• Sonuç bulunamadı

SOME NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s- CONVEX FUNCTIONS

N/A
N/A
Protected

Academic year: 2021

Share "SOME NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s- CONVEX FUNCTIONS"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Vol. 16 (2015), No. 1, pp. 491–501

SOME NEW INEQUALITIES OF HERMITE-HADAMARD TYPE

FOR s-CONVEX FUNCTIONS

MEHMET ZEKI SARIKAYA AND MEHMET EY ¨UP KIRIS

Received 15 January, 2014

Abstract. Some new results related of the left-hand side of the Hermite-Hadamard type inequal-ities for the class of mappings whose second derivatives at certain powers are s convex in the second sense are established. Also, some applications to special means of real numbers are provided.

2010 Mathematics Subject Classification: 26A51; 26D07; 26D10; 26D15

Keywords: Hermite-Hadamard type inequality, s convex function, H¨older inequality

1. INTRODUCTION

Let f W I  R ! R be a convex mapping defined on the interval I of real num-bers and a; b2 I with a < b. The following double inequality is well known in the literature as Hermite-Hadamard inequality [6]:

f  a C b 2   1 b a Z b a f .x/dx f .a/C f .b/ 2 :

Both inequalities hold in the reversed direction if f is concave. For recent results, generalizations and new inequalities related to the Hermite-Hadamard inequality see [3,4,9,11,12,14,17].

The classical Hermite- Hadamard inequality provides estimates of the mean value of a continuous convex function f W Œa; b ! R.

Definition 1. Let I be on interval in R. Then f W I ! R is said to be convex if the following inequality holds

f .xC .1 /y/  f .x/ C .1 /f .y/

for all x; y2 I and  2 Œ0; 1 . We say that f is concave if . f / is convex.

The class of functions which are s-convex in the second sense has been stated as the following (see [7]).

c

(2)

Definition 2. Let s be a real number, s2 .0; 1 . A function f W Œ0; 1/ ! R is said to be s-convex (in the second sense), if

f .xC .1 /y/  sf .x/C .1 /sf .y/

for all x; y2 Œ0; 1/ and  2 Œ0; 1. Some interesting and important inequalities for s-convex (in the second sense) functions can be found in [1,2,5,8,10,15,16,18,19]. It can be easily seen that convexity means just s-convexity when sD 1.

In [13], Sarikaya et. al. established inequalities for twice differentiable convex mappings which are connected with Hadamard’s inequality, and they used the fol-lowing lemma to prove their results:

Lemma 1. Letf W I  R ! R be twice differentiable function on Iı,a; b2 Iı witha < b: If f002 L1Œa; b, then

1 b a Z b a f .x/dx f a C b 2  D.b a/ 2 2 Z 1 0 m .t /f00.t aC .1 t/b/ C f00.t bC .1 t/a/ dt; where m.t /WD 8 < : t2 ; t2 Œ0;12/ .1 t /2 ; t2 Œ12; 1:

Also, the main inequalities in [13], pointed out as follows:

Theorem 1. Letf W I  R ! R be twice differentiable function on Iıwithf002 L1Œa; b. Ifjf00j is convex on Œa; b; then

ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ 2 24  jf00.a/j C jf00.b/j 2  : (1.1)

Theorem 2. Letf W I  R ! R be twice differentiable function on Iısuch that f002 L1Œa; b where a; b2 I; a < b. If jf00jqis convex onŒa; b; q > 1, then

ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ 2 8 .2pC 1/1=p  jf00.a/jqC jf00.b/jq 2 1=q (1.2) where p1C1q D 1:

The main aim of this paper is to establish new inequalities of Hermite-Hadamard type for the class of functions whose second derivatives at certain powers are s-convex functions in the second sense.

(3)

2. MAIN RESULTS

In order to prove our main results we need the following lemma:

Lemma 2. Letf W I  R ! R be twice differentiable function on Iı,a; b2 Iı witha < b. If f002 L Œa; b, then the following equaliy holds:

1 b a Z b a f .x/dx f a C b 2  D.b a/ 2 16 Z 1 0 t2f00 t 2aC 2 t 2 b  dtC Z 1 0 t2f00 2 t 2 aC t 2b  dt  : (2.1) Proof. By integration by parts, we have the following identity

Z 1 0 t2f00 t 2aC 2 t 2 b  dtC Z 1 0 t2f00 2 t 2 aC t 2b  dt D 4 b a Z 1 0 tf0 t 2aC 2 t 2 b  dt Z 1 0 tf0 2 t 2 aC t 2b  dt  D 4 b a ( t 2 a bf  t 2aC 2 t 2 b ˇ ˇ ˇ ˇ 1 0 C 2 b a Z 1 0 f  t 2aC 2 t 2 b  dt C tb2af 2 t 2 aC t 2b ˇ ˇ ˇ ˇ 1 0C 2 b a Z 1 0 f  2 t 2 aC t 2b  dt ) D 16 .b a/2f  a C b 2  C 8 .b a/2 Z 1 0 f  t 2aC 2 t 2 b  dt C 8 .b a/2 Z 1 0 f  2 t 2 aC t 2b  dt:

Using the change of the variable in last integrals, we get the required identity (2.1).  Theorem 3. Letf W I  Œ0; 1/ ! R be twice differantiable mapping on Iı,a; b2 I with a < b . If jf00j is s- convex in the second sense on Œa; b, for some fixed s2 .0; 1, then the following inequaliy holds:

ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ 2 .2sC4 .4sC 12// 2sC4.sC 1/ .s C 2/ .s C 3/ ˇ ˇf00.a/ˇˇC ˇ ˇf00.b/ˇˇ : (2.2) Proof. Using Lemma2and the s- convexity in the second sense ofjf00j, we find

ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ

(4)

 .b a/ 2 16 Z 1 0 t2 ˇ ˇ ˇ ˇ f00 t 2aC 2 t 2 b ˇ ˇ ˇ ˇC ˇ ˇ ˇ ˇ f00 2 t 2 aC t 2b ˇ ˇ ˇ ˇ  dt  .b a/ 2 16 Z 1 0 t2 t 2 s ˇ ˇf00.a/ˇˇC  2 t 2 s ˇ ˇf00.b/ˇˇ C 2 t 2 s ˇ ˇf00.a/ ˇ ˇC  t 2 s ˇ ˇf00.b/ ˇ ˇ  dt D.b a/ 2. jf00.a/j C jf00.b/j/ 2sC4 Z 1 0 tsC2C t2.2 t /s dt D.b a/ 2 .2sC4 .4sC 12// 2sC4.sC 1/ .s C 2/ .s C 3/ ˇ ˇf00.a/ˇˇC ˇ ˇf00.b/ˇˇ 

where we have used the fact that Z 1 0 t2.2 t /sdt D2 sC4 s2 C 7s C 14 .sC 1/ .s C 2/ .s C 3/; and Z 1 0 tsC2dtD 1 sC 3:

The proof is completed. 

Remark1. If we take sD 1 in Theorem3, then inequality (2.2) becomes inequality (1.1).

The next theorem gives a new upper bound of the left-hand side Hermite-Hadamard inequality for s-convex functions:

Theorem 4. Let f W I  Œ0; 1/ ! R be twice differantiable mapping on Iı , a; b2 I with a < b. If jf00jq iss- convex in the second sense on Œa; b , for some fixeds2 .0; 1 and q > 1, then the following inequaliy holds:

ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ 2 2sC4  2s 2pC 1 p1 2 4 jf00.a/jqC 2sC1 1 jf00.b/jq sC 1 !q1 C 2 sC1 1 jf00.a/jq C jf00.b/jq sC 1 !q13 5 (2.3)  .b a/ 2 8  2s 2pC 1 p1 1 .sC 1/1q ˇ ˇf00.a/ˇˇC ˇ ˇf00.b/ˇˇ ; where p1C1q D 1:

(5)

Proof. From Lemma2, using H¨older’s inequality and the s-convexity in the second sense ofjf00jq, we find ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ .b a/ 2 16 Z 1 0 jtj 2p dt  1 p  8 < : Z 1 0 ˇ ˇ ˇ ˇ f00 t 2aC 2 t 2 b ˇ ˇ ˇ ˇ q dt  1 q C Z 1 0 ˇ ˇ ˇ ˇ f00 2 t 2 aC t 2b ˇ ˇ ˇ ˇ q dt  1 q 9 = ; .b a/ 2 16  1 2pC 1 p1 8 < : Z 1 0  t 2 s ˇ ˇf00.a/ ˇ ˇ q C 2 t 2 s ˇ ˇf00.b/ ˇ ˇ q dt  1 q C Z 1 0  2 t 2 s ˇ ˇf00.a/ˇˇ q C t2 s ˇ ˇf00.b/ˇˇ q dt  1 q 9 = ; .b a/ 2 2sC4  2s 2pC 1 p1  8 < : jf00.a/jqC 2sC1 1 jf00.b/jq sC 1 !1q C 2 sC1 1 jf00.a/jq C jf00.b/jq sC 1 !1q9 = ; :

Let a1 D jf00.a/jq; b1 D 2sC1 1 jf00.b/jq; a2D 2sC1 1 jf00.a/jq; b2D

jf00.b/jq. Here , 0 <q1< 1 for q > 1. Using the fact that

n X kD1 .akC bk/s n X kD1 askC n X kD1 bsk: for .0 s < 1/ ; a1; a2; :::; an 0; b1; b2; :::; bn 0; we obtain ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ 2 2sC4  2s 2pC 1 p1 1 sC 1 1q   ˇ ˇf00.a/ ˇ ˇC 2sC1 1 1qˇ ˇf00.b/ ˇ ˇ  C  2sC1 1 1 qˇ ˇf00.a/ ˇ ˇC ˇ ˇf00.b/ ˇ ˇ  D.b a/ 2 2sC4  2s 2pC 1 p1 1 sC 1 q1 1C 2sC1 1 1 q  ˇ ˇf00.a/ˇˇC ˇ ˇf00.b/ˇˇ    .b a/ 2 2sC4  2s 2pC 1 p1 1 sC 1 1q 2sC1 ˇ ˇf00.a/ˇˇC ˇ ˇf00.b/ˇˇ :

(6)

Corollary 1. Under assumption Theorem4, if we takesD 1, then the inequality (2.3) becomes the following inequality

ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ 2 16 .2pC 1/p1 2 4  jf00.a/jq C 3 jf00.b/jq 4 1q C 3 jf 00.a/jq C jf00.b/jq 4 1q 3 5  .b a/ 2 22qC2.2pC 1/ 1 p ˇ ˇf00.a/ˇˇC ˇ ˇf00.b/ˇˇ :

Theorem 5. Let f W I  Œ0; 1/ ! R be twice differantiable mapping on Iı , a; b2 I with a < b. If jf00jqiss-convex in the second sense on Œa; b , for some fixed s2 .0; 1 and q  1, then the following inequaliy holds:

ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ (2.4) .b a/ 2 16  1 3 1 1q 2 4 1 2s.sC 3/ ˇ ˇf00.a/ˇˇ q C 2 sC4 s2 C 7s C 14 2s.sC 1/ .s C 2/ .s C 3/ ˇ ˇf00.b/ˇˇ q !1q C 2 sC4 s2 C 7s C 14 2s.sC 1/ .s C 2/ .s C 3/ ˇ ˇf00.a/ˇˇ q C 1 2s.sC 3/ ˇ ˇf00.b/ˇˇ q !1q3 5:

Proof. From Lemma 2, using the well known power mean inequality for q 1 and the s- convexity in the second sense ofjf00jq, we find

ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ .b a/ 2 16 8 < : Z 1 0 t2 1 1 q 2 4 Z 1 0 t2 ˇ ˇ ˇ ˇ f00 t 2aC 2 t 2 b ˇ ˇ ˇ ˇ q dt  1 q C Z 1 0 t2 ˇ ˇ ˇ ˇ f00 2 t 2 aC t 2b ˇ ˇ ˇ ˇ q dt  1 q 3 5 9 = ; .b a/ 2 16  1 3 1 1q 2 4 Z 1 0 t2 t 2 s ˇ ˇf00.a/ˇˇ q C 2 t 2 s ˇ ˇf00.b/ˇˇ q dt  1 q

(7)

C Z 1 0 t2 2 t 2 s ˇ ˇf00.a/ˇˇ q C t 2 s ˇ ˇf00.b/ˇˇ q dt  1 q 3 5 .b a/ 2 16  1 3 1 1q 2 4 1 2s.sC 3/ ˇ ˇf00.a/ˇˇ q C 2 sC4 s2 C 7s C 14 2s.sC 1/ .s C 2/ .s C 3/ ˇ ˇf00.b/ˇˇ q !1q C 2 sC4 s2 C 7s C 14 2s.sC 1/ .s C 2/ .s C 3/ ˇ ˇf00.a/ ˇ ˇ q C 1 2s.sC 3/ ˇ ˇf00.b/ ˇ ˇ q !1q3 5

which completes the proof of Theorem5. 

Corollary 2. Under assumption Theorem5, if we takesD 1, then inequality (2.4) becomes the following inequality:

ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ 2 48 2 4  3 jf00.a/jqC 5 jf00.b/jq 8  1 q C 5 jf 00.a/jq C 3 jf00.b/jq 8  1 q 3 5:

3. APPLICATIONS TO SPECIAL MEANS

In [1], the following result is given.

Let gW I ! I1 Œ0; 1/ be a non-negative convex functions on I: Then gs.x/ is

s convex on I; 0 < s < 1:

For arbitrary positive real numbers a; b .a¤ b/, we shall consider the following special means:

(a) The arithmetic mean: AD A.a; b/ WDaC b

2 ; a; b > 0; (b) The harmonic mean:

H D H .a; b/ WD 2ab

aC b; a; b > 0; (c) The logarithmic mean:

LD L .a; b/ WD 8 < : a if aD b b a ln b ln a if a¤ b , a; b > 0;

(8)

LpD Lp.a; b/WD 8 ˆ < ˆ : h bpC1 apC1 .pC1/.b a/ ip1 if a¤ b a if aD b , p2 RŸ f 1; 0g I a; b > 0.

It is well known that Lp is monotonic nondecreasing over p2 R with L 1WD L

and L0WD I: In particular, we have the following inequalities

H L  A:

Now, using the results of Section2, some new inequalities is derived for the above means.

(1) Let f W Œa; b ! R, .0 < a < b/, f .x/ D xsC1; s2 .0; 1. Then, 1 b a Z b a f .x/dxD LsC1sC1.a; b/ ; f .a/C f .b/ 2 D A.a sC1; bsC1/; f a C b 2  D AsC1.a; b/: (a) From Theorem3, we obtain

ˇ ˇLsC1sC1.a; b/ AsC1.a; b/ ˇ ˇ .b a/2s.2sC4 .4sC 12// 2sC3.sC 2/ .s C 3/ A.a s 1 ; bs 1/: For instance, if sD 1 then we get

ˇ ˇL22.a; b/ A2.a; b/ˇ ˇ 1 12.b a/ 2:

(b) From Theorem4, we have ˇ ˇLsC1sC1.a; b/ AsC1.a; b/ˇˇ s .b a/ 2 2sC4  2s 2pC 1 p1   a.s 1/qC 2sC1 1 b.s 1/q 1 q C 2sC1 1 a.s 1/qC b.s 1/q 1 q s .b a/ 2 4  2s 2pC 1 p1 1 .sC 1/1q 1 A.as 1; bs 1/;

where q > 1 and p1Cq1D 1: For instance, if s D 1 then we have

ˇ ˇL22.a; b/ A2.a; b/ˇˇ .b a/2 4  1 4pC 2 p1 ; p > 1:

(9)

(c) From Theorem5, we get ˇ ˇLsC1sC1.a; b/ AsC1.a; b/ˇˇ .b a/2 2sC4.sC 2/ .s C 3/  1 3 1 q1   s.sC 1/.s C 2/a.s 1/qC 2sC4s s3 7s2 14s b.s 1/q 1 q C 2sC4s s3 7s2 14s a.s 1/qC s.s C 1/.s C 2/b.s 1/q 1 q

where q > 1 and p1Cq1D 1: For instance, if s D 1 then we have

ˇ ˇL22.a; b/ A2.a; b/ˇˇ .b a/2.48/1q 576 ; q > 1: (2) Let f W Œa; b  Œ0; 1/ ! R, .0 < a < b/, f .x/ D 1 xs 2 K 2 s; s2 .0; 1. Then, 1 b a Z b a f .x/dxD L ss.a; b/ ; f .a/C f .b/ 2 D A.a s; b s/; f .aC b 2 /D A s.a; b/:

(a) From Theorem3, we obtain

jL ss.a; b/ A s.a; b/j 

.b a/2.2sC4 .4sC 12// 2sC4.sC 1/ .s C 2/ .s C 3/

h

a. s 2/C b. s 2/i: For instance, if sD 1 then we get

ˇ ˇL 11.a; b/ A 1.a; b/ ˇ ˇ .b a/2 24 A a 3 ; b 3 : (b) From Theorem4, we have

jL ss.a; b/ A s.a; b/j  s .b a/ 2 2sC4  2s 2pC 1 p1  a. s 2/qC 2sC1 1 b. s 2/q 1 q C 2sC1 1 a. s 2/qC b. s 2/q 1 q  .b a/ 2 8  2s 2pC 1 p1 s .sC 1/q1 1 h a. s 2/C b. s 2/i;

(10)

where q > 1 and p1Cq1D 1: For instance, if s D 1 then we have ˇ ˇL 11.a; b/ A 1.a; b/ ˇ ˇ  .b a/ 2 32  2 2pC 1 p1 a 3qC 3b 3q1q C 3a 3qC b 3qq1   .b a/ 2 8  4 2pC 1 p1 A a 3; b 3 where q > 1:

(c) From Theorem5, we get

jL ss.a; b/ A s.a; b/j  .b a/2 2sC4.sC 2/ .s C 3/  1 3 1 1q   s.sC 1/.s C 2/a. s 2/qC 2sC4s s3 7s2 14s b. s 2/q 1 q C 2sC4s s3 7s2 14s a. s 2/qC s.s C 1/.s C 2/b. s 2/q 1 q

where q > 1 and p1Cq1D 1: For instance, if s D 1 then we have

ˇ ˇL 11.a; b/ A 1.a; b/ˇˇ .b a/2 384  1 3 1 1 q 6a 3qC 10b 3q 1 q C 10a 3qC 6b 3q 1 q  ; where q > 1: REFERENCES

[1] M. Alomari, M. Darus, and S. Dragomir, “Inequalities of Simpson’s type for s-convex functions with applications,” RGMIA Res. Rep. Coll., vol. 12, no. 4, 2009.

[2] P. Burai, A. H´azy, and T. Juh´asz, “On approximately Breckner s-convex functions,” Control and Cybernetics, vol. 40, no. 1, pp. 91–99, 2011.

[3] S. Dragomir, “On some new inequalities of Hermite–Hadamard type for m-convex functions,” Tamkang J. Math., vol. 3, no. 1, 2002.

[4] S. Dragomir and R. Agarwal, “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezodial formula,” Appl. Math. Lett., vol. 11, no. 5, pp. 91–95, 1998.

[5] S. Dragomir and S. Fitzpatrik, “The Hadamard’s inequality for s-convex functions in the second sense,” Demonstration Math., vol. 32, no. 4, pp. 687–696, 1999.

[6] S. Dragomir and C. Pearce, “Selected topics on Hermite–Hadamard inequalities and applications,” RGMIA Monographs, 2000.

[7] H. Hudzik and L. Maligranda, “Some remarks on s-convex functions,” Aequationes Math., vol. 48, pp. 100–111, 1994.

[8] S. Hussain, M. Bhatti, and M. Iqbal, “Hadamard-type inequalities for s-convex functions I,” Pun-jab Univ. Jour. of Math., vol. 41, pp. 51–60, 2009.

[9] U. Kirmaci, “Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula,” Appl. Math. Comput., vol. 147, pp. 137–146, 2004.

(11)

[10] U. Kirmaci, M. Bakula, M. ¨Ozdemir, and J. Peˇcari ´c, “Hadamard-tpye inequalities for s-convex functions,” Appl. Math. Comp., vol. 193, pp. 26–35, 2007.

[11] U. Kirmaci and M. ¨Ozdemir, “On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula,” Appl. Math. Comput., vol. 153, pp. 361–368, 2004.

[12] C. Pearce and J. Peˇcari´c, “Inequalities for differentiable mappings with application to special means and quadrature formula,” Appl. Math. Lett., vol. 13, pp. 51–55, 2000.

[13] M. Z. Sarikaya, A. Saglam, and H. Yıldı rım, “New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex,” International Journal of Open Problems in Computer Science and Mathematics (IJOPCM), vol. 5, no. 3, 2012. [14] M. Z. Sarikaya and H. Yildirim, “Some new integral inequalities for twice differentiable convex

mappings,” Nonlinear Analysis Forum, vol. 17, pp. 1–14, 2012.

[15] M. Sarikaya, E. Set, and M. Ozdemir, “On new inequalities of simpson’s type for s-convex func-tions,” Comput. Math. Appl., vol. 60, no. 8, pp. 2191–2199, 2010.

[16] E. Set, “New inequalities of ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals,” Comput. Math. Appl., vol. 63, pp. 1147–1154, 2012. [17] E. Set, M. ¨Ozdemir, and S. Dragomir, “On the Hermite–Hadamard inequality and other integral

inequalities involving two functions,” J. Inequal. Appl., vol. Article ID 148102, 2010.

[18] M. Tunc, “On some integral inequalities via h-convexity,” Miskolc Mathematical Notes, vol. 14, no. 3, pp. 1041–1057, 2013.

[19] M. Tunc, “Some Hadamard like inequalities via convex and s-convex functions and their ap-plications for special means,” Mediterranean Journal of Mathematics (Accepted), vol. Doi: 10.1007/s00009-013-0373-y., 2014.

Authors’ addresses

Mehmet Zeki Sarıkaya

Department of Mathematics, Faculty of Science and Arts, D¨uzce University, D¨uzce, Turkey E-mail address: sarikayamz@gmail.com

Mehmet Ey ¨up Kiris

Department of Mathematics, Faculty of Science and Arts, Afyon Kocatepe University, Afyon, Tur-key

Referanslar

Benzer Belgeler

Orman endüstrisinin bir alt sektörü olan levha endüstrisinin Düzce ili oransal talep trendinin kaplama ve parke alt sektörlerine benzer, kereste alt sektörünün

Analysis of variance (ANOVA) results of total color change (ΔE*) values of samples applied with acetic acid, ammonia, hydrogen peroxide and sodium silicate at different

The comparison results of the Duncan test on the factor levels of moisture content, type of varnish, thermal processing temperature, and thermal processing time,

The aim of this study was to investigate the effect of the Tinuvin derivatives widely used as UV stabilizers in the plastics industry on EPDM rubber.. The EPDM rubber plates

RBSÖ açısından benlik saygısı, anne-baba ilgisi ve babayla ilişki hasta grubunda kontrol grubuna göre daha düşük iken, eleştiriye duyarlılık, depresif

Bu romanda önermek istediğim, sizin okur katında çok güzel algıladığınız, tıpkı bu roman yazarının bunu oluştururken bir şeyle­ re şöyle bakması gibi sen bu

Sayısal örnek için seçilen bir taşıyıcı sistem modeli, x ve y yönünde dört açıklıklı, zemin+dört katlı üç boyutlu çerçeve sistem olup,

Betonun mekaniksel özelliklerinin çarpma dayanımına etkisinin incelenmesi konusundaki çalıĢmada; 30x15 cm ve 20x10 cm boyutlarında standart silindir ile 10x10x50 cm´