• Sonuç bulunamadı

Physical properties of carob bean (Ceratonia siliqua L.): An industrial gum yielding crop

N/A
N/A
Protected

Academic year: 2021

Share "Physical properties of carob bean (Ceratonia siliqua L.): An industrial gum yielding crop"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

(2)

Industrial

Crops

and

Products

j o u r n al hom ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / i n d c r o p

Physical

properties

of

carob

bean

(Ceratonia

siliqua

L.):

An

industrial

gum

yielding

crop

E.

Karababa

a

,

Y.

Cos¸

kuner

b,∗

aDepartmentofNutritionandDietetics,Mu˘glaSchoolofHealth,UniversityofMu˘gla,Kötekli,Mu˘gla48000,Turkey bDepartmentofFoodEngineering,FacultyofEngineering,UniversityofKaramano˘gluMehmetbey,Karaman70200,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received24February2012 Receivedinrevisedform8May2012 Accepted8May2012

Keywords: Physicalproperties Carobbean Seedsizedistribution

a

b

s

t

r

a

c

t

Somephysicalpropertiesofcarobbean(CeratoniasiliquaL.) wereevaluatedand theapplicationof

thesepropertiesalsodiscussed.Thecarobbeanhasanaverageof13.8%(d.b.)moisturecontent.The

averageseedlength,width,thicknessandgeometricmeandiameterwere8.69mm,6.43mm,3.88mm,

and5.99mm,respectively.Theaverage1000seedweight,volumeandsurfaceareaofcarobbeanwere

158.56g,81.23mm3and96.22mm2,whilethesphericityandaspectratiowere0.70and74.09%,

respec-tively.Theaveragebulkdensityofseedwas899kg/m3whilethetruedensitywas1364kg/m3,and

thecorrespondingporositywas33.78%.Thegravimetricandvolumetricflowratesofcarobbeanswere

104g/sand115.37ml/s,respectively.Theaveragestaticanddynamicangleofreposevalueswerefound

31.20◦and23.80◦,respectively.Thestaticcoefficientfrictionwasleastincaseofstainlesssteelsheet

whileitishighestforPVC.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Thecarob(CeratoniasiliquaL.)isaperennialleguminous

ever-greentreenativetothecoastalregionsofMediterraneanbasinand

southwestAsia,andisconsideredtobeanimportantcomponent

ofvegetationforeconomicandenvironmentalreasons(Tunalıo˘glu

andÖzkaya,2003).Thescientificnameofthecarobtreederives

fromthe Greekkeras, “horn”, and Latinsiliqua, alluding tothe

hardnessand shapeofthepod.Common nameoriginatesfrom

Hebrewkharuvfromwhich arederivedkharoub(inArabic)and

mayincludealgarrobo(inSpanish),carob(inEnglish),keration(in

Greeek),kec¸iboynuzuorharnup(inTurkish),andisalsoknownSt.

John’sBread(BattleandTous,1997).Ithasbeencultivated

through-outtheMediterraneanregionforover4000years(Catarino,1993).

Carobseedinhistorywassealedwhenancientjewelersgotinto

thehabitofusingthemasweights.Onecarobseedwasthe

small-estweightforadiamond,andthecarobgaveitsnametothecarat.

Thecarobtreeisgrowingtoaheightof12–15m,withaproductive

lifespanofmorethanonehundredyears.

The annual production of carobpods is 374,800 to441,000

tonson200,000ha withvery variableyields dependingonthe

cultivar, region, and farming practices. Main carob bean

pro-ducerandexportercountriesareSpain,Italy,Portugal,Morocco,

Greece,CyprusandTurkey(Roukas,1994;Catarino,1993;Battle

andTous,1997;Raceetal.,1999;Tunalıo˘gluandÖzkaya,2003).

∗ Correspondingauthor.Tel.:+903382262000;fax:+903382262023. E-mailaddress:yalcincoskuner@kmu.edu.tr(Y.Cos¸kuner).

Currentworldproduction ofcarobseedaveragesapproximately

30,000ton/yearandmorethan95%ofthisproductionoriginates

intheMediterraneanRegion(CurtisandRace,1998).Total

Turk-ishproductionisabout15,000tons,whichiscollectedfromwild

treesastherearenocommercialcaroborchards.Theproduction

isconcentrated alongthecoastintheMediterranean(96%)and

theAegean(4%)regionscitiesthatnamedHatayto ˙Izmir.Themain

carobproducingprovincesareMersin(˙Ic¸el),Antalya,Mu˘gla,Adana,

BurdurandAydın(BattleandTous,1997;Tunalıo˘gluandÖzkaya,

2003).

Thetwomaincarobpodconstituentsarepulp(90%)andseeds

(10%)byweight.Carobpulpishigh(48–56%)intotalsugarcontent

thatincludemainlysucrose,glucose,fructoseandmaltose.In

addi-tionitcontainsabout18%celluloseandhemicellulose.Also,ripe

carobpodscontainalargeamountofcondensedtannins(16–20%,

d.b.). Onthe otherhand,carob seedconstituents areseed coat

(30–33%),endosperm(42–46%)andembryo(23–25%)byweight

(BattleandTous,1997).

Carob seeds are extremely hard and carobendosperm

con-tains30–40%byweightofgalactomannanthatisapolysaccharide

moleculecomposedmannoseandgalactosesugarunits.So,this

product is well knownas carob beangum and is mostly used

in the food industry (Catarino, 1993; Battle and Tous, 1997).

The compound is a valuable stabilizing and thickening

addi-tiveusedin thefoodprocessing,pharmaceutical,textile,paper,

andpetroleumindustries(BattleandTous,1997;Tunalıo˘gluand

Özkaya,2003).

Carob hasbeenneglected withrespecttoculturalpractices,

research and development.Apart from a few scientific studies

0926-6690/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(3)

Fig.1. Carob(CeratoniasiliquaL.)beans(a)andcharacteristicdimensions(b)(ZografakisandDasenakis,2002).

written by interested researchers references on this crop are

scarce.Traditionallyimportantmainproductsofcarobarepods,

seedgums and derived productslikecarobbean flour,pekmez

(concentratedcarob syrup/molasses), health foods (as a

choco-latesubstitute),carobsyrup,andmedicinessuchaslaxativesand

diuretics(Eks¸iandArtık,1986;BattleandTous,1997;Yousifand

Alghzawi,2000;Tunalıo˘gluandÖzkaya,2003;Turhanetal.,2006; Dakiaet al.,2007;Bouzouitaetal.,2007; Bineretal., 2007).In

addition,they canbe used as a cheap carbohydrate sourcefor

ethanolproduction, yielding160gofethanol/kgofdrylegumes

(Roukas,1994).Inrecentyearinterestincarobshasbeenincreasing

becauseofa cheapsourceofvarious products.Some

investiga-tionsexploredcarobpodsasasubstrateforcitricacidproduction

(Roukas,1999)andasareadilyavailableandinexpensivematerial

fortheproductionofbioethanol(MakrisandKefalas,2004),while

carobextracthavebeenasubjectofstudiesfortheirinfluenceon

centralandperipheralbenzodiazepinereceptors(Avalloneetal.,

2002).

Incarobindustry,afterharvestingthepodsareusedafter

crush-ingtoseparateseedandpulp.Whencarobsarrivetotheplant,

moisturecontentis variable(10–20%)depending onharvesting

conditions.Toreducetomoisturecontenttoaround8–10%,pods

aredriedundershelterindryandventilatedplacestoavoidrotting.

Carobpodsarecrushedmechanicallyusingkibblerthentheyare

separatedfromtheseeds.Thecarobseedsaretransportedinbulkby

lorrytothegumfactories.Thekernelsaredifficulttoprocess,since

theseedcoatisveryhard.Kernelsarepeeledwithoutdamaging

theendospermandtheembryos(germs).Afterthepeelingprocess

theendospermcanbesplitfromthecotyledonsbecauseoftheir

differentfriability.Aftersplittingprocess,endospermisgroundon

rollermillstothedesiredparticlesizetoproducecarobbeangum

andthecarobgermmealisaby-productoftheseedprocessing

(BattleandTous,1997).

Physicalandengineering properties ofagriculturalcropsare

necessary for the designof equipment and the analysis of the

behavioroftheproductduringagriculturalandindustrialprocesses

such as handling, harvesting, transporting, threshing, cleaning,

crushing,sorting, dryingand storing.Tothebestof our

knowl-edge, there are no published data on physical properties of

carob seed (C. siliqua L.). The objective of this study was to

investigatethesomegeometric,gravimetricandengineering

prop-erties of thecarob seed with a view to obtaining information

required to ease the operations of seed extraction from the

pod.

2. Materialsandmethods

2.1. Samplepreparation

Bulkofsundriedcarobseeds(Fig.1)wereobtainedfroma

com-mercialsource(IncomA.S¸.,Mersin,Turkey).Theseedswerecleaned

manuallytoremoveallforeignmaterialandbrokenseeds.Moisture

contentofthebulkcarobseedswasdeterminedaccordingtoAOAC

approvedmethod(AOAC,1984).Allthephysicalpropertieswere

determinedatthenaturalmoisturecontentof13.8%(d.b.).Since

seedsizeplaysanimportantroleinhandling,processingand

stor-age,underapproximatelythesameoperatingconditions(Masoumi

andTabil,2003).

Thebulksamplewasclassifiedintothreecategories,namely,

small,mediumandlargebulkseedswerescreenedusing5–8mm

round-holesieves(Cos¸kuneretal.,2002).Materialretainedoneach

sievewascollectedseparatelytoyieldthreefractionsdifferentiated

byseedsizeandclassifiedintosmall(<6mm),medium(6–7mm)

andlarge(>7mm)categoriesbasedonthemajordiameterandtheir

frequencydistributionbynumberdeterminedandrecordedasfor

theirskewnessandkurtosis(Fig.2).

2.2. Physicalcharacteristics

Todeterminetheaveragesizeoftheseed,asampleofhundred

seedswasrandomlyselectedfromeach.Measurementsofthethree

majorperpendiculardimensionsoftheseedwerecarriedoutwith

adigitalcalipertoanaccuracyof0.01mm.Thegeometricmean

diameter(Dg)oftheseedswascalculatedbyusingthefollowing

relationship(Mohsenin,1980):

Dg=(LWT )1/3 (1)

whereListhelength,WisthewidthandTisthethicknessinmm.

Thesphericity,ofcarobbeanseedswascalculatedusingthe

followingformula(Mohsenin,1980):

= (LWT )

1/3

L (2)

Carob beanvolume and surface areavalues were calculated

accordingtoJainandBal(1997):

(4)

0 5 10 15 20 25 30 35 40 L 6·42-6·88 6·88-7·34 7·34-7·79 7·79-8·25 8·25-8·71 8·71-9·16 9·16-9·62 W 4·93-5·11 5·11-5·30 5·30-5·48 5·48-5·67 5·67-5·85 5·85-6·04 6·04-6·22 T 3·15-3·45 3·45-3·76 3·76-4·06 4·06-4·36 4·36-4·67 4·67-4·97 4·97-5·27 5<D<6 Width Thickness F req u e n c y Di s tri bu ti on (% ) 0 5 10 15 20 25 30 35 40 45 50 L 7·85 - 8·25 8·25 - 8·66 8·66 - 9·07 9·07 - 9·48 9·48 - 9·89 9·89 - 10·30 10·30 - 10·70 W 5·68 - 5·90 5·90 - 6·12 6·12 - 6·34 6·34 - 6·55 6·55 - 6·77 6·77 - 6·99 6·99 - 7·21 T 3·04 - 3·30 3·30 - 3·57 3·57 - 3·83 3·83 - 4·10 4·10 - 4·36 4·36 - 4·63 4·63 - 4·89 6<D<7 Lenght Width Thickness F req ue nc y Di s tr ib u ti on (% ) 0 5 10 15 20 25 30 35 40 45 50 L 8·94 - 9·28 9·28 - 9·62 9·62 - 9·95 9·95 - 10·29 10·29 - 10·63 10·63 - 10·97 10·97 - 11·30 W 6·90 - 7·15 7·15 - 7·40 7·40 - 7·65 7·65 - 7·90 7·90 - 8·15 8·15 - 8·40 8·40 - 8·65 T 2·96 - 3·30 3·30 - 3·64 3·64 - 3·98 3·98 - 4·33 4·33 - 4·67 4·67 - 5·01 5·01 - 5·35 D<7 Lenght Width Thickness F req ue nc y D is tr ibut ion ( % )

Fig.2.Frequencydistributionfortheaxialdimensionsofthecarobseeds:L,W,T andDarelength,width,thicknessandsieveholediameter;respectively.

S= 2LBL2B (4)

where

B=(WT )1/2 (5)

Theaspectratio,Rawascalculated(Altuntas¸etal.,2005)as

Ra=WL ×100 (6)

The Sneedand Folktriangulardiagram methodwasusedto

obtainshapeindicesofcarobbeans(GrahamandMidgley,2000).

Particlesareenvisagedaslyinginthecontinuumbetweenblocks

(orspheres),slabs(discs,oblate)androds(prolate)whichmark

thecornersofthediagram(Fig.3).Thousandseedsweightwas

Fig.3. SneedandFolkdescriptiveparticleshapeclassesofungradedcarobbeans atmoisturecontentof13.81%(Cmeanscompact;P,platy;B,bladed;E,elongate;V, very).

determinedbycounting1000seedsandweighingtheminan

elec-tronicbalance.Thebulkdensityistheratioofthemasssampleof

theseedstoitstotalvolume.Itwasdeterminedbyfillinga1000ml

containerwithbeansfromaheightofabout15cm,strikingthe

toplevelandthenweighingthecontents(GuptaandDas,1997;

Dehspandeetal.,1993;Konaketal.,2002;PaksoyandAydin,2004).

Thetruedensitydefinedastheratioofmassofthesampleto

itsseed volume,wasdeterminedusingthewater displacement

method.Fiftymilliliterofwaterwasplacedina100mlgraduated

measuringcylinderand5gseedswereimmersedinthatwater.

Owingtotheshortdurationoftheexperimentandthenatureof

theskinofthecarobseedwhichdidnotallowwatertobeabsorbed

easily,theseedswerenotcoatedtopreventmoistureadsorption.

Theamountofdisplacedwaterwasrecordedfromthegraduated

scaleofthecylinder.Theratioofweightofseedstothevolumeof

displacedwatergavethetruedensity(Olajideetal.,2000;Amin

etal.,2004).

Theporosity(ε)isthefractionofthespaceinthebulkgrain

whichisnotoccupiedbythegrain(ThompsonandIsaacs,1967).

Theporosityofbulkseedwascalculatedfromthevaluesoftrue

densityandbulkdensityusingtherelationshipgivenbyMohsenin

(1980)asfollows:

ε=



t−b

t



×100 (7)

wherebisthebulkdensityandtisthetruedensity.

FlowratesofsamplesweredoneaccordingtoSchüsseleand

Bauer-Brandl(2003).Afunnelwasfixedinaverticalposition.The

bottomopeningwasclosedimpermeably.Carobseedsampleswere

weighedandintroducedintothefunnel.Thefunnelwasopened

andthetimetheentirecarobseedsampleneededtoflowoutof

thefunnelmeasured.Gravimetricandvolumetricflowrateswere

expressedinsecondsper100gand100mlofsample(TheEuropean

Pharmacopoeia4,2002;SchüsseleandBauer-Brandl,2003).

To determine the dynamic angle of repose, a plywood box

measuring300mm×300mm×300mm,havingaremovablefront

panelwasused.Theboxwasfilledwiththeseedsatthedesired

moisturecontent,andthefrontpanelwasquicklyremoved,

allow-ingtheseedstoflowtotheirnaturalslope.Theangleofreposewas

calculatedfrommeasurementsofseedfreesurfacedepthsatthe

endoftheboxandmidwayalongtheslopedsurfaceand

horizon-taldistancefromtheendoftheboxtothismidpoint.Thismethod

hasbeenusedbyotherresearchers(Duttaetal.,1988;JainandBal,

(5)

Thecoefficientofstaticfrictionwasdeterminedwithrespectto

sixsurfaces:plywood,galvanizediron,aluminum,stainlesssteel,

kraft paper and polypropylene knitted bag. These are common

materialsusedfortransportation,storageandhandlingoperations

ofgrains,pulsesandseedsconstructionofstorageanddryingbins.

Ahollowmetalcylinder50mmdiameterand50mmhighandopen

atbothendswasfilledwiththeseedsatthedesiredmoisture

con-tentandplacedonanadjustabletiltingtablesuchthatthemetal

cylinderdoesnottouchthetablesurface.Thetiltingsurfacewas

raisedgraduallybymeansofascrewdeviceuntilthecylinderwith

seedsjuststartstoslidedown.Theangleofthesurfacewasread

fromascaleandthestaticcoefficientoffrictionwastakenasthe

tangentof thisangle. Otherresearchershave usedthis method

forothergrainsandseeds(Duttaetal.,1988;Joshietal.,1993;

SinghandGoswami,1996;SutharandDas,1996).Thecoefficient

offrictionwascalculatedfromthefollowingrelationship:

=tan ˛ (8)

whereisthecoefficientoffrictionand˛istheangleoftiltin

degrees.

DatawereevaluatedusingtheStatisticaforWindowssoftware

packageandtheresultsofthetestperformedaregivenwiththe

meanvalue,minimumvalue,maximumvalueandstandard

devia-tion(SD)(StatSoft,2001).Also,theskewnessandkurtosisanalysis

wereusedtomeasurethedeviationofthedistributionfrom

sym-metryandtomeasurethepeakednessorflatnessofadistribution

comparedtothenormaldistribution,respectively.

3. Resultsanddiscussion

3.1. Geometricpropertiesofcarobseedanddimensional

relationships

Table1givesthemeanvaluesoftheparameterforcarobseed

classifiedunder three fractions. Around 45% of theseeds were

medium(widthbetween6.0and7.0mm),whileabout5%ofthe

seedsweresmaller(widthbetween5.0and6.0mm)and50%larger

(widthgreaterthan7.0mm).AscanbeseenfromTable1,

thick-nessesoftheseedswerenotchangedinallfractionsofthecarob

seeds.Thecarobseedlengthvaluesof100measurementsat13.81%

moisturecontentforsmall,mediumandlargefractionwerefound

tobe8.10,9.09and10.21mm,respectively.

Thelengthofcarobseedwashigherthanthosereportedfor

safflower(Baümleretal.,2006),flaxseed(Cos¸kunerandKarababa,

2007)andwasfoundclosetosunflower(Guptaand Das,1997),

gunaseed(Aviaraetal.,1999),Africanaseed(AkaaimoandRaji,

2006).Howeverit was lower than those reportedfor karingda

(SutharandDas,1996),locustbeanseed(Ogunjimietal.,2002),

ediblesquash(PaksoyandAydin,2004).

Thewidthofcarobseedwashigherthanthosereportedfor

saf-flower(Baümleretal.,2006),sunflower(GuptaandDas,1997),

gunaseed(Aviaraetal.,1999),flaxseed(Cos¸kunerandKarababa,

2007)andlowerthanthosereportedforlocustbeanseed(Ogunjimi

etal.,2002),ediblesquash(PaksoyandAydin,2004).

Thethicknessofcarobseedwashigherthanthoseofsafflower

(Baümler et al.,2006),karingda (Sutharand Das,1996),edible

squash(PaksoyandAydin,2004).sunflower(GuptaandDas,1997),

gunaseed(Aviaraetal.,1999),flaxseed(Cos¸kunerandKarababa,

2007)andlowerthantheseoflocustbeanseed(Ogunjimietal.,

2002),Africanaseed(AkaaimoandRaji,2006).

Theskewnessandkurtosisanalysisforthefrequency

distribu-tioncurveforthe100measurementstakenforeach dimension

arepresentedinTable1andshowninFig.2.Skewnessmeasures

thedeviationofthedistributionfromsymmetry.Iftheskewness

isclearlydifferentfrom0,thenthatdistributionisasymmetrical, Table

1 Size distribution of carob beans at moisture content of 13.8% (d.b.). Particulars Size categories Small seeds Medium seeds Large seeds Mean ± Std. dev. (min.–max.) Skewness Kurtosis Mean ± Std. dev. (min.–max.) Skewness Kurtosis Mean ± Std. dev. (min.–max.) Skewness Kurtosis Length (mm) 7.74 ± 0.55 (6.95–9.27) 0.705 0.468 8.84 ± 0.60 (8.05–10.37) 0.934 0.199 9.49 ± 0.45 (8.83–10.27) 0.329 − 1.249 Width (mm) 5.49 ± 0.24 (5.03–5.88) − 0.204 − 0.916 6.47 ± 0.21 (5.99–6.87) − 0.545 − 0.255 7.34 ± 0.26 (6.91–8.20) 1.080 2.675 Thickness (mm) 3.70 ± 0.44 (2.58–4.42) − 0.407 − 0.020 3.90 ± 0.35 (3.33–4.76) 0.516 − 0.140 4.05 ± 0.49 (3.26–5.15) 0.454 − 0.447 Geometric Mean Diameter (mm) 5.38 ± 0.24 (4.92–5.85) − 0.367 − 0.323 6.05 ± 0.19 (5.55–6.42) − 0.498 0.257 6.54 ± 0.28 (6.13–7.10) 0.598 − 0.714 Sphericity 0.70 ± 0.05 (0.54–0.80) − 0.686 1.583 0.69 ± 0.04 (0.60–0.77) − 0.335 − 0.017 0.69 ± 0.04 (0.61–0.77) − 0.032 − 0.023 Volume (mm 3) 58.36 ± 9.14 (39.79–75.70) − 0.212 − 0.530 81.64 ± 8.77 (62.28–98.34) 0.181 − 0.162 103.7 ± 15.93 (83.7–141.0) 0.770 − 0.251 Surface area (mm 2) 77.36 ± 7.10 (63.99–91.29) − 0.251 − 0.494 97.40 ± 6.37 (81.62–109.50) − 0.310 0.019 113.9 ± 10.25 (99.5–136.1) 0.693 − 0.526 Aspect ratio (%) 71.31 ± 6.00 (55.12–84.60) − 0.129 1.141 73.45 ± 4.54 (62.87–81.26) − 0.542 − 0.396 77.5 ± 3.73 (69.8–83.7) − 0.289 − 0.478

(6)

content.

Particulars Mean±St.dev. Min.-max. r

Small L/W 1.41±0.12 1.18–1.81 −0.078 L/T 2.13±0.39 1.64–3.59 −0.442** L/M 66.64±10.74 53.61–98.20 0.019 W/M 47.14±5.78 37.41–61.65 0.506** T/M 31.44±2.59 26.82–36.27 0.807** Medium L/W 1.37±0.09 1.23–1.59 0.342 L/T 2.29±0.31 1.70–2.96 −0.459** L/M 53.58±5.04 45.23–63.82 0.235 W/M 39.21±2.86 33.45–44.97 0.496** T/M 23.59±1.94 18.35–27.30 0.531** Large L/W 1.29±0.06 1.19–1.43 0.347 L/T 2.38±0.34 1.80–3.15 −0.237 L/M 46.79±4.72 38.27–54.77 0.317 W/M 36.19±3.37 30.17–42.39 0.490** T/M 19.82±1.84 16.46–24.09 0.689** **Significantat1%level.

whilenormaldistributionsareperfectlysymmetrical.Asimplied

bytheterm,theskewnessisameasureoftheextenttowhichthe

distributionoftherespectivevariableisskewedtotheleft

(nega-tivevalue)orright(positivevalue),relativetothestandardnormal

distribution(forwhichtheskewnessis0).Kurtosismeasuresthe

“peakedness”ofadistribution.Ifthekurtosisisclearlydifferent

than0,thenthedistributioniseitherflatterormorepeakedthan

normal;thekurtosisofthenormaldistributionis0.Thekurtosisis

ameasureofhow“wide”or“skinny”(“flat”or“peaked”)the

distri-butionisfortherespectivevariable,relativetothestandardnormal

distribution(forwhichthekurtosisisequalto0).Thecoefficients

ofcorrelationobtainedforbetweenthemaindimensionsandmass

(Table2)showedthat themassofcarobseedmostlyrelatedto

thicknessand widththanlength.Width,thicknessand

geomet-ricmeandiameterwaspositivelyandsignificantlycorrelatedwith

massforalldimensionalfractions.However,lengthofthecarob

seedwasnotsignificantlycorrelatedwithmass.

Thegeometricmeandiameteroftheallfractionresultedin

high-estcorrelationswithmass.Thesecorrelationsillustratedthatthe

geometricmeandiameterwasfoundthebestdimensional

param-eterforestimationofseedmass.Thefollowinggeneralexpressions

canbeusedtodescribe therelationshipsamonglength,width,

thicknessandunitmassvaluesofgradedcarobbean:

Ls=1.4.1 Ws=2.13 Ts=66.64Ms

forsmallcategorizedcarobbeans (9)

formediumcategorizedcarobbeans (10)

Ll=1.29 Wl=2.38 Tl=46.79 Ml

forlargecategorizedcarobbeans (11)

Individual measured values were projected onto triangular

diagramsby usingthetri-plot spread sheetmethodof Graham

andMidgley(2000).AscanbeseenfromFig.3,shapeindicesof

ungradedcarobbeansdependsontheirperpendiculardimensions

wereclassifiedinbladed(72%)andcompact-bladed(20%).These

resultsingood agreementwithsphericity (0.70)value ofcarob

beans.

3.2. Gravimetricandfrictionalproperties

Asummaryoftheresultsforallthemeasuredparametersthat

relatedwithgravimetricandfrictionalpropertiesofcarobseedsat

13.8%moisturecontentisgiveninTable3.Themeanone-thousand

seedweightwas115.34,165.88and194.45gforsmall,medium

andlargeseedsofcarob,respectively.One-thousandseedweight

ofcarobwashigherthanthoseofkaringda(SutharandDas,1996),

sunflower(GuptaandDas,1997),gunaseed(Aviaraetal.,1999),

safflower(Baümleretal.,2006),flaxseed(Cos¸kunerandKarababa,

2007),andlowerthanthoseoflocustbeanseed(Ogunjimietal.,

2002),ediblesquash(PaksoyandAydin,2004),andAfricanaseed

(AkaaimoandRaji,2006).

Thebulkdensitiesofsmall,mediumandlargecarobseedsare

decreasedlinearlyfromanaveragevalueof908–891kg/m3.The

decreasein bulkdensityof carobseeddependsondimensional

change(small,mediumandlargeseeds)indicatesthattheincrease

ofvolumeintheseedsisgreaterthanweightatsamemoisture

content.Thebulkdensityofcarobseedwasfoundtobehigher

thanthat ofkaringda(SutharandDas,1996),sunflower(Gupta

andDas,1997),gunaseed(Aviaraetal.,1999),locustbeanseed (Ogunjimietal.,2002),ediblesquash(PaksoyandAydin,2004),

safflower(Baümleretal.,2006),flaxseed(Cos¸kunerandKarababa,

2007),ontheotherhandafricanaseeds(AkaaimoandRaji,2006)

showedthatsimilarbulkdensitytothoseofcarobseeds.

Allthedimensionalgroupsofcarobseedhavetruedensities

greaterthan 1000kg/m3 (1248, 1372and 1430kg/m3 for small,

mediumandlargeseeds,respectively)whichimpliesthattheseeds

heavierthanwaterandthischaracteristiccanbeusedtodesigna

separationandcleaningequipmentfortheseedssincethelighter

Table3

Gravimetricandfrictionalpropertiesofcarobbeansatmoisturecontentof13.8%(d.b.).

Properties Smallseeds(D<6) Mediumseeds(6<D<7) Largeseeds(D>7)

One-thousandseedweight(g) 115.34 165.88 194.45

Bulkdensity(kg/m3) 908 899 891

Truedensity(kg/m3) 1248 1372 1430

Porosity(%) 27.24 34.47 37.69

Flowrate

Volumetricflowrate(ml/s) 120.09 115.96 110.05

Gravimetricflowrate(g/s) 108.74 105.78 99.57

Angleofrepose(degree)

Filling 33.29 32.47 27.85 Emptying 27.75 23.96 22.41 Coefficientoffriction Stainlesssteel 0.344 0.364 0.384 Galvanizediron 0.389 0.450 0.482 Knittedbag 0.504 0.488 0.488 Aluminum 0.349 0.399 0.409 PVC 0.532 0.499 0.472

(7)

fractionswillfloat.Thetruedensitiesofcarobseedsatdifferentsize fractionwerehigherthanthoseofkaringda(SutharandDas,1996),

sunflower(GuptaandDas,1997),gunaseed(Aviaraetal.,1999),

locustbeanseed(Ogunjimietal.,2002),ediblesquash(Paksoyand

Aydin,2004),safflower(Baümleretal.,2006),flaxseed(Cos¸kuner andKarababa,2007),andsimilartothatofafricanaseeds(Akaaimo andRaji,2006).

Porosityisthepropertyofseedthatdependsonitsbulkand

truedensityandthemagnitudeofvariationinporositydepends

onthesefactorsonly.AscanbeseenTable3,porosityvaluesof

carobseedsincreasedlinearlywithincreasingseeddimension.The

porosityvaluesofcarobseedswere27.24,34.47,and37.68atthe

small,medium,andlargefraction,respectively.Theseporosity

val-ueswerelowerthan thoseof karingda (Sutharand Das,1996),

safflower(Baümler etal.,2006),gunaseed(Aviaraetal.,1999),

locustbeanseed(Ogunjimietal.,2002)andmoreorlesssimilar

tothoseofediblesquash(PaksoyandAydin,2004),africanaseeds

(Akaaimo andRaji,2006),andsunflowerseeds(Guptaand Das, 1997).

Asimpledefinitionofseedflowabilityistheabilityofaseed

toflow.Bythisdefinition,flowabilityissometimesthoughtofasa

onedimensionalcharacteristicofagrain,wherebymaterialscanbe

rankedonaslidingscalefromfreeflowingandnon-flowing.

Unfor-tunately,thissimplisticviewlacksthescienceandunderstanding

sufficientaddresstocommonproblemsencounteredbythe

equip-mentdesigner.Onlyfluidscanflow;bulksolidsundergravityforces

canfall,slideorroll,butagainstgravity.Therateofflowofgranular

solidsbygravitythroughacircularopeninginthebottomofabinis

dependentonthediameteroftheopeningaswellasonthe

proper-tiesofthesolidandisindependent,withinwidelimits,onthehead

orheightofthesolids.Fromastandpointofflowpatterns,thereare

basicallythreetypesofflowinsymmetricalgeometry:mass-flow,

funnel-flowandexpandedflow.Pertainingfoodsystems,

funnel-flowbinsmaybeusedforgrains,pulses,oilseeds,andsoon,mainly

fortheapplicationoffeedingdirectlysuchmaterialstoprocessing,

suchasincerealsextrusionorcerealmilling(Ortega-Rivas,2005).

Inrecentyears,mostofgrainsarestoredconicalbottomsilosto

useinfuture.Toobtainandrecordofemptyingtimeofsilosunder

gravityforcesisveryimportant.Forthispurpose,weobtained

vol-umetricandgravimetricflowratevaluesofcarobseedfrommodel

silos.

Volumetricflowratevaluesofcarobseedswerefoundhigher

thangravimetricflowratevaluesatallfraction.Bothvolumetric

andgravimetricflowratedecreased,asseedsizeincreased.The

volumetricflowratesofcarobseedwerefound120.09,115.96,and

110.05ml/sandgravimetricflowrateswerefound108.74,105.78,

and99.57g/satthesmall,medium,andlargeseedsizefractions,

respectively.

Thefillingangleofrepose valueswereobtainedhigherthan

emptyingangleofreposevaluesinallcarobseedfraction.Asseed

sizeincreased,bothvaluesoffillingandemptyingangleofrepose

decreased.Thevaluesofemptyingangleofreposeofcarobseed

were27.75,23.96,and 22.41,and thevalues of filling angleof

reposewere33.29,32.47,and27.85at thesmall,medium,and

largefraction,respectively.Ogunjimietal.(2002)forlocustbean

seedAkaaimoand Raji(2006)forafricanaseed,and Paksoyand Aydin(2004)forediblesquash,andCos¸kunerandKarababa(2007)

forflaxseedreportedsimilarangleofreposevalues.Theseresults

werelowerthanthoseofkaringda(SutharandDas,1996),

sun-flowerseed(GuptaandDas,1997),andgunaseed(Aviaraetal.,

1999).

Thestaticcoefficientoffrictionofcarobseedwasevaluatedover

fivedifferentsurfaces:stainlesssteel,galvanizediron,

polypropy-leneknittedbag,aluminumandPVC.Whileincreasingtrends(for

staticcoefficientoffrictionvalues)obtainedforcarobseeddepends

onincreasingdimensiononthemetallicsurfaces(stainlesssteel,

galvanizedironandaluminum)anddecreasingstaticcoefficient

of friction values obtainedon PVCand knitted bag. It is found

that thestatic coefficient of friction is lowest against stainless

steel atallfractions. Thismayowingtothesmootherand

pol-ishedsurfaceofthestainlesssteelcompared othersheetsused.

Sameresultswerefoundpreviousstudy(Cos¸kunerandKarababa,

2007).PVCsurfacehadthehighestcoefficientoffriction(0.532)

atthesmallfractionfollowedbyknittedbag(0.504),galvanized

iron(0.389),aluminum(0.349),andstainlesssteel(0.344).Onthe

otherhand,atthelargefraction,galvanizediron(0.482)hadthe

highestcoefficientoffrictionfollowedby,PVC(0.472),knittedbag

(0.466),aluminum(0.409),andstainlesssteel(0384),respectively.

Thecoefficientoffrictionforcarobseedwashigherthanthatof

kar-ingdaseed(SutharandDas,1996),quinoaseeds(Vilcheetal.,2003),

andediblesquash(PaksoyandAydin,2004)againstgalvanizediron

sheet.Ontheotherhand,carobseedsshowedthatlowerstatic

coef-ficientoffrictiontothatofsunflowerseeds(GuptaandDas,1997),

sesameseed(Tunde-AkintundeandAkintunde,2004),andflaxseed

(Cos¸kunerandKarababa,2007)againstbothgalvanizedironand

stainlesssteelsheet,andflaxseed(Cos¸kunerandKarababa,2007)

againstaluminumsheetandpolypropyleneknittedbag.

4. Conclusion

Thefollowingconclusionsarerevealedfromtheinvestigationof

somephysicalpropertiesofcarobbean(C.siliquaL.)ataverageof

13.8%(d.b.)moisturecontent.Thefrequencydistributioncurvesof

theaxialdimensionstendanearlynormaldistribution.The

aver-ageseedlength,width,thicknessand geometricmeandiameter

were8.69mm,6.43mm,3.88mm,and5.99mm,respectively.The

average1000seedweight,volumeandsurfaceareaofcarobbean

were158.56g,81.23mm3and96.22mm2,whilethesphericityand

aspectratiowere0.70and74.09%,respectively.Shapeindicesof

ungradedcarobbeansdependsontheirperpendiculardimensions

were classifiedin bladed(72%) and compact-bladed(20%). The

averagebulkdensityofseedwas0899kg/m3whilethetrue

den-sitywas1364kg/m3,andthecorrespondingporositywas33.78%.

Theaveragegravimetricandvolumetricflowratesofcarobbeans

were104g/sand115.37ml/s,respectively.Theaveragefillingand

emptyingangleof reposevalueswerefound31.20◦ and23.80◦,

respectively.Thestaticcoefficientoffrictiononfivedifferent

mate-rialshasbeenfoundoutand theresultsshowedthatthemean

valueofstaticcoefficientfrictionwasleastincaseofstainlesssteel

sheet whileit is highestfor PVC.In summary, this paperdeals

withthephysicalpropertiesofindustrialgumproducingcropof

carobbeans,providingusefuldataforitspostharvesthandlingand

industrialprocessing.

Acknowledgement

AuthorsthanktoIncomA.S¸.(Mersin,Turkey)forthesupplying

ofrawcarobbeans.

References

Akaaimo,D.I.,Raji,A.O.,2006.Somephysicalandengineeringpropertiesofpropis Africanaseed.Biosyst.Eng.95(2),197–205.

Altuntas¸,E.,Özgöz,E.,Taser,Ö.F.,2005.Somephysicalpropertiesoffenugreek (Trigonellafoenum-graceumL.)seeds.J.FoodEng.71,37–43.

Amin,M.N.,Hossain,M.A.,Roy,K.C.,2004.Effectsofmoisturecontentonsome physicalpropertiesoflentilseeds.J.FoodEng.65,83–87.

AOAC,1984.OfficialMethodsofAnalysis,14thed.AssociationofOfficialAnalytical Chemists,Arlington,VA.

Avallone,R.,Cosenza,F.,Farina,F.,Baraldi,C.,Baraldi,M.,2002.Extractionand purifi-cationfromCeratoniasiliquaofcompoundsactingoncentralandperipheral benzodiazepinereceptors.Fitoterapia73(5),390–396.

Aviara,N.A.,Gwandzang,M.I.,Haque,M.A.,1999.Physicalpropertiesofgunaseeds. J.Agric.Eng.Res.73,105–111.

(8)

andCropPlantResearch/InternationalPlantGeneticResourcesInstitute, Gater-sleben/Rome,Italy,p.78.

Baümler,E.,Cuniberti,A.,Nolasco,S.M.,Riccobene,I.C.,2006.Moisturedependent physicalandcompressionpropertiesofsafflowerseed.J.FoodEng.73,134–140. Biner,B.,Gübbük,H.,Karhan,M.,Aksu,M.,Pekmezci,M.,2007.Sugarprofilesofthe podsofcultivatedandwildtypesofcarobbean(CeratoniasiliquaL.)inTurkey. FoodChem.100(4),1453–1455.

Bouzouita,N.,Khaldi,A.,Zgoulli,S.,Chebil,L.,Chekki,R.,Chaabouni,M.M.,Thonart, P.,2007.Theanalysisofcrudeandpurifiedlocustbeangum:acomparisonof samplesfromdifferentcarobtreepopulationsinTunisia.FoodChem.101(4), 1508–1515.

Catarino,F.,1993.Thecarobtree:anexemplaryplant.Naturopa73,14–15. Curtis,A.,Race,D.,1998.CarobagroforestyinthelowrainfallMurrayValley,a

mar-ketandeconomicassessment:areportfortheRuralIndustriesResearchand DevelopmentCorporation(RIRDC),RIRDCPublicationNo.98/8,RIRDCProject No.UCS-14A,viii+26pp.

Cos¸kuner,Y.,Ercan,R.,Karababa,E.,Nazlıcan,A.N.,2002.Physicalandchemical propertiesofchufa(CyperusesculentusL.)tubersgrownintheC¸ukurovaregion ofTurkey.J.Sci.FoodAgric.82,625–631.

Cos¸kuner,Y.,Karababa,E.,2007.Somephysicalpropertiesofflaxseed(Linum usi-tatissimumL.).J.FoodEng.78,1067–1073.

Dakia,P.A.,Wathelet,B.,Paquot,M.,2007.Isolationandchemicalevaluationofcarob (CeratoniasiliquaL.)seedgerm.FoodChem.102(4),1368–1374.

Dehspande,S.D.,Bal,S.,Ojha,T.P.,1993.Physicalpropertiesofsoybean.J.Agric.Eng. Res.56,89–98.

Dutta,S.K.,Nema,V.K.,Bhardwaj,R.K.,1988.Physicalpropertiesofgram.J.Agric. Eng.Res.39,259–268.

Eks¸i,A.,Artık,N.,1986.Harnup(kec¸iboynuzu)meyvesivepekmezininkimyasal biles¸imi.A.Ü.ZiraatFakültesiYıllı˘gı36(1),77–82.

Gupta,R.K.,Das,S.K.,1997.Physicalpropertiesofsunflowerseeds.J.Agric.Eng.Res. 66,1–8.

Graham,D.J.,Midgley,N.G.,2000.Graphicalrepresentationofparticleshapeusing triangulardiagrams:anexcelspreadsheetmethod.EarthSurf.Process.Land.25, 1473–1477.

Jain,R.K.,Bal,S.,1997.Propertiesofpearlmillet.J.Agric.Eng.Res.66,85–91. Joshi,D.C.,Das,S.K.,Mukherjee,R.K.,1993.Physicalpropertiesofpumpkinseeds.J.

Agric.Eng.Res.54,219–229.

Konak,M.,C¸arman,K.,Aydin,C.,2002.Physicalpropertiesofchickpeaseeds.Biosyst. Eng.82(1),73–78.

Makris,D.P.,Kefalas,P.,2004.CarobPods(CeratoniasiliquaL.)asasourceof polyphe-nolicantioxidants.FoodTechnol.Biotechnol.42(2),105–108.

Masoumi,A.A.,Tabil,L.,2003.Physicalpropertiesofchickpea(C.arientinum) cul-tivers.PaperNo.036058for2003ASAEAnnualMeeting,LasVagas,NV,USA, 27–30July2003.ASAE,St.Joseph,MI,USA.

Mohsenin,N.N.,1980.PhysicalPropertiesofPlantandAnimalMaterials.Gordon andBreachSciencePublishersInc.,NewYork,pp.51–87.

Olajide,J.O.,Ade-Omowaye,B.I.O.,Otunola,E.T.,2000.Somephysicalpropertiesof sheakernel.J.Agric.Eng.Res.76,419–421.

Ortega-Rivas,E.,2005.Handlingandprocessingoffoodpowdersandparticulates. In:Onwulata,C.(Ed.),EncapsulatedandPowderedFoods.CRCTaylor&Francis, BocaRaton,FL,USA,pp.75–144.

Paksoy,M.,Aydin,C.,2004.Somephysicalpropertiesofediblesquash(Cucurbita pepoL.)seeds.J.FoodEng.65,225–231.

Race,D.,Curtis,A.,Booth,W.,1999.Carobagroforestyindustry:anassessmentofits potentialforthelow-mediumrainfallMurrayValleyregion.Aust.J.Exp.Agric. 39,325–334.

Roukas,T.,1994.Solid-statefermentationofcarobpodsforethanolproduction.Appl. Microbiol.Biotechnol.41(3),296–301.

Roukas,T.,1999.Citricacidproductionfromcarobpodbysolid-statefermentation. EnzymeMicrob.Technol.24(1–2),54–59.

Schüssele,A.,Bauer-Brandl,A.,2003.Noteonthemeasurementofflowability accordingtotheEuropeanPharmocopoeia.Int.J.Pharm.257,301–304. Shepherd,H.,Bhardwaj,R.K.,1986. Moisturedependentphysicalpropertiesof

pigeonpea.J.Agric.Eng.Res.3,227–234.

Singh,K.K.,Goswami,T.K.,1996.Physicalpropertiesofcuminseed.J.Agric.Eng.Res. 64,93–98.

StatSoft, Inc., 2001. STATISTICA (data analysis software system), version 6.

www.statsoft.com.

Suthar,S.,Das,S.K.,1996.Somephysicalpropertiesofkaringda[Citrulluslanatus (Thumb)Mansf]seeds.J.Agric.Eng.Res.65,15–22.

TheEuropeanPharmacopoeia4,2002.PharmaceuticalTechnicalProcedures,2.9.16 Flowability,p.208.

Thompson,R.A.,Isaacs,G.W.,1967.Porositydeterminationofgrainsandseedswith aircomparisonpycnometer.Trans.ASAE10,693–696.

Tunalıo˘glu,R.,Özkaya,M.T.,2003.Kec¸iboynuzu.T.E.A.E.–Bakıs¸3(5),1–4. Turhan,I.,Tetik,N.,Aksu,M.,Karhan,M.,Certel,M.,2006.Liquid-solidextractionof

solublesolidsandtotalphenoliccompoundsofcarobbean(CeratoniasiliquaL.). J.FoodProcess.Eng.29(5),498–507.

Tunde-Akintunde,T.Y.,Akintunde,B.O.,2004.Somephysicalpropertiesofsesame seed.Biosyst.Eng.88(1),127–129.

Vilche,C.,Gely,M.,Santalla,E.,2003.Physicalpropertiesofquinoaseeds.Biosyst. Eng.86(1),59–65.

Yousif,A.K.,Alghzawi,H.M.,2000.Processingandcharacterizationofcarobpowder. FoodChem.69(3),283–328.

Zografakis,N.,Dasenakis,D.,2002.BiomassinMediterranean.ProjectNo.238: “StudiesontheExploitationofCarobForBioethanolProduction”.Commission oftheEuropeanCommunitiesDirectorateGeneralforEnergyandTransport, Altener ProgrammeContract No.:4.1030/C/00-022/2000, Region of Crete-Regional Energy Agency, Greece. http://www.crete-region.gr/greek/energy/ interim%20report.htm.

Şekil

Fig. 1. Carob (Ceratonia siliqua L.) beans (a) and characteristic dimensions (b) (Zografakis and Dasenakis, 2002).
Fig. 3. Sneed and Folk descriptive particle shape classes of ungraded carob beans at moisture content of 13.81% (C means compact; P, platy; B, bladed; E, elongate; V, very).
Table 1 gives the mean values of the parameter for carob seed classified under three fractions

Referanslar

Benzer Belgeler

Polyester esaslı kord bezi takviyeli polyester matrisli tek yönlü kompozit numunelerin tabaka sayısına ba ğlı olarak çekme deneyi ve darbe deneyi sonuçları tablo

為因應衛生局疫苗管控,施打卡介苗 (BCG) 者,一 律採集中施打方法。( 時間如上公告

Soruna işlevsel yönden bakıldığında, olumlu yanıt verilebilir b u soruya. Bu tür kitaplaştırma girişimlerinin “okur” için de­ ğilse bile, “eleştirmen”

*Eski Türk devletlerinde hükümdarlık ünvanlarından 3 hükümdarlık sembollerinden 2 tanesini belirtiniz. ( 1*5=5

Genç’in pek çok yer- de incelenen bu modeli her ne kadar ortaça¤›n klasik organizas- yonlar›nda var olan ve orijinalitesi olmayan bir uygulama gibi gö- rünse de; bunun

Toplama piramidi üzerindeki sayılar yerlerinden çıkmış?. Sayıları yerlerine

In the present study, our primary objective was to investigate the taste and smell dysfunction of patients with lung cancer and its effect on the quality of life in these

işletmeler ve liderlikte dünya görüşünün etkisi ve gelişen etik ve sorumlu işletmelerde değer tabanlı liderlik kavramlarının sentezi olan bu kavramlar, okuyucuya