

M. Destefanis

bf

,

bh

,

F. De Mori

bf

,

bh

,

Y. Ding

ad

,

C. Dong

ag

,

J. Dong

a

,

ap

,

L.Y. Dong

a

,

aw

,

M.Y. Dong

a

,

ap

,

aw

,

Z.L. Dou

af

,

S.X. Du

bl

,

P.F. Duan

a

,

J. Fang

a

,

ap

,

S.S. Fang

a

,

aw

,

Y. Fang

a

,

R. Farinelli

v

,

w

,

L. Fava

bg

,

bh

,

S. Fegan

y

,

F. Feldbauer

y

,

G. Felici

t

,

C.Q. Feng

bc

,

ap

,

E. Fioravanti

v

,

M. Fritsch

y

,

n

,

C.D. Fu

a

,

Q. Gao

a

,

X.L. Gao

bc

,

ap

,

Y. Gao

ar

,

Y.G. Gao

f

,

Z. Gao

bc

,

ap

,

B. Garillon

y

,

I. Garzia

v

,

K. Goetzen

j

,

L. Gong

ag

,

W.X. Gong

a

,

ap

,

W. Gradl

y

,

M. Greco

bf

,

bh

,

M.H. Gu

a

,

ap

,

Y.T. Gu

l

,

A.Q. Guo

a

,

R.P. Guo

a

,

aw

,

Y.P. Guo

y

,

Z. Haddadi

ab

,

S. Han

bj

,

X.Q. Hao

o

,

F.A. Harris

ax

,

K.L. He

a

,

aw

,

X.Q. He

bb

,

F.H. Heinsius

d

,

T. Held

d

,

Y.K. Heng

a

,

ap

,

aw

,

T. Holtmann

d

,

Z.L. Hou

a

,

H.M. Hu

a

,

aw

,

T. Hu

a

,

ap

,

aw

,

Y. Hu

a

,

G.S. Huang

bc

,

ap

,

J.S. Huang

o

,

X.T. Huang

aj

,

X.Z. Huang

af

,

Z.L. Huang

ad

,

T. Hussain

be

,

W. Ikegami Andersson

bi

,

Q. Ji

a

,

Q.P. Ji

o

,

X.B. Ji

a

,

aw

,

X.L. Ji

a

,

ap

,

X.S. Jiang

a

,

ap

,

aw

,

X.Y. Jiang

ag

,

J.B. Jiao

aj

,

Z. Jiao

q

,

D.P. Jin

a

,

ap

,

aw

,

S. Jin

a

,

aw

,

Y. Jin

ay

,

T. Johansson

bi

,

A. Julin

az

,

N. Kalantar-Nayestanaki

ab

,

X.L. Kang

a

,

X.S. Kang

ag

,

M. Kavatsyuk

ab

,

B.C. Ke

e

,

T. Khan

bc

,

ap

,

A. Khoukaz

ba

,

P. Kiese

y

,

R. Kliemt

j

,

L. Koch

aa

,

O.B. Kolcu

at

,

6

,

B. Kopf

d

,

M. Kornicer

ax

,

M. Kuemmel

d

,

M. Kuessner

d

,

M. Kuhlmann

d

,

A. Kupsc

bi

,

W. Kühn

aa

,

J.S. Lange

aa

,

M. Lara

s

,

P. Larin

n

,

L. Lavezzi

bh

,

H. Leithoff

y

,

C. Leng

bh

,

C. Li

bi

,

Cheng Li

bc

,

ap

,

D.M. Li

bl

,

F. Li

a

,

ap

,

F.Y. Li

ah

,

G. Li

a

,

H.B. Li

a

,

aw

,

H.J. Li

a

,

aw

,

J.C. Li

a

,

Jin Li

ai

,

K.J. Li

aq

,

Kang Li

m

,

Ke Li

aj

,

Lei Li

c

,

P.L. Li

bc

,

ap

,

P.R. Li

aw

,

g

,

Q.Y. Li

aj

,

W.D. Li

a

,

aw

,

W.G. Li

a

,

X.L. Li

aj

,

X.N. Li

a

,

ap

,

X.Q. Li

ag

,

Z.B. Li

aq

,

H. Liang

bc

,

ap

,

Y.F. Liang

am

,

Y.T. Liang

aa

,

G.R. Liao

k

,

D.X. Lin

n

,

B. Liu

ak

,

8

,

B.J. Liu

a

,

C.X. Liu

a

,

D. Liu

bc

,

ap

,

F.H. Liu

al

,

Fang Liu

a

,

Feng Liu

f

,

H.B. Liu

l

,

H.M. Liu

a

,

aw

,

Huanhuan Liu

a

,

Huihui Liu

p

,

J.B. Liu

bc

,

ap

,

J.Y. Liu

a

,

aw

,

K. Liu

ar

,

K.Y. Liu

ad

,

Ke Liu

f

,

L.D. Liu

ah

,

P.L. Liu

a

,

ap

,

Q. Liu

aw

,

S.B. Liu

bc

,

ap

,

X. Liu

ac

,

Y.B. Liu

ag

,

Z.A. Liu

a

,

ap

,

aw

,

Zhiqing Liu

y

,

Y.F. Long

ah

,

X.C. Lou

a

,

ap

,

aw

,

H.J. Lu

q

,

J.G. Lu

a

,

ap

,

Y. Lu

a

,

Y.P. Lu

a

,

ap

,

C.L. Luo

ae

,

M.X. Luo

bk

,

X.L. Luo

a

,

ap

,

X.R. Lyu

aw

,

F.C. Ma

ad

,

H.L. Ma

a

,

L.L. Ma

aj

,

M.M. Ma

a

,

aw

,

Q.M. Ma

a

,

T. Ma

a

,

X.N. Ma

ag

,

X.Y. Ma

a

,

ap

,

Y.M. Ma

aj

,

F.E. Maas

n

,

M. Maggiora

bf

,

bh

,

Q.A. Malik

be

,

Y.J. Mao

ah

,

Z.P. Mao

a

,

S. Marcello

bf

,

bh

,

Z.X. Meng

ay

,

J.G. Messchendorp

ab

,

G. Mezzadri

w

,

J. Min

a

,

ap

,

T.J. Min

a

,

R.E. Mitchell

s

,

X.H. Mo

a

,

ap

,

aw

,

Y.J. Mo

f

,

C. Morales Morales

n

,

N.Yu. Muchnoi

i

,

4

,

H. Muramatsu

az

,

A. Mustafa

d

,

Y. Nefedov

z

,

F. Nerling

j

,

I.B. Nikolaev

i

,

4

,

Z. Ning

a

,

ap

,

S. Nisar

h

,

S.L. Niu

a

,

ap

,

X.Y. Niu

a

,

aw

,

S.L. Olsen

ai

,

10

,

Q. Ouyang

a

,

ap

,

aw

,

S. Pacetti

u

,

Y. Pan

bc

,

ap

,

,

M. Papenbrock

bi

,

P. Patteri

t

,

https://doi.org/10.1016/j.physletb.2018.04.017

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

M. Pelizaeus

d

,

J. Pellegrino

bf

,

bh

,

H.P. Peng

bc

,

ap

,

K. Peters

j

,

7

,

J. Pettersson

bi

,

J.L. Ping

ae

,

R.G. Ping

a

,

aw

,

A. Pitka

y

,

R. Poling

az

,

V. Prasad

bc

,

ap

,

H.R. Qi

b

,

M. Qi

af

,

S. Qian

a

,

ap

,

C.F. Qiao

aw

,

N. Qin

bj

,

X.S. Qin

d

,

Z.H. Qin

a

,

ap

,

J.F. Qiu

a

,

K.H. Rashid

be

,

9

,

C.F. Redmer

y

,

M. Richter

d

,

M. Ripka

y

,

M. Rolo

bh

,

G. Rong

a

,

aw

,

Ch. Rosner

n

,

A. Sarantsev

z

,

5

,

M. Savrié

w

,

C. Schnier

d

,

K. Schoenning

bi

,

W. Shan

ah

,

M. Shao

bc

,

ap

,

C.P. Shen

b

,

P.X. Shen

ag

,

X.Y. Shen

a

,

aw

,

H.Y. Sheng

a

,

J.J. Song

aj

,

W.M. Song

aj

,

X.Y. Song

a

,

S. Sosio

bf

,

bh

,

C. Sowa

d

,

S. Spataro

bf

,

bh

,

G.X. Sun

a

,

J.F. Sun

o

,

L. Sun

bj

,

S.S. Sun

a

,

aw

,

X.H. Sun

a

,

Y.J. Sun

bc

,

ap

,

Y.K. Sun

bc

,

ap

,

Y.Z. Sun

a

,

Z.J. Sun

a

,

ap

,

Z.T. Sun

s

,

C.J. Tang

am

,

G.Y. Tang

a

,

X. Tang

a

,

I. Tapan

au

,

M. Tiemens

ab

,

B. Tsednee

x

,

I. Uman

av

,

G.S. Varner

ax

,

B. Wang

a

,

B.L. Wang

aw

,

D. Wang

ah

,

D.Y. Wang

ah

,

Dan Wang

aw

,

K. Wang

a

,

ap

,

L.L. Wang

a

,

L.S. Wang

a

,

M. Wang

aj

,

Meng Wang

a

,

aw

,

P. Wang

a

,

P.L. Wang

a

,

W.P. Wang

bc

,

ap

,

X.F. Wang

ar

,

Y. Wang

an

,

Y.D. Wang

n

,

Y.F. Wang

a

,

ap

,

aw

,

Y.Q. Wang

y

,

Z. Wang

a

,

ap

,

Z.G. Wang

a

,

ap

,

Z.Y. Wang

a

,

Zongyuan Wang

a

,

aw

,

T. Weber

y

,

D.H. Wei

k

,

P. Weidenkaff

y

,

S.P. Wen

a

,

U. Wiedner

d

,

M. Wolke

bi

,

L.H. Wu

a

,

L.J. Wu

a

,

aw

,

Z. Wu

a

,

ap

,

L. Xia

bc

,

ap

,

Y. Xia

r

,

D. Xiao

a

,

H. Xiao

bd

,

Y.J. Xiao

a

,

aw

,

Z.J. Xiao

ae

,

Y.G. Xie

a

,

ap

,

Y.H. Xie

f

,

X.A. Xiong

a

,

aw

,

Q.L. Xiu

a

,

ap

,

G.F. Xu

a

,

J.J. Xu

a

,

aw

,

L. Xu

a

,

Q.J. Xu

m

,

Q.N. Xu

aw

,

X.P. Xu

an

,

L. Yan

bf

,

bh

,

W.B. Yan

bc

,

ap

,

W.C. Yan

b

,

Y.H. Yan

r

,

H.J. Yang

ak

,

8

,

H.X. Yang

a

,

L. Yang

bj

,

Y.H. Yang

af

,

Y.X. Yang

k

,

M. Ye

a

,

ap

,

M.H. Ye

g

,

J.H. Yin

a

,

Z.Y. You

aq

,

B.X. Yu

a

,

ap

,

aw

,

C.X. Yu

ag

,

J.S. Yu

ac

,

C.Z. Yuan

a

,

aw

,

Y. Yuan

a

,

A. Yuncu

at

,

1

,

A.A. Zafar

be

,

Y. Zeng

r

,

Z. Zeng

bc

,

ap

,

B.X. Zhang

a

,

B.Y. Zhang

a

,

ap

,

C.C. Zhang

a

,

D.H. Zhang

a

,

H.H. Zhang

aq

,

H.Y. Zhang

a

,

ap

,

J. Zhang

a

,

aw

,

J.L. Zhang

a

,

J.Q. Zhang

a

,

J.W. Zhang

a

,

ap

,

aw

,

J.Y. Zhang

a

,

J.Z. Zhang

a

,

aw

,

K. Zhang

a

,

aw

,

L. Zhang

ar

,

S.Q. Zhang

ag

,

X.Y. Zhang

aj

,

Y.H. Zhang

a

,

ap

,

Y.T. Zhang

bc

,

ap

,

Yang Zhang

a

,

Yao Zhang

a

,

Yu Zhang

aw

,

Z.H. Zhang

f

,

Z.P. Zhang

bc

,

Z.Y. Zhang

bj

,

G. Zhao

a

,

J.W. Zhao

a

,

ap

,

J.Y. Zhao

a

,

aw

,

J.Z. Zhao

a

,

ap

,

Lei Zhao

bc

,

ap

,

Ling Zhao

a

,

M.G. Zhao

ag

,

Q. Zhao

a

,

S.J. Zhao

bl

,

T.C. Zhao

a

,

Y.B. Zhao

a

,

ap

,

Z.G. Zhao

bc

,

ap

,

A. Zhemchugov

z

,

2

,

B. Zheng

bd

,

J.P. Zheng

a

,

ap

,

Y.H. Zheng

aw

,

B. Zhong

ae

,

L. Zhou

a

,

ap

,

X. Zhou

bj

,

X.K. Zhou

bc

,

ap

,

X.R. Zhou

bc

,

ap

,

X.Y. Zhou

a

,

J. Zhu

ag

,

J. Zhu

aq

,

K. Zhu

a

,

K.J. Zhu

a

,

ap

,

aw

,

S. Zhu

a

,

S.H. Zhu

bb

,

X.L. Zhu

ar

,

Y.C. Zhu

bc

,

ap

,

Y.S. Zhu

a

,

aw

,

Z.A. Zhu

a

,

aw

,

J. Zhuang

a

,

ap

,

B.S. Zou

a

,

J.H. Zou

a

aInstituteofHighEnergyPhysics,Beijing100049,People’sRepublicofChina bBeihangUniversity,Beijing100191,People’sRepublicofChina

cBeijingInstituteofPetrochemicalTechnology,Beijing102617,People’sRepublicofChina dBochumRuhr-University,D-44780Bochum,Germany

eCarnegieMellonUniversity,Pittsburgh,PA 15213,USA

fCentralChinaNormalUniversity,Wuhan430079,People’sRepublicofChina

gChinaCenterofAdvancedScienceandTechnology,Beijing100190,People’sRepublicofChina

hCOMSATSInstituteofInformationTechnology,Lahore,DefenceRoad,OffRaiwindRoad,54000Lahore,Pakistan iG.I.BudkerInstituteofNuclearPhysicsSBRAS(BINP),Novosibirsk630090,Russia

jGSIHelmholtzcentreforHeavyIonResearchGmbH,D-64291Darmstadt,Germany kGuangxiNormalUniversity,Guilin541004,People’sRepublicofChina

lGuangxiUniversity,Nanning530004,People’sRepublicofChina

mHangzhouNormalUniversity,Hangzhou310036,People’sRepublicofChina nHelmholtzInstituteMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany oHenanNormalUniversity,Xinxiang453007,People’sRepublicofChina

pHenanUniversityofScienceandTechnology,Luoyang471003,People’sRepublicofChina qHuangshanCollege,Huangshan245000,People’sRepublicofChina

rHunanUniversity,Changsha410082,People’sRepublicofChina sIndianaUniversity,Bloomington,IN 47405,USA

tINFNLaboratoriNazionalidiFrascati,I-00044,Frascati,Italy uINFNandUniversityofPerugia,I-06100,Perugia,Italy vINFNSezionediFerrara,I-44122,Ferrara,Italy wUniversityofFerrara,I-44122,Ferrara,Italy

xInstituteofPhysicsandTechnology,PeaceAve.54B,Ulaanbaatar13330,Mongolia

yJohannesGutenbergUniversityofMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany zJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia

aaJustus-Liebig-UniversitaetGiessen,II.PhysikalischesInstitut,Heinrich-Buff-Ring16,D-35392Giessen,Germany abKVI-CART,UniversityofGroningen,NL-9747AAGroningen,theNetherlands

ac

LanzhouUniversity,Lanzhou730000,People’sRepublicofChina adLiaoningUniversity,Shenyang110036,People’sRepublicofChina aeNanjingNormalUniversity,Nanjing210023,People’sRepublicofChina afNanjingUniversity,Nanjing210093,People’sRepublicofChina agNankaiUniversity,Tianjin300071,People’sRepublicofChina ahPekingUniversity,Beijing100871,People’sRepublicofChina aiSeoulNationalUniversity,Seoul,151-747, RepublicofKorea ajShandongUniversity,Jinan250100,People’sRepublicofChina

(3)

akShanghaiJiaoTongUniversity,Shanghai200240,People’sRepublicofChina alShanxiUniversity,Taiyuan030006,People’sRepublicofChina

amSichuanUniversity,Chengdu610064,People’sRepublicofChina anSoochowUniversity,Suzhou215006,People’sRepublicofChina aoSoutheastUniversity,Nanjing211100,People’sRepublicofChina

apStateKeyLaboratoryofParticleDetectionandElectronics,Beijing100049,Hefei230026,People’sRepublicofChina aqSunYat-SenUniversity,Guangzhou510275,People’sRepublicofChina

arTsinghuaUniversity,Beijing100084,People’sRepublicofChina asAnkaraUniversity,06100Tandogan,Ankara,Turkey atIstanbulBilgiUniversity,34060Eyup,Istanbul,Turkey auUludagUniversity,16059Bursa,Turkey

avNearEastUniversity,Nicosia,NorthCyprus,Mersin10,Turkey

awUniversityofChineseAcademyofSciences,Beijing100049,People’sRepublicofChina axUniversityofHawaii,Honolulu,HI 96822,USA

ayUniversityofJinan,Jinan250022,People’sRepublicofChina azUniversityofMinnesota,Minneapolis,MN 55455,USA

baUniversityofMuenster,Wilhelm-Klemm-Str.9,48149Muenster,Germany

bbUniversityofScienceandTechnologyLiaoning,Anshan114051,People’sRepublicofChina bcUniversityofScienceandTechnologyofChina,Hefei230026,People’sRepublicofChina bd

UniversityofSouthChina,Hengyang421001,People’sRepublicofChina beUniversityofthePunjab,Lahore54590,Pakistan

bfUniversityofTurin,I-10125,Turin,Italy

bgUniversityofEasternPiedmont,I-15121,Alessandria,Italy bhINFN,I-10125,Turin,Italy

biUppsalaUniversity,Box516,SE-75120Uppsala,Sweden bjWuhanUniversity,Wuhan430072,People’sRepublicofChina bkZhejiangUniversity,Hangzhou310027,People’sRepublicofChina blZhengzhouUniversity,Zhengzhou450001,People’sRepublicofChina

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received16March2018

Receivedinrevisedform5April2018 Accepted8April2018

Availableonline10April2018 Editor:W.-D.Schlatter Keywords: BESIII D0meson Hadronicdecays Branchingfractions

Using adata sample of e+e− collision data corresponding to an integrated luminosity of 2.93 fb−1

collected with the BESIII detector ata center-of-mass energy of √s=3.773 GeV, we search for the singlyCabibbo-suppresseddecaysD0→

π

0

π

0

π

0,

π

0

π

0

η

,

π

0

ηη

and

ηηη

usingthedoubletagmethod.

The absolute branching fractions are measured to be B(D0

π

0

π

0

π

0) = (2.0±0.4±0.3) ×10−4,

B(D0

π

0

π

0

η

) = (3.8±1.1±0.7) ×10−4 and B(D0

π

0

ηη

) = (7.3±1.6±1.5) ×10−4with the

statisticalsignificancesof4.8

σ

,3.8

σ

and5.5

σ

,respectively,wherethefirstuncertaintiesarestatistical andthesecondonessystematic.NosignificantsignalofD0

ηηη

isfound,andtheupperlimitonits

decaybranchingfractionissettobeB(D0

ηηη

) <1.3×10−4atthe90%confidencelevel.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Thestudyofcharmedmesondecays,whichinvolvebothstrong and weak interactions, is an interesting and challenging field in particle physics. Experimental measurements of charmed meson decays yield essential information for understanding the intrin-sic decay mechanism and provide inputs to theoretical

calcula-*

Correspondingauthor.

E-mailaddress:sa004043@mail.ustc.edu.cn(Y. Pan). 1 AlsoatBogaziciUniversity,34342Istanbul,Turkey.

2 AlsoattheMoscowInstituteofPhysicsandTechnology,Moscow141700,Russia. 3 Alsoatthe FunctionalElectronicsLaboratory,Tomsk StateUniversity,Tomsk, 634050,Russia.

4 AlsoattheNovosibirskStateUniversity,Novosibirsk,630090,Russia. 5 AlsoattheNRC“KurchatovInstitute”,PNPI,188300,Gatchina,Russia. 6 AlsoatIstanbulArelUniversity,34295Istanbul,Turkey.

7 AlsoatGoetheUniversityFrankfurt,60323FrankfurtamMain,Germany. 8 AlsoatKeyLaboratoryforParticlePhysics,AstrophysicsandCosmology, Min-istryofEducation;Shanghai KeyLaboratoryfor ParticlePhysicsand Cosmology; Institute ofNuclearand Particle Physics,Shanghai 200240, People’sRepublic of China.

9 GovernmentCollegeWomenUniversity,Sialkot51310, Punjab,Pakistan. 10 Currentlyat:CenterforUndergroundPhysics,InstituteforBasicScience, Dae-jeon34126,RepublicofKorea.

tionsandpredictions.Forexample,Ref. [1] suggeststhatthe mea-surement of the branching fraction (BF) of the hadronic decay

D0

π

0

π

0

π

0 mayshed light on the understanding ofthe role of isospin symmetryin D0 decays tothree-pion final states,and the isospinnature of thenon-resonant contribution.Additionally, thestudyofthehadronicdecaysofcharmedmesonsprovides im-portantinputsforthestudiesof

B physics [2

].

The singly Cabibbo-suppressed (SCS) decaysof the D0 meson to three neutral pseudoscalar particles, D0

π

0

π

0

π

0,

π

0

π

0

η

,

π

0

ηη

and

ηηη

,proceeddominantlythroughinternal W -emission and W -exchange diagrams. Experimental studies ofthese decays are challenging due to the dominant presence of neutral parti-cles (photons) in thefinal states,low BFsandhigh backgrounds. Until now, only asearch for D0

π

0

π

0

π

0 decay hasbeen per-formedbytheCLEO Collaborationwitha

ψ(3770)

datasampleof 281pb−1 in2006 [3].Usingthe“singletag”(ST)method,inwhich one D0 or D

¯

0 mesonis found ineach event, they obtaineda BF upperlimitof3.5

×

10−4 atthe90% confidencelevel(C.L.).

InthisLetter, wepresentmeasurements oftheBFsoftheSCS decays D0

π

0

π

0

π

0,

π

0

π

0

η

,

π

0

ηη

and

ηηη

withthe “double tag” (DT) technique andadata sample corresponding toan inte-grated luminosity of 2.93 fb−1 [4], collected at a center-of-mass energy of

s

=

3.773 GeV withthe BESIII detectoratthe BEPCII

(4)

e+e− collider.Throughoutthe Letter,charge conjugatemodesare alwaysimplied,unlessexplicitlymentioned.

2. BESIIIdetectorandMonteCarlosimulation

BESIII [5] isacylindricalspectrometer composedof a helium-gas-based main drift chamber (MDC), a plastic scintillator time-of-flight(TOF)system,aCsI(Tl)electromagneticcalorimeter(EMC), a superconductingsolenoidprovidinga1.0 Tmagneticfield,anda muoncounter.The chargedparticle momentumresolution inthe MDCis0.5%atatransversemomentum of1GeV/c andthe pho-ton energyresolutionin the EMCat 1GeV, is 2.5% inthe barrel regionand5.0%intheend-capregion.Particleidentification(PID) combinestheionizationenergyloss(dE

/

dx) intheMDC with in-formation from the TOF to identify particle types. More details about the design and performance of the detector are given in Ref. [5].

GEANT4-based [6] Monte Carlo (MC) simulation software is

used to understand the backgrounds and to determine the

de-tectionefficiencies. Thegenerator KKMC[7,8] isusedto simulate the

e

+e−collisionincorporatingtheeffectsofbeam-energyspread and initial-state radiation (ISR). An inclusive MC sample includ-ing D0D

¯

0, D+Dandnon-DD events,

¯

ISR productionof

ψ(3686)

and J

/ψ,

andcontinuumprocesses

e

+e

qq (q

¯

=

u

,

d

,

s) isused to study the potential backgrounds. The known decay modesas specified in the Particle Data Group (PDG) [9] are generated by EVTGEN [10,11],whiletheremainingunknowndecaysof charmo-niumaremodeledbyLundCharm [12].

3. Analysisstrategy

Atthe

ψ(3770)

resonance, D0D

¯

0 pairs are produced in a co-herent1−−statewithoutadditionalparticles.ADTmethod,which wasfirstdevelopedbytheMARK-IIICollaboration [13,14],isused tomeasuretheabsoluteBFs.WefirstselectSTeventsinwhicha

¯

D0mesonisreconstructedinaspecifichadronicdecaymode.Then wesearchfor

D

0decaysintheremainingtracks,andDTeventsare thosewhere D0D

¯

0 pairsare fullyreconstructed.The absoluteBFs forD0decaysarecalculatedby

B

sig

=

N sig DT

B

int



α ST



DTsig

/



α ST

,

(1)

wherethe superscript ‘sig’ representsa specific D0 signal decay,

ST,



α

ST and



sig

DT are the yield of ST events, the ST detection efficiency and DT detection efficiency for a specific ST mode

α

, respectively,while

N

sigDT isthetotalyieldforDTsignalevents,and

B

intistheproductofthedecayBFsfortheintermediate statesin the

D

0 signaldecay.

4. Dataanalysis

ChargedtracksarereconstructedfromhitsintheMDCandare requiredtohaveapolarangle

θ

satisfying

|

cos

θ

|

<

0.93.Thepoint of the closest approach of any charged track to the interaction point(IP) is required tobe within 1 cm inthe plane perpendic-ulartothe beamand

±

10 cm alongthebeam. Informationfrom theTOF systemandthe dE

/

dx information inthe MDCare com-binedtoformPIDC.L.sforthe

π

and K hypotheses. Eachtrackis assignedtotheparticletypewiththehighestPIDC.L.

Photon candidates are reconstructed using clusters of energy depositedintheEMCcrystals.Theenergyisrequiredtobelarger than 25 MeV in the barrel region (

|

cos

θ

|

<

0.8) or 50 MeV in

Table 1

Requirementson E (in GeV),ST yieldsindata (NSTα),ST (STα (in%)) and DT (DTπ0π0π0,



π0π0η,α DT ,



π0ηη,α DT and



ηηη,α

DT (in%))efficiencies.Theuncertaintiesare statisticalonly.BFsof

π

0 and

η

decaystotwophotonsarenotincludedinthe efficiencies. ST mode K+πK+ππ0 K+πππ+ E (−0.027,0.025) (−0.071,0.041) (−0.025,0.022) ST 530634±739 1030144±1129 707080±925 STα 64.83±0.04 33.75±0.02 38.01±0.02 DTπ0π0π0 10.56±0.02 4.46±0.01 4.78±0.02 DTπ0π0η,α 9.74±0.02 4.09±0.01 4.38±0.01 DTπ0ηη,α 8.23±0.02 3.47±0.01 3.58±0.01 DTηηη,α 10.02±0.02 4.14±0.01 4.57±0.01

the end-capregion (0.86

<

|

cos

θ

|

<

0.92). The energy deposited innearbyTOF countersisincludedtoimprovethereconstruction efficiency andenergyresolution. The difference ofthe EMC time fromthe eventstart time isrequired to be within

[

0,700

]

ns to suppresselectronicnoiseandshowersunrelatedtotheevent.

The

π

0 and

η

candidatesare reconstructedfromphotonpairs by requiring the invariant masses Mγ γ to satisfy 115

<

Mγ γ

<

150 MeV/c2or515

<

Mγ γ

<

570 MeV/c2,respectively.Toimprove theresolution,thephotonpairsarefittedkinematically constrain-ing their masses to the nominal

π

0 or

η

masses [9], and the resultingenergies andmomenta ofthetwo photonsareused for subsequentanalysis.

TheSTcandidates areselectedby reconstructing D

¯

0 decaysto

K+

π

,

K+

π

π

0 and

K

+

π

π

π

+.Twovariables,theenergy

dif-ference

E

ED

Ebeam andthebeam-energy-constrainedmass

MBC



E2

beam

/

c4

p2D

/

c2,areusedtoidentifytheD

¯

0 candidates.

Here, Ebeam isthebeamenergy,andED

(

pD

)

isthe reconstructed

energy (momentum) ofthe D

¯

0 candidate in the

e

+e− center-of-masssystem.ThoseD

¯

0candidatesareacceptedforfurtheranalysis thatsatisfy MBC

>

1.83 GeV/c2 andmode-dependent

E require-ments,whichareapproximatelythreetimesthevalueofthe reso-lutionaroundtheD

¯

0 nominalmass [9],assummarizedinTable1. ForeachSTmode,ifthereismorethanonecandidateintheevent, theonewiththeminimum

|

E

|

isselected.

The

M

BCdistributionsoftheacceptedD

¯

0candidatesareshown inFig.1,where D

¯

0 signalsareobservedwithrelativelylow back-grounds.Binnedmaximumlikelihoodfitstothe

M

BCdistributions areperformedtoobtaintheSTyields.Inthefits,thesignalshape ismodeledbytheMCsimulatedshapeconvolvedwithaGaussian functionrepresentingthedifferencebetweendataandMC simula-tion comingfromthebeam-energy spread,ISR, the

ψ(3770)

line shape, and resolution. The combinatorial background is modeled by an ARGUS function [15]. The STyields are calculated by sub-tracting the integrated ARGUS background yields from the total eventscountedin thesignal region1.859

<

MBC

<

1.871 GeV/c2. The STefficiencyis studiedusingthe sameprocedure onthe in-clusiveMCsample. TheresultingSTyields andthecorresponding STefficienciesaresummarizedinTable1.

Candidatesfor theSCS decays, D0

π

0

π

0

π

0,

π

0

π

0

η

,

π

0

ηη

and

ηηη

, are selected inthe systemrecoiling against the tagged

¯

D0.Onlyeventswithoutanyadditionalchargedtrackarechosen. The D0 signal decays are reconstructed withanycombination of theselected

π

0 and

η

candidatesthathavenot beenusedinthe ST side and do not sharethe same photon candidate. To distin-guishthesignaldecayfromcombinatorialbackgrounds,theenergy difference

E and thebeam-constrainedmass

M

BC arealso calcu-latedforeachacceptedcombination.AD0 candidateisacceptedif itsatisfiesamode-dependent

E requirement, whichcorresponds to three times the value of the resolution around the

E peak

(5)

Fig. 1. (Coloronline.) Fitstothe MBC distributionsofthe candidatesfor theST modes:(a)D¯0K+π,(b)D¯0K+ππ0and(c)D¯0K+πππ+.Points

withanerrorbar aredata,the bluesolidlinesarethetotalfit curves,thered dashedlinesarethesignalshapes,andthegreenlong-dashedlinesarethe back-groundshapes.

basedonMCsimulation,assummarizedinTable2.Theshiftand asymmetry ofthe

E distributions are mainlyduetothe energy lossintheEMCformulti-photonfinalstates.Iftherearemultiple combinations fora given signal decay inan event, the one with theminimum

|

E

|

isselected.

Except for the decay D0

ηηη

, MC studies indicate that

the selected candidates have large backgrounds from D0

π

0

π

0

π

0

π

0 decay, which has a relatively large decay BF, and contain some background events from cross feeds between

sig-nal channels. Both backgrounds peak around the nominal D0

mass [9] intheMBC distributions.Toreduce thebackgroundfrom

D0

π

0

π

0

π

0

π

0 in D0

π

0

π

0

π

0 and

π

0

π

0

η

decays,thejoint chi-square

χ

2

4π

=



4

i=1

χ

π2i isrequiredtobelarger than20ifthe candidateeventhasatleastfourindependent

π

0 candidates(not including

π

0 candidates fromthe STside).Here,

χπ

i

=

Mi

γ γ0

σi

γ γ

for the ith

π

0 candidate is calculated with the

γ γ

invariant mass Mγ γ (beforei the kinematic fit) and its resolution

σ

i

γ γ , as

well as the

π

0 nominal mass

0 [9]. To reduce the cross feed between the signal decays, we define the analogical joint chi-square variables,

χ

2 A BC

= (

M1 γ γmA σ1 γ γ

)

2

+ (

M2γ γmB σ2 γ γ

)

2

+ (

M3γ γmC σ3 γ γ

)

2, where mA(B,C) is the nominal mass of

π

0 or

η

[9], and

re-quire

χ

2

π0π0η

>

20 for D0

π

0

π

0

π

0 decay,

χ

π20π0π0

>

20 for

D0

π

0

π

0

η

decayaswellas

χ

2

π0π0π0

>

20 and

χ

π20π0η

>

20 for

D0

π

0

ηη

decay.

However, MC studies indicate that backgrounds remain from

photon mis-combinationsin

π

0 and

η

candidates.These aredue to the matches ofa good photon with noise in the EMC, which usuallycorrespondstoafakelowenergyphoton.Furthermore,the MCindicatesthatthisbackgroundcanbereducedbyrequiringno othercombinationwiththesamefinalstateandwith

χ

2

<

20.For instanceforD0

π

0

π

0

π

0,thisrequirementlosesonly5%of sig-naleventswhileitrejects30%ofmis-combinationbackground.

For D0

π

0

π

0

π

0 and

π

0

π

0

η

decays, the events with any

π

0

π

0 invariant mass satisfying 445

<

0π0

<

535 MeV/c2 are vetoed to reject the backgrounds from the Cabibbo-favored (CF) decays D0

K0

S

π

0 and K0S

η

with K0S

π

0

π

0, which have

ex-actlythesamefinalstatesasthesignalchannels.

Withthe aboveselection criteria, the MBC distributions ofthe accepted D0 candidate events in data are shown in Fig. 2. The

D0

π

0

π

0

π

0,

π

0

π

0

η

and

π

0

ηη

signalsare clear,butno obvi-ous D0

ηηη

signal is observed. The peaking backgrounds are dominated by the decay D0

π

0

π

0

π

0

π

0, and the CF decays

D0

K0S

π

0

/

η

for D0

π

0

π

0

π

0

/

η

. The contributionsfrom the cross feeds are smalland will be considered in determining the signalyields.Themis-combinationbackgroundisnegligible.

To determine the signal yields of the decays D0

π

0

π

0

π

0,

π

0

π

0

η

, and

π

0

ηη

, unbinned maximum likelihood fits are per-formed tothe MBC distributions.The probability densityfunction (PDF) for signal is modeled with the MC simulated shape con-volved with a Gaussian function representing the resolution dif-ference anda potential massshift betweendataandMC simula-tion. The peakingbackgroundsfrom theCF decay D0

K0S

π

0

/

η

(BKG I) and the decay D0

π

0

π

0

π

0

π

0 (BKG II) aswell as the cross feeds (BKG III)are alsoincluded inthe fit.The combinato-rial background (BKG IV)is modeled by an ARGUS function [15]. The shapesofthevariouspeakingbackgroundsaremodeledwith those of MC simulations, andthe corresponding magnitudes are fixed to thevaluesestimatedwitha datadrivenmethod.We se-lecta controlsample of D0

π

0

π

0

π

0

π

0 fromdatawithan ap-proach similar to the signal selection, andobtain the yield N4π0 froma fitto theresulting MBC distribution. AmixedMC sample, which includes the possible resonant decays D0

→ ¯

K

(892)

0

π

0,

ηπ

0, K0

Sf0, f0(980)

π

0

π

0, KL0

π

0, K0SKS0 and

η



π

0, is generated

withknownBFs [9] andissubjecttotheselectioncriteriaof

D

0

π

0

π

0

π

0 and D0

π

0

π

0

π

0

π

0 to evaluatethemis-identification rate



3π0 andthedetectionefficiency



4π0,respectively.The mag-nitude of the background D0

π

0

π

0

π

0

π

0 in the selection of

D0

π

0

π

0

π

0 is givenby N

4π0

·



3π0

/



4π0. Similar data driven approaches areapplied to determine themagnitudeof the peak-ingbackground D0

π

0

π

0

π

0

π

0,thecrossfeedandthenumber ofCFdecays

D

0

K0

S

π

0

/

η

ineachsignaldecay.Theresultingfits

for

D

0

π

0

π

0

π

0,

π

0

π

0

η

and

π

0

ηη

areshowninFigs.2(a),(b) and(c),respectively.Thesignalyields andstatisticalsignificances, which are estimated from the likelihood difference between the fits with and without the signal included after considering the

Table 2

Summaryof E requirements,signalyields(NsigDT),statisticalsignificances,BFsbythismeasurement andinthePDG [9].Thefirstandseconduncertaintiesarestatisticalandsystematic,respectively.The upperlimitissetatthe90%C.L.

Mode E(GeV) NsigDT Significance B(×10−4) BPDG(×10−4)

π0π0π0 (−0.115,0.059) 60±13 4.8σ 2.0±0.4±0.3 <3.5 π0π0η (−0.088,0.053) 42±12 3.8σ 3.8±1.1±0.7 – π0ηη (0.061,0.045) 27±6 5.5σ 7.3±1.6±1.5 ηηη (−0.030,0.028) – – <1.3 –

(6)

Fig. 2. (Coloronline.) FitstotheMBCdistributionsoftheacceptedcandidateevents for(a)D0π0π0π0,(b)D0π0π0η,(c)D0π0ηηand(d)D0ηηη.Dots witherrorbarsaredata,thebluesolidlinesarethetotalfitcurves,andthered dot-tedlinesarethesignalshapes.Thegreendashed,magentadash-dotted,orangedash two-dottedandbluelong-dashedlinesdenoteBKGI,BKGII,BKGIIIandBKG IV(see text),respectively.Thevioletlongdash-dottedlinesaretheremainingD0D¯0 back-ground.Theinsetinplot(d)showsthenormalizedlikelihooddistributionincluding thesystematicuncertainty,asafunctionoftheexpectedBF.Thebluearrow indi-catestheupperlimitontheBFatthe90%C.L.

changeinthe numberofdegreesof freedom,are summarizedin Table2.

Sincenoobvious D0

ηηη

signal isobserved,anupperlimit onitsdecayBF isdetermined.Wefit the

M

BC distributionofthe

D0

ηηη

candidateevents,wherethesignalisdescribed bythe MCsimulatedshapeconvolutedwithaGaussianfunction andthe backgroundby an ARGUS function. The parameters of the Gaus-sianfunctionarefixedtothoseobtainedinthefitofD0

π

0

ηη

decay. The resultant best fit is shown in Fig. 2 (d). The PDF for theexpectedsignal yieldistakentobethenormalizedlikelihood

L

versus the BF in the fit, incorporating the systematic uncer-tainties as described below, and is shown as the inset plot in Fig.2(d).TheupperlimitontheBFatthe90%C.L.,corresponding to



0up

L(

x

)

dx

/



0

L(

x

)

dx

=

0.9,iscalculatedtobe

<

1.3

×

10−4.

The detection efficiencies for various decays of interest must take intoaccount the effectofany intermediatestates. The exis-tenceofintermediatestatesinthe

D

0three-bodydecaysis inves-tigatedbyexaminingthecorrespondingDalitzplots.Exceptforthe decay D0

π

0

ηη

, no obvious intermediate states are observed. Therefore,thedetectionefficienciesforthedecays

D

0

π

0

π

0

π

0,

Fig. 3. (Coloronline.) Fitstothe0ηdistribution.Dotswitherrorbarsaredata, thebluesolidlineisthetotalfitcurve,andthereddottedlineisthesignalshape. Thebluelong-dashedlineisthebackgroundestimatedfromtheinclusiveMC.

π

0

π

0

η

and

ηηη

are obtained with MC samples of three-body phasespacedecaywithuniformangulardistributions.

Forthedecay D0

π

0

ηη

,the

a

0(980)0 isevident inthe

π

0

η

invariant mass 0η distribution. Fig. 3 shows the 0η spec-trumof23eventswithtwoentriesper eventfromthedata sam-ple withadditional requirements

0.023

<

E

<

0.020 GeV and 1.859

<

MBC

<

1.871 GeV/c2.Anunbinnedmaximumlikelihoodfit isperformedonthe0η distributiontodetermine the

a

0(980)0 signalyield.

Inthefit,theshapeofthe

a

0(980)0isdescribedwiththeshape fromtheMCsample ofD0

a0(980)0

η

π

0

ηη

,whichhastwo components:one withthe

π

0 combinedwiththecorrect

η

com-ingfromthe

a

0(980)0 decay,andtheotherwiththe

π

0 combined with the wrong

η

coming directly from the D0 decay. The first peaks aroundthe a0(980)0 mass,while the second contributesa broadshapeinthe 0η distribution.TheMCshapeisconvolved witha Gaussian function to account for themass resolution dif-ference betweendata and MC simulation. In the MC simulation, the intermediate a0(980)0 state is parameterized withthe Flatté formula [16] with the central mass and the a0(980)0 coupling constants comingfromtheCrystalBarrelexperiment [17,18].The componentfromthedirect

D

0 three-bodydecayisincludedinthe fit, andits shape isthe MC simulated shape,which is similar to that ofthewrong

η

contributionin the

a

0(980)0 shape.We also includethe backgroundin thefit, whereits shape isdetermined fromtheinclusiveMCsample.Bothmagnitudesforthe

D

0 three-bodydecaycomponentandbackgroundareleftfreeinthefit.The fitcurvesareshowninFig.3.Thefityields are21

±

5 eventsfor the

a

0(980)0 signaland0

±

4 eventsforthe D0 directthree-body decay, which impliesthe predominant process in thethree-body decayof

D

0

π

0

ηη

is D0

a0(980)0

η

.

Wealsoperformafitwithoutthe

a

0(980)0signalincluded,and thestatisticalsignificanceofthe

a

0(980)0signaliscalculatedwith the change of likelihood value withrespect to that of the nom-inal fittaking into account the change ofnumber offreedom in the fit. The significance for the a0(980)0 signal is only 2.6

σ

, al-thoughitisthepredominantcomponentinthethree-body decay. Therefore,inthedecayof D0

π

0

ηη

,thedetectionefficiencyis estimatedwiththeMCsampleofD0

a0(980)0

η

π

0

ηη

as de-scribedabove.

TheresultantDTefficienciesforvariousdecaysarelistedin Ta-ble 1. The BFs of these decays are calculated with Eq. (1), and summarizedinTable2.

5. Systematicuncertainties

WiththeDTtechnique,theBFmeasurementsareinsensitiveto systematicscomingfromtheSTsidesincetheymostly cancel.For

Şekil

Fig. 1. (Color online.) Fits to the M BC distributions of the candidates for the ST modes: (a) D¯ 0 → K + π − , (b) D¯ 0 → K + π − π 0 and (c) D¯ 0 → K + π − π − π +
Fig. 3. (Color online.) Fits to the M π 0 η distribution. Dots with error bars are data, the blue solid line is the total fit curve, and the red dotted line is the signal shape

Referanslar

Benzer Belgeler

İş zenginleştirme, iş genişletme gibi iş tasarımı yöntemleri ile işin yeniden düzenlenmesi, kararlara katılımın sağlanması, çalışanın kurumun strateji

GP’nin dış kısmı şekilde olduğu gibi D2 tip hücreler tarafından bastırılırsa ateşleme miktarları düşer ve (1) GP’nin iç kısmına olan baskılamaları azalır

We searched the answer of this question in our study by thinking about new market type (two-sided markets) which has -sided markets (especially Armstrong (2006)) and show

implant sites in our case was deemed adequate, and good primary stabilization of implants was observed. Regions were prepared with copious irrigation and light

Halka açık şirket sayısı ve piyasa değerinin ülke potansiyelini yansıtır büyüklüğe ulaştığı, ulusal ve ulusla- rarası yatırımcıların en üst seviyede

Facebook, Twitter gibi sosyal ağlar, bloglar, Youtube, Instagram gibi içerik paylaşım siteleri ile birlikte sosyal medya kullanıcıları hem diğer kullanıcılar hem

Hastanelerde bu uygulamalar Enfeksiyon Kontrol Komitesince (EKK) gerçekleştirilsede, hastane İSGB’de görevlendirilen iş güvenliği uzmanı, işyeri hekimi ve diğer

Hasta yakınlarının algılanan aile desteği puanları ortalamalarının Hastasının tıbbi tanısı değişkeni açısından anlamlı bir farklılık gösterip