• Sonuç bulunamadı

Wear and mechanical properties of Al6061/SiC/B4C hybrid composites produced with powder metallurgy

N/A
N/A
Protected

Academic year: 2021

Share "Wear and mechanical properties of Al6061/SiC/B4C hybrid composites produced with powder metallurgy"

Copied!
14
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

metallurgy

Halil

Karakoc¸

a,∗

, ˙Ismail

Ovalı

b

,

Sibel

Dündar

c

,

Ramazan

ıtak

c

aDepartmentofMechanicalProgram,HacettepeUniversity,06935Ankara,Turkey bDepartmentofManufacturingEngineering,PamukkaleUniversity,20160Denizli,Turkey cDepartmentofMetallurgyandMaterialsEngineering,GaziUniversity,06500Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30October2018 Accepted2September2019 Availableonline26September2019

Keywords: Aluminum B4C SiC Hybrid Extrusion Mechanicalproperties Wear

a

b

s

t

r

a

c

t

Thisstudyinvestigatestheproductionofvariousreinforcedandnon-reinforcedcomposite materialsusingpowdermetallurgy(PM).Itpresentsthenewapproachintooptimizethe mechanicalpropertiesofhybridcomposites(Al-SiC-B4C)producedwithpowderextrusion

process.A16061powdersareusedasthematrixmaterialandB4CandSiCpowdersare

usedasthereinforcementmaterials.Matrixandreinforcementmaterialsaremixedina three-dimensionalmixer.Themixturesarethensubjectedtocoldpressingtoformmetal blocksamples.Blocksamplesaresubjectedtohotextrusion inanextrusionmoldafter beingsubjectedtoasinteringprocess.Thisproducessampleswithacross-sectionalarea of25×30mm2.TheseextrudedsamplesweresubjectedtoT6heattreatment.The

com-positematerialsproducedareexaminedintermsofdensity,hardness,transverserupture strength,tensilestrength,andwearresistance.Furthermore,opticalmicroscopy,scanning electronmicroscopy,energy-dispersiveX-rayspectroscopyandXRDareperformedto exam-inethemicrostructure,surfacefractures,andsurfaceabrasion.Inthisstudy,highdensity Al6061/B4C/SiChybridcompositematerialsweresuccessfullyproduced.Afterextrusion,

somemicroparticleswerefoundtocrack.Thehighesthardnessoccurredin12%B4C

rein-forcedcomposites.ThelowesthardnesswasobtainedinAl6061alloywithoutreinforcement. Thehighesttensilestrengthoccurredin12%SiCparticlereinforcedcompositematerial.The highestwearresistancewasobtainedfor9%B4C+3%SiCsamplesduetothehardnessofB4C

andthegoodadhesionpropertiesofthematrixandSiC.

©2019TheAuthors.PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:halil.karakoc@hacettepe.edu.tr(K.Halil).

1.

Introduction

Superiorpropertiesofmetalmatrixcomposites(MMC),such astheirhighstrength,lowdensity,andhighmodulusof elas-ticity,makethesematerialsindispensable[1].Differentmatrix materials,suchasAl,Mg,andTi,areusedinMMCs[2].Among these,Alisoneofthemostpreferredmatrixmaterialsbecause https://doi.org/10.1016/j.jmrt.2019.09.002

2238-7854/©2019 The Authors. Publishedby Elsevier B.V. This is anopen access articleunder the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

ofitslightweight,goodeffectiveheatandelectrical conductiv-ity,andhighcorrosionresistance[3].ManyAlalloys(eg2xxx, 5xxx,6xxxand7xxx)areusedindustrially[4].6xxxseriesof aluminumalloyshavegoodmachinabilityandextrudability [5].Byaddinghardceramicparticlesintothesealloys, abra-sionresistanceandmechanicalpropertiescanbeimproved [6].Particlesofboroncarbide(B4C)andsiliconcarbide(SiC),

themostfavoredreinforcementmaterialsamongaluminum matrix composites (AMC)materials, strengthen the matrix structureandprovidehighresistance,goodwearresistance, and high thermal stability [7,8]. Today, two different types ofceramicparticles are incorporated into the Almatrix to producehybridcompositematerials[9].Dual reinforcement elements used inhybrid composite materialscan improve mechanicalpropertiesandcostofcompositescanbereduced [10,11].Inaddition,theweightofthecompositeformeddue tothereinforcingelementsusedcanbereduced[12].The alu-minum hybridcomposite devices alsoshow that it can be usedinplaceofconventionalmaterialsinadvanced applica-tions[13].ManydifferenttechniquessuchasPMandcasting areusedintheproductionofMMCmaterials[14].Whenwe comparethecastingtechniquewiththePMtechnique,some advantagesofPMcometotheforefront.Intheproductionof PM,nochemicalreactionoccursbetweenthematrixphase andthereinforcingelement,sinceproductionoccursatlow temperatures.Inaddition,highamountsofceramicparticles canbeaddedintothematrixphase[15,16].

Themainaimofthisstudyistoproducehybridcomposite materialswhichhaveimprovedwearandmechanical proper-tiesbyaddingB4CandSiCparticlestoAl6061alloy,whichhas

goodmachinabilityandextrudabilityandalsohasgood cor-rosionresistance.Inthisstudy,non-reinforced(Al6061alloy), conventionalreinforced(Al6061/B4C-Al6061/SiC)and

dou-blereinforced(Al6061/B4C/SiC)compositematerialswere

producedbyusingextrusionprocessinPM.Themechanical properties,suchashardness,bendingstrength,and elonga-tion,wereinvestigatedandcomparedbyevaluatingfracture surfacesandmicrostructures.Microstructuralanalyseswere carriedoutusingscanningelectronmicroscopy(SEM).

2.

Experimental

procedures

2.1. Materialsandmethods

Thepowdersizeofthe6061seriesaluminumwastakentobe smallerthan100␮m(suppliers:BeijingXingRongYuan

Tech-nologyCompany,China).ThechemicalcompositionofAl6061 isshowninTable1.TheAMCmaterialswerereinforcedwith 3wt.%B4Cand9wt.%SiC;6wt.%B4Cand6wt.%SiC,9wt.%

B4C and 3wt.% SiC, and 12wt.% B4C (<10␮m)and 12wt.%

SiC(<8␮m).SiCandB4Cceramicpowderswhichwereused

asreinforcingelementswere obtainedfrom Nurol Technol-ogyCompanyinTurkey.Thepropertiesofmetalandceramic powdersusedinthe productionofcompositematerialsare giveninTable2.AflowchartoftheprocessisshowninFig.1. First,themixtureratiosoftheAl6061andB4Cpowderswere

determined and separately mixed for 30min in a Turbula three-dimensionalmixer.Next,Al6061andSiCpowderswere preparedwiththesameparameters.Allofthevolume frac-tions are showninTable 3. During theexperimentalwork, the reinforcementparticleswere addedslowlyfora homo-geneousdistribution.Themixedcompositionswerepressed at300MPaandsinteredat550◦Cfor1h.Finally,the compos-itematerialswereextrudedatthesametemperatureusinga pre-heatedhydraulicextrusionmoldandtakingtheformof shapedmetalblocks(Fig.2aand b).Thecomposite materi-alsobtainedafterextrusionweresubjectedtoT6agingheat treatment.Thecompositematerialsweresubjectedto1h dis-solutionat530◦Candthenimmediatelycooledinwater.The cooledsamplesarethenartificiallyagedfor8hbyheatingat 175◦Cwithaheatingspeedof10◦C/min.

2.2. Analysisofmicrostructureandmechanical properties

Inthisstudy,Al6061wasusedasametalmatrixandB4Cand

SiC powders asreinforcement materials.Fig. 3shows SEM imagesandparticulatesizedistributionsofthepowdersused inthestudy.TheanalysesshowthattheAl6061matrix pow-dershadirregularsphericalformswithagrainsizeofbelow 100␮monaverage.TheB4Cpowders,ontheotherhand,were

foundtohaveacomplexandcorneredformwithgrainsizes varyingbetween1and 10␮m.TheSiCpowdershada com-plex formwith sizesvarying between1 and 8␮m. For the metallographicexamination,threesamplesofeach powder atsizesof24×18×5mmwere cutusingadiamondcutter inthedirectionofverticalextrusion.Aftertheywerecut,the samplesweresubjectedtocoldmounting(moldingbyepoxy resin).Then,usingdecoupage,thesamplesweresandedwith emerypapersof400, 600,800,1000,and1200grits, respec-tively.Aftersanding,thesampleswerepolishedbymeansof diamondsuspensionwithfeltsof6,3,and1␮m,respectively. Thispolishingprocedureminimizedthesurfaceroughness.

(3)

Fig.1–Flowdiagramofprocess.

Table3–Volumefractionofmaterials.

Materialmixingratio(%) Weightofmixture

proportions(g)

Sample Al6061 B4C SiC Al6061 B4C SiC

1 100 0 0 400 0 0 2 88 3 9 352 12 36 3 88 6 6 352 24 24 4 88 9 3 352 36 12 5 88 12 0 352 48 0 6 88 0 12 352 0 48

Fig.2–Pressingthepowdermetaloftheblocksamples(a),TheExtrudedcompositematerials(b).

Thesampleswerethensearedfor15susinga1-mlHF+200-ml H2Osearingsolution.

ALeicaDM4000Mopticalmicroscopewasusedtoperform amicrostructuralexaminationofthecompositematerials.A JEOLJSM6060LVscanningelectronmicroscopewasusedto investigatetheinterfacialconnectioncohesionbetweenthe reinforcementmaterials(B4C,SiC)andmainmaterial(Al6061). In the composites produced, and energy-dispersive X-ray spectroscopy(EDS)analyseswerealsoperformedonthesame SEMmicroscope.ASartoriusscaleof0.1mgsensitivitywas

usedtoperformdensitymeasurementsoftheAl6061/B4C/SiC compositematerialsproducedusingtheArchimedesmethod. TheBrinellmethodforhardnessmeasurementwasusedto investigatethehardnessofthecompositematerialsthatwere producedusingthePMmethodandsubjectedtotheT6 age-ingprocess.Hardnessmeasurementswereperformedusing anEMCO-TESTDuraVision200hardnessmeasurementdevice using2.5mmballendanda31.25kgfload.Threesamplesof eachtypeofcompositematerialproducedwereselectedfor mechanicaltestsoftensileandtransverserupturestrength.A

(4)

Fig.3–SEMmicrographsofAl6061andB4CSiCpowders,particulatesizedistributionsofpowders.

JohnfordT35CNClatheworkbenchand aJohnfordVMC550 CNC planer with three axes (manufactured in the Manu-facturing Engineering Departmentof GaziUniversity) were usedtopreparethesamplesforthemechanicaltest. Sam-pleswerepreparedtoASTME8Mstandardsinthedirection of extrusion using the composite materials obtained after the extrusion process. Tensile tests were performed using anInstron3369universal testing device with 50kNtensile and compression capacity at1mm/min at room tempera-ture.Tensilestrengthsandpercentageelongationvalueswere producedandrecordedonacomputerconnectedtothe ten-siletestingdevice.Sampleswithsizesof31.7×12.7×6.35mm werepreparedforthetransverserupturetestsincompliance with“MPFI–411998”standards. Thetransverserupturetests wereperformedwithatransverseruptureapparatusspecially preparedwiththeInstron3369universaltestdevicewith50kN tensileandcompressioncapacity.Thetestswereconductedat roomtemperatureandataspeedof1mm/min.X-ray diffrac-tion(XRD)ofcompositematerialswasperformedonBruker brandD8DiscovermodelXRD.CuK␣radiation(K␣=1.54056) wasusedformeasurements.

XRDresultswereanalyzedformicrostructural characteri-zationofcompositematerials.Theaveragecrystallitesizewas calculatedfromthefullwidthathalfmaximum(FWHM)ofthe XRDpeakbyusingScherer"sEq.(1)[17,18].

Dp=(k␭)/(Bcos␪) (1)

Where;

Dp=Averagecrystallitesize, ␭=X–Raywavelength,

B=FWHMofthediffractionpeak, ␪=Angleofdiffraction,

K=Scherer’sconstantoftheorderofaboutunity(0.94)for usualcrystals.

2.3. Analysisofwearproperties

Thewear testswere carried out using apin-on-disk wear-testingdevice accordingtoASTMG132-96.Samplesurfaces weregroundwith80SiCpaperforremovingroughsurface, thentheAMCtestpin,withadiameterof10mm,wasfixed andacounterfaceabrasivedisk(abrasivepaperof200grit) wasusedduringthetest.Theweartestswereperformedat distancesof100,200, and 300m,ataspeed of1.2m/s and withimposedloadsof5,10,and15N.Thecoefficientof fric-tionbetweenthepinspecimenandthediskwasdetermined with a load cell. Prior to measurement, the sampleswere cleanedwithacetonetoremovesurfacecontaminants,dried, andthenweighedusinganelectronicbalancewitha resolu-tionof0.001mg.

Apin-on-ballweartestwasappliedtoexaminethe abra-sionbehavioroftheAMCmaterials.Thistestwascarriedout withavelocityof2.8m/sandloadconditionsof5,10,and15N.

3.

Experimental

results

3.1. Microstructure,densityandmechanical characterization

Optical microscope was used to acquisition images that revealedtheparticledistributionofthecompositematerials afterverticalextrusion(Fig.4).IntheimageofAl6061,nopores areobservedinthemicrostructure(Fig.4a).Thisresultedfrom thehighdensityofthematerialthatoccurredinparallelwith theplasticdeformationduringtheextrusionprocess.Forthe microstructuresofthecomposites reinforcedwithB4C and

SiC,thisstudyfoundthatB4C/SiCparticlesin3%B4C+9%SiC

compositesgenerallyexhibitedahomogenousdistributionin thematrix.In6%B4C+6%SiCand9%B4C+3%SiCcomposites,on

theotherhand,itwasobservedthattheformationof agglom-erationsincreasedinparallelwiththeincreaseinB4Ccontent.

(5)

Fig.4–Afterextrusionopticalmicroscopeimagesof(a)Al6061(b)3B4C9SiC(c)6B4C6SiC(d)9B4C3SiC(e)12B4C(f)12SiC.

While12%B4Ccompositesexhibitedahigherlevelof

agglom-eration,lownumbersofporesisformedinthemicrostructure. Itwasobservedthatmicrocracksareformedinsomeparticles, asaresultoffrictionbetweenparticlesduringtheextrusion process.Thestudy alsodemonstrated that SiC particles in 12%SiCcompositesdisplayedahomogenous distributionin thematrixstructure.

InFig.5,XRDpeaksofAl6061alloyandB4C,SiCparticle

reinforcedcompositematerialsaregiven.TheAl,B4CandSiC

peaksin thefigurewere foundbylooking atthe literature [20–22].When theXRD peaksare examined,it isseenthat Al(111) andAl(200)peaks aremoreextensiveanddistinct thanotherpeaks.B4CandSiCpeaksarelessprominent.The

averagecrystalsizesofthecompositematerialswere calcu-latedaccordingtoSchererequationandcomparedwitheach other.In literaturestudies,it isknown thatmicro stresses increasewithdecreasingcrystalsize[23,24].Increasedmicro tensionincreasesthestrengthofthematerial.Consequently, thehighestvaluewasobservedinAl6061alloywith45.8nm. The lowest value was found in 12SiC composite material with33.1nm.Thisexplainswhythe12SiCcomposite mate-rialexhibitssuperiorstrengthpropertiesthanAl6061material. The12B4C reinforced composite materialwas found to be

larger than the 12SiC particle reinforced composite mate-rial having an average crystal size of less than Al6061.In hybrid composite materials, average crystal size increased withincreasingB4Cratio.

CompositematerialswithanAl6061matrixandreinforced with B4C and SiC particles in different proportions were

producedbymeansofaPMtechnique.Zhengetal. investi-gatedcomposite materialsreinforced withAA2024/20%B4C,

whichthey producedvia mechanical milling,hot pressing, andhotextrusion,withrespecttomechanicalpropertiesand microstructure.Thesamplessubjectedtohotpressingunder 823Kand400MPawerealsosubjectedtohotextrusionatthe sametemperature, whichproduced compositeswith

maxi-mumdensity.Theyobservedthatafterthehotextrusionthe B4CparticlesexhibitedaregulardistributionintheAA2024

matrixandtheporesformedduringthesinteringprocess dis-appeared[19].

Lowdensityreducesthemechanicalpropertiesof compos-ites.Forthisreason,inthepresentstudy,thesampleswere subjectedtohotextrusionandthenweresinteredaftercold pressinginordertoproducehigh-densitysamples.

Fig. 6ashowstheoreticaland experimentaldensity rela-tionships versus reinforcement rates for the composite materialsproduced.AsFig.6ashows,theaveragedensities ofallthepowdermetalblockssubjectedtocoldpressingare over89%.Inthecold-pressedsamples,Al6061hadthe high-est density(91.03%)and12%B4C-reinforcedcompositeshad

thelowestdensity(89.55%).WhilethedensitiesofAl6061and 12%SiCareclosetoeachother,thedensitiesdecreasein par-allelwiththeincreaseinB4Cratio.Theaveragedensitiesin

all thesamplessubjectedtoextrusionwere observedtobe 99%.Thissituation resultedfrom thehighplastic deforma-tion ofthecompositesduringtheextrusionprocess.While thehighestdensitywasobservedintheAl6061alloy(99.74%), compositematerialsreinforcedwith12%B4Chadthelowest

density(99.02%).

Fig.6showsthehardness,transverseruptureresistance, andtensileresistancevaluesofthecompositematerials pro-duced.Thereinforcedcompositeshadhigherhardnessvalues compared with the reinforced Al6061 alloy (Fig. 6b). While Al6061hadanaveragehardnessvalueof50HB,the12%B4C

compositedisplayedthehighestvalueofhardnesswith76HB. ItisknownthatinanAlmatrixthehardnessvaluesof com-positesgenerallyincreaseinparallelwiththeincreaseinB4C

ratio[25].Theaveragehardnessvaluein12%SiCcomposites wascalculatedtobe54HB.IncompositesreinforcedwithB4C

andSiC,thehardnessvaluesdisplayedanincreaseinparallel withtheincreaseinB4Cratio.Itwasobservedthatceramic

(6)

Fig.5–X-raydiffractionpattern(a)andavaragecrystallitesize(b)ofcompositematerialsproducedwithhotextrusion.

Fig.6–Densitychangesandmechanicalpropertiesofthehybridproducedcomposites.

theincrease inhardnessbyformingastraininthe matrix structure.Mechanicalpropertiesofaluminumalloyscanbe improvedbytheadditionofceramicparticles.siliconcarbide, alumina,bariumchlorideetc.Withtheadditionof reinforce-mentstoaluminumalloy,thehardnessvalueofthematerial increaseswhileductilevaluedecreases[26].

Thetransverserupturestrengthwasfoundtobe402.5MPa in composites reinforced with 12%SiC (Fig. 6c). The com-posite12%B4C,whichdisplayedthehighesthardnessvalue,

showedthelowesttransverserupturestrengthwith358MPa. Transverserupture strength decreasedin parallel withthe increaseinB4CratiointheB4CandSiCcomposites.The

trans-verserupturestrengthsof3%B4C+9%SiC,6%B4C+6%SiC,and

9%B4C+3%SiCcompositeswerecalculatedtobe378,367,and

362MPa,respectively.

Intheopticalmicroscopeimages,itcanbeseenthatB4C

reinforcementelementsformanagglomerationinthematrix structure.Itcanalsobeobservedinthemixedcompositesthat

agglomerationsincreasedinparallelwiththeincreaseinB4C

content.

Thetensilestrengthvaluesofthecompositematerialsthat weresubjectedtotensiletestsinthesameenvironmentare shown in Fig. 6d. While the Al6061 materialdisplayed the lowesttensileresistancewith174MPa,the12%SiCcomposite hadthehighestvalueat185.1MPa.Thisstudythus demon-stratedthatinB4C/SiCcomposites,tensileresistancevalues

tendtodeclinewithincreasingB4Creinforcementratio.As

is the casewiththe transverse rupture values, agglomera-tionsinthematrixstructurealsohadaneffectonthetensile strength.HarichandranandSelvakumarreportedthat parti-clesdisplayedanagglomerationwhentheB4Cratiowasover

6%withrespecttoweightandthatthisformationcausedthe strengthandductilityofthecompositematerialstodecline [27].

Aftertheextrusion,SEMimagesweretakenandEDS analy-seswereperformedofAl6061materialthatwasnotreinforced

(7)

Fig.7–SEMimage(a–b)EDSanalysisfromthe1starea(c)EDSanalysisfromthe2ndarea(d)of6B4C6SiCcomposite

material.

inthe directionofverticalextrusion and ofthe composite materialreinforcedwith6%B4C+6%SiC.ExaminingtheSEM

imageof the Al6061 material, weobserved that therewas scarcelyanyporosityinthestructure(Fig.4).Inaddition,alloy composition ratesin the structurewere also calculated by means ofelemental analysis. SEMimages and EDS results obtainedfrom 6%B4C+6%SiCcompositematerialareshown

inFig.7.

Elementary(EDS)analyzes wereperformed fromcertain regionsofthecompositematerial.InFig.7a,intheEDS anal-ysistakenfrom zone1,the highboroncontentandcarbon ratioindicatethepresenceofB4Cparticles.IntheEDSresults

obtainedfromzone2,itisunderstoodthatthisparticleisSiC becauseofhigh siliconand carboncontent.Examiningthe SEMimageinFig.7d,weobservedthatcavitiesare formed aroundtheB4Cparticles.Theseresultfromtheweak

wettabil-itybetweentheB4Cparticlesandthematrixphase.Itisknown

thatthereisaproblemofwettabilitybetweenaluminumand B4Creinforcementinliteratureresearches[28].

InFig.8,itisseenthatsomehardparticlesarecrackedor broken.Itisthoughtthatmicro-cracksorfracturesoccurinthe hardbrittleceramicparticlesthatmoveintothemoldcavity withthematrixmaterialduetohighdeformationandfriction duringextrusion.Inasimilarstudy,itwasstatedthatmacroor microcracksoccurinB4Cparticlesextrudedwithaluminum

matrix[29].

3.2. Fractographyoftensilespecimens

ThreetensiletestswereperformedforeachoftheAl6061 com-positematerials,whichcontained12%ceramicparticleswith

respecttoweight.Afterthetensiletests,fracturesurfacetests were conducted tocharacterize the fracture behaviors and the interfacebondsbetweenthe matrix andreinforcement materials. Toinvestigatethe microstructuresofthebroken surfaces,samplesweretakenfrom fullsectionsofthe frac-turedsurfacesandplacedintheSEMdevice.SEMimagesat differentmagnificationsweretakenfromthebrokensurfaces ofnon-reinforcedAl6061,6%B4C,6%SiC,12%B4C,and12%SiC

compositematerials(Fig.9).

Theexcessiveductilitypreferredintheproductionof com-positematerialscausedmicro-poringonallthesurfacesofthe brokenmaterials,owingtotheAl6061matrix.Ahigherlevelof dimpleformationwasobservedonthebrokensurface,owing tothestructureofthenon-reinforcedAl6061material,which hasabehaviorthatismoreductilecomparedwithreinforced composites. Comparing the particle-reinforced composites, it wasobserved that dimple formationon the broken sur-faces decreased in parallel with the increase in B4C ratio.

ThisresultedfromthetrendoftheB4Cratio,whichincreases

brittlenessincompositematerials.Comparingthebroken sur-facesof12%B4Cand12%SiC,weobservedthat12%SiCcaused

theformationofmoredimples.Asaresult,the12%SiC com-positematerial,whichwasmoreductile inthetensile test, displayedgreaterstrength.

ItwasobservedthatB4Cparticlesonthebrokensurfaces

are debonded from the matrix. Due to the weak bonding betweenthematrixphaseandB4CparticlesinB4C-reinforced

compositematerials,thatis,duetoinsufficientwetting,B4C

particlesareeasilydebondedfromthematrixatthemoment ofbreakageandremainedonbothsidesofthebroken sur-faces.InSiC-reinforcedcomposites,ontheotherhand,itwas

(8)

Fig.8– SEMimageof6B4C6SiCcompositematerial,X500(a),X2500(b).

Fig.9–SEMimageofthebrokensurfacesafterthetensiletest(a)Al6061(b)6B4C6SiC(c)12B4C(d)12SiC.

observedthat, thankstogoodbondingattheinterface,the SiCparticlesremainedembeddedinthematrixphaseatthe momentoftraction.

3.3. Effectofslidingdistanceandloadonvolumeloss ThevariationinvolumelossoftheHMMCsandunreinforced compositeAl6061asafunctionofloadandslidingdistanceare showninFig.10.Thevolumelossincreasedwiththeincrease inapplied load and weardistance inall samples.Canakci investigatedmicrostructureandabrasivewearbehaviorofB4C

particle reinforced 2014 Almatrix composites. The experi-mentalresultsshowedthatslidingtime(distance)affectsthe averagewearvolumelossofthecomposites.Thevolumeloss alsoincreaseswithincreasingslidingtime(distance)andwith decreasingparticlecontentofB4C.Hisresultsshowthegood

agreementwiththepresentstudy[30].Hardreinforcing parti-clesincreasethewearperformanceofAlMMCs[31].

Ascan beseen from Fig. 10, the volume lossofAl6061 waslowercomparedtothatintheHMMCs.Whilethe mini-mumvolumelosswasfoundtobe0.07mm3fromthe12%B

4C

hybridcompositefora5Nloadanda100mslidingdistance, themaximumvolumelosswasfoundtobe3mm3forthe

12%SiChybridcompositefora15Nloadanda300msliding distance.AsevidentfromFig.10,weightlossdecreasedwith

theincreaseinweightpercentofB4CintheHMMCs.TheB4C

reinforcementdecreasedthevolumelossmorethantheSiC reinforcementandhadeffectsthataremorebeneficial.The 9%B4C+3%SiCsamplesexhibitedalowerweightlossthanthe

12%B4Csamples.The9%B4C+3%SiCsamplesshowthehighest

wearresistance.

3.4. Effectsofslidingdistanceandloadonthewear rate

Toinvestigatethe relationshipbetweenreinforcement con-tentofHMMCs,slidingdistance,andload,thewearrateswere calculated. Thewearrates of the unreinforcedand HMMC samplesaregivenasafunctionofslidingdistanceinFig.10.As canbeclearlyseenfromthefigures,thewearratedecreases linearlywiththeincreaseinslidingdistance.Uthayakumarat al.InvestigatedwearperformanceofAl–SiC–B4Chybrid

com-positesunderdryslidingconditions.Theydefinedthat,asa resultoflargescaleplasticdeformation,wearrateincrease withincreaseintheloadsapplied[32].Theresultsshowthe goodagreementwiththepresentstudy.Tangetal.[33]also definedthatAl–B4Ccompositesshowedhigherwearrateat

higherloads(65N).

Al6061 samples exhibit greater wearrates compared to thoseofHMMCsamples.The9%B4C+3%SiChybrid

(9)

compos-Fig.10–Variationinthevolumelossesandwearrateof(a)Al6061(b)12SiC,(c)3B4C9SiC,(d)6B4C6SiC,(e)9B4C3SiCand(f)

12B4Cwt.%Hybridcompositeasafunctionoftheslidingdistanceatdifferentappliedloads.

iteexhibitsthelowestwearrate.AsevidentfromFig.3,B4C

particleshavemorebeneficialeffectsonthewearratethan SiCparticles.Theseresultscanbeattributedtothegreater hardnessoftheB4Cparticles.

AscanbeseenfromFig.10,themaximumwearratewas foundtobe6.6×10−13mm3/m forthe12%SiC hybrid

com-positefora15Nload and300mslidingdistance,whilethe minimumwearratewasfoundtobe1.4×10−13mm3/mforthe

9%B4C+3%SiChybridcompositefora5Nloadand100m

slid-ingdistance.Uthayakumaretal.[32]reportedthatB4Ceasily

createdaboronoxide(B2O3)layeronthesurfaceofasample.

Thislayerreducesthewearratesignificantly.

3.5. Effectsofslidingdistanceandloadonthefriction coefficient

Thecoefficientoffrictionofthe unreinforcedsamplesand HMMCssampleswere measuredinorder todeterminethe wearbehavior.AsillustratedinFig.11,thecoefficientof fric-tiondecreasedwiththeincreaseinloadbutalsofluctuated duringsliding.Allsamplesdisplayedsimilartrendsforthe coefficient of friction during sliding. Previous studies [34], showed that alocalized abrasive zone formedby ahigher loadincreasedthecoefficientoffriction.Ghoshatal.studied thetribologicalcharacteristicsofAl-SiCMMC.Theyobserved thatfrictioncoefficientofcompositematerialsdecreasedwith increasinginappliedloads[35].

AscanbeseenfromFig.11,thecoefficientoffriction var-ieddependingontheB4Creinforcementcontent.The12%B4C

samplesshowedthelowestcoefficientoffrictionofthehybrid composites. Thecoefficients offriction forAl6061,12%SiC, 3%B4C+9%SiC,6%B4C+6%SiC,9%B4C+3%SiC,and12%B4Cwere

foundtobe0.63,0.51,0,42,0.35,0.23,and0.29,respectively,for a15Nloadand300mslidingdistance.Ascanbeobservedfrom Fig.11,thecoefficientoffrictiondecreaseswiththeincrease incontentofSiCandB4Cparticles.TheeffectsofB4Conthe

coefficientoffrictioncanbeattributedtoaboronoxide(B2O3)

layerformingatthecontactzone.TheB4Cparticlesareeasily

pulledoutandreactwiththeenvironment,thuscreatingthe B2O3oxidelayer.

3.6. Characterizationofwearmechanismsbyanalysis ofwornsurfaces

The optimum wear resistance was achieved with the 9%B4C+3%SiCHMMCssamples.Therefore,thewornsurfaces

ofthe9%B4C+3%SiCsampleswereanalyzedthroughSEMin

ordertodefinethewearmechanismsanditwasclearthatthe wearmechanismschangewiththewearconditions(i.e.,load andslidingdistance).Thewearmechanismsthatcanoccurin AlMMCsincludeadhesives,abrasives,delaminationand abra-sionwear[31].Abrasionwearappearsonthewornsurfacefor 5Natslidingdistancesof100mand300m(Fig.12).Deeper grovesappearforlongerslidingdistancesthanforshorter

(10)

slid-Fig.11–Variationinthefrictioncoefficientof(a)Al6061(b)12SiC,(c)3B4C9SiC,(d)6B4C6SiC,(e)9B4C3SiCand(f)12B4Cwt.%

Hybridcompositeasafunctionoftheslidingdistanceatdifferentappliedloads.

ingdistances.Itcanbedeterminedfromthisthatthewear contactinterfacetemperatureincreasedwithincreasing slid-ingdistance[36].Wearcracksalsoappearinthewornsurface forlowerloads(Fig.12).AscanbeenfromFig.12,numerous groovesonthewornsurfacearealignedparalleltothesliding direction.

Deformation and delamination wear mechanisms are formedfor10Natslidingdistancesof100mand300m.The delaminationwearmechanismscanbeexplainedasbeingdue toaremovalofmaterial,becausecracksoccurwhere delami-nationoccurs[37].Workhardeningiscausedbydeformation

ofthematrix.Ahigherloadincreasesworkhardening, and asaresultcracksareformedinthematrixandreinforcement interface.Thecrackscausethedelaminationwear.Ascanbe seenfromFig.12,thedegreeofdelaminationwearontheworn surfaceincreaseswiththeincreaseinload.Deformation (plas-tic)wearisalsoshowninFig.12.Largerdeformationzones areseenforhigherloadsandslidingdistances(Fig.12).Fig.12 showsthatseveralwearmechanismsoccurredontheworn surfacefor10Natslidingdistancesof100mand300m.

EDSresultsofwornsurfacesfor150Nataslidingdistances of100and300mare giveninFig.13inordertoreveal the

(11)

Fig.12–SEMimagesofthewornsurfacemorphologiesofthe9B4C3SiCsamples(a)5N-100m,(b)5N-300,(c)10N-100m,

(d)10N-300m,(e)130N-100m,(f)30N-300m.

Fig.13–SEMimagesofwornsurface(a)9B4C3SiC,(b)12B4C,(c)EDSanalysisfromthe9B4C3SiC(d)EDSanalysisfrom12B4C.

effectsofSiCandB4Conthewornsurfaces.Allpeaksofthe

aluminumalloyandSiCandB4Creinforcementparticlesare

observed.Thischaracterizationofthewornsurfacesreveals thatSiCparticleshaveabetterinterfacebetweenthematrix andparticlescomparedtoB4Cparticles.SiCparticlesare

bro-kenduringthewearingprocess,whileB4Cparticlesarepulled

out.Thehigherwearresistanceof9%B4C+3%SiCcompared

to 12%B4C can beattributed tothis behavior. SiC particles

alsodisplayedgoodbondingandarenotpulledoutfromthe matrix.Uthayakumaretal.foundthatSiCcanbecometrapped betweentheslidingsurfacesorembeddedintothesoft alu-minummatrixandthusincreasesthewearresistance[33].

(12)

Fig.14–Volumelossmapof9B4C3SiCsamples.

3.7. Volumelossmap

Fig.14showsavolumelossmapforthe9%B4C+3%SiCHMMCs

samples under various wear conditions. Each contour on Fig.14marksthevolumelossfordifferentsliding distances andloads.Thecontourvolume lossmapwas drawnusing ORIGINsoftwareforvolumelossdata.Fig.14givesadetailed illustrationofhowvolumelosschangeswithdifferentwear conditions.Thevolumelossisthelowestatalowerloadand shorterslidingdistanceandthehighestatahigherloadand longerslidingdistance.

3.8. Mapofwearmechanisms

Amapofthewearmechanismsofthe9%B4C+3%SiCHMMCs

samplesaregiveninFig.15fordifferentwearconditions.As canbeclearlyseen,thewearconditionsdirectlyinfluencethe wearmechanisms.Whichwearmechanismsdominateatthe

anismsplayanimportantroleintheseverewearregimeand thedeformationwearmechanismmostlyoccursinthe ultra-severewearregime.

4.

Summary

and

conclusions

In this study, a non-reinforced Al6061 alloy and B4

C/SiC-reinforced compositematerialswere produced successfully usingahotextrusiontechnique.Thepropertiesofthe pro-duced materials,such asthe density, hardness,transverse rupturestrength,tensilestrength,andwear,wereexamined. Thestudyyieldedthefollowingfindings:

1. Itisproducedwithhighdensitymaterialsbyhot extru-sion technique. The average densities of cold pressed andextrudedcompositesrespectivelywere89and99%, respectively.Whilethehighestdensitywasobservedin theextrudedAl6061alloy(99.74%),compositematerials reinforcedwithextruded12%B4Chadthelowestdensity

(99.02%).

(13)

4. Determiningthehardnessvaluesofthecomposites pro-duced,the studyfoundthatreinforcedcompositeshad higher hardness values compared with the reinforced Al6061alloy.WhiletheAl6061alloyhadanaverage hard-nessvalueof50HB,the12%B4Ccompositedisplayedthe

highestvalueof76HB.

5. Investigatingthetransverserupturestrengthvalues,we foundthatwhile12%SiC-reinforcedcompositesshowed thehighesttransverserupturestrengthwith402MPa,the 12%B4Ccomposite,whichhadthehighesthardnessvalue,

hadthelowesttransverserupturestrengthwith358MPa. Inthe B4Cand SiCcomposites,onthe otherhand,the

transversestrengthvaluesdisplayedadecreaseinparallel withtheincreaseinB4Cratio.

6. Al6061alloyhasalowertensilestrength(174MPa)than thoseofthecomposites.Thehighesttensilestrengthwas achievedin12%SiCreinforcedcomposites(185.1MPa).In B4C/SiCcomposites,somedecreaseintensilestrength

wasobservedduetoB4Cratio.

7. Theminimumvolumelosswasfoundtobe0.07mm3for

the12%B4Chybridcompositefora5Nloadand100m

slid-ingdistance,whilethemaximumvolumelosswasfound tobe3mm3forthe12%SiChybridcompositefora15N

loadand300mslidingdistance.

8. Abrasion, deformation, anddelamination wear mecha-nismsoccurredonthesurfacesdependingonthewear conditions.Thewearmechanismscanbedeterminedby controllingthewearconditionsforHMMCs.

9. The highest wear resistance was obtained for the 9%B4C+3%SiCsamplesbecauseofthehardnessofB4Cand

thegoodadherencepropertiesofthematrixandSiC. 10. Thecoefficientoffrictionvarieswiththereinforcement

typeandcontent.Thelowestcoefficientoffrictionwas obtainedforthe12%B4Csamples.

Acknowledgments

ThisworkwasfinanciallysupportedbytheGaziUniversity Sci-entificResearchProjectsCoordinationUnit(07/2016-03).The author wish tothankthe HacettepeUniversity Technology TransferCenterUnit.

oxidesbasedhybridAMCsreinforcedwithSiC/Al2O3: Mechanical&metallurgicalcharacterization.JMaterRes Technol2019,http://dx.doi.org/10.1016/j.jmrt.2019.01.013. [7]GodeC.MechanicalpropertiesofhotpressedSiCpand

B4Cp/Alumix123compositesalloyedwithminorZr.Compos PartBEng2013,

http://dx.doi.org/10.1016/j.compositesb.2013.04.068. [8]HeknerB,MyalskiJ,ValleN,Botor-ProbierzA,Sopicka-Lizer

M,WieczorekJ.FrictionandwearbehaviorofAl-SiC(n) hybridcompositeswithcarbonaddition.ComposPartBEng 2017;108:291–300,

http://dx.doi.org/10.1016/j.compositesb.2016.09.103. [9]SinghJ,ChauhanA.Characterizationofhybridaluminum

matrixcompositesforadvancedapplications—areview.J MaterResTechnol2016;5:159–69,

http://dx.doi.org/10.1016/j.jmrt.2015.05.004.

[10]SafiuddinM,JumaatZ,SalamMA,HashimR.Utilizationof solidwastesinconstructionmaterials,vol.5;2010.

[11]AlanemeKK,AdewaleTM,OlubambiPA.Corrosionandwear behaviourofAl-Mg-Sialloymatrixhybridcomposites reinforcedwithricehuskashandsiliconcarbide.JMaterRes Technol2014;3:9–16,

http://dx.doi.org/10.1016/j.jmrt.2013.10.008. [12]RamachandraM,RadhakrishnaK.

Synthesis-microstructure-mechanicalproperties-wearand corrosionbehaviorofanAl-Si(12%)-Flyashmetalmatrix composite.JMaterSci2005;40:5989–97,

http://dx.doi.org/10.1007/s10853-005-1303-6.

[13]SinghJ,ChauhanA.Characterizationofhybridaluminum matrixcompositesforadvancedapplications–areview.J MaterResTechnol2016;5:159–69,

http://dx.doi.org/10.1016/j.jmrt.2015.05.004.

[14]RamanathanA,KrishnanPK,MuralirajaR.Areviewonthe productionofmetalmatrixcompositesthroughstircasting —Furnacedesign,properties,challenges,andresearch opportunities.JManufProcess2019;42:213–45, http://dx.doi.org/10.1016/j.jmapro.2019.04.017. [15]BasavarajappaPM,ParashivamurthyKI.Synthesisand

tribologicalcharacterizationofin-situpreparedAl-TiC composites.AmJMaterSci2017;2017:108–11, http://dx.doi.org/10.5923/j.materials.20170704.08.

[16]MohapatraS,ChaubeyAK,MishraDK,SinghSK.Fabrication ofAl-TiCcompositesbyhotconsolidationtechnique:its microstructureandmechanicalproperties.JMaterRes Technol2016;5:117–22,

http://dx.doi.org/10.1016/j.jmrt.2015.07.001. [17]AlamMT,AnsariAH.X-raydiffractionanalysisand

microstructuralexaminationofAl-Siccompositefabricated bystircastingtechnique.IntJSciTechnolManag

2015:941–55.

[18]RaoJB,KushD,BhargavaN.Productionandcharacterization ofnanostructuredsiliconcarbidebyhighenergyball

(14)

MatrixCompositesbyTwoStepStirCastingProcess.LatAmJ SolidsStruct2016;7075:243–55.

[22]MonikandanVV,JosephMA,RajendrakumarPK.Drysliding wearstudiesofaluminummatrixhybridcomposites.Resour Technol2016;2:S12–24,

http://dx.doi.org/10.1016/j.reffit.2016.10.002.

[23]XuY,SunY,DaiX,LiaoB,ZhouS,ChenD.Microstructureand magneticpropertiesofamorphous/nanocrystallineTi50Fe50 alloyspreparedbymechanicalalloying.JMaterResTechnol 2019;8:2486–93,http://dx.doi.org/10.1016/j.jmrt.2019.02.007. [24]ManiammalK,MadhuG,BijuV.X-raydiffractionlineprofile

analysisofnanostructurednickeloxide:Shapefactorand convolutionofcrystallitesizeandmicrostraincontributions. PhysELow-DimensionalSystNanostructures

2017;85:214–22,http://dx.doi.org/10.1016/j.physe.2016.08.035. [25]ZhangP,LiY,WangW,GaoZ,WangB.Thedesign,fabrication

andpropertiesofB4C/Alneutronabsorbers.JNuclMater 2013,http://dx.doi.org/10.1016/j.jnucmat.2013.02.050. [26]ImranM,KhanARA.CharacterizationofAl-7075metal

matrixcomposites:Areview.JMaterResTechnol

2019;8:3347–56,http://dx.doi.org/10.1016/j.jmrt.2017.10.012. [27]HarichandranR,SelvakumarN.Effectofnano/microB4C

particlesonthemechanicalpropertiesofaluminiummetal matrixcompositesfabricatedbyultrasonic

cavitation-assistedsolidificationprocess.ArchCivMechEng 2016;16:147–58,http://dx.doi.org/10.1016/j.acme.2015.07.001. [28]BaradeswaranA,ElayaPerumalA.InfluenceofB4Conthe

tribologicalandmechanicalpropertiesofAl7075-B4C composites.ComposPartBEng2013,

http://dx.doi.org/10.1016/j.compositesb.2013.05.012.

[32]UthayakumarM,AravindanS,RajkumarK.Wear performanceofAl-SiC-B4Chybridcompositesunderdry slidingconditions.MaterDes2013,

http://dx.doi.org/10.1016/j.matdes.2012.11.059.

[33]TangF,WuX,GeS,YeJ,ZhuH,HagiwaraM,etal.Drysliding frictionandwearpropertiesofB4Cparticulate-reinforced Al-5083matrixcomposites.Wear2008,

http://dx.doi.org/10.1016/j.wear.2007.04.006.

[34]RavindranP,ManisekarK,NarayanasamyR,Narayanasamy P.Tribologicalbehaviourofpowdermetallurgy-processed aluminiumhybridcompositeswiththeadditionofgraphite solidlubricant.CeramInt2013,

http://dx.doi.org/10.1016/j.ceramint.2012.07.041.

[35]GhoshS,SahooP,SutradharG.WearbehaviourofAl-SiCp metalmatrixcompositesandoptimizationusingtaguchi methodandgreyrelationalanalysis,2012;2012:1085–1094. https://doi.org/10.4236/jmmce.2012.1111116.

[36]GåårdA,HallbäckN,KrakhmalevP,BergströmJ.Temperature effectsonadhesivewearindryslidingcontacts.Wear 2010;268:968–75,http://dx.doi.org/10.1016/j.wear.2009.12.007. [37]WearbehaviourandmicrostructuralchangesofSiCw-Al

compositeunderunlubricatedslidingfriction.Wear 1995;184:187–92,

http://dx.doi.org/10.1016/0043-1648(94)06577-2.

[38]AlpasAT,ZhangJ.Effectofmicrostructure(particulatesize andvolumefraction)andcounterfacematerialonthesliding wearresistanceofparticulate-reinforcedaluminummatrix composites.MetallMaterTransA1994;25:969–83,

Referanslar

Benzer Belgeler

AA muhabirinin Güzel Sanatlar Genel Müdürü Mehmet Özel’den aldığı bilgiye gö­ re, Ankara Devlet Resim Heykel M üzesin­ deki tüm eserlerin tıpkıbasım

Kamu yararına çalışan dernek statü­ sündeki Sanat Kurumu, gelenek­ sel olarak sürdürdüğü plastik sa­ natlar dalındaki öd ü l dağıtım ı­ nın yanı sıra, bu

Bir süreden beri Paris’te yaşamakta olan Zekeriya Sertei, geçtiğimiz hafta içinde düşerek başını çarpmış ve Paris Hastanesi’ nin Nöroloji Servisi’nde

Geçen yüz sene içinde o, her dolaşıp gezdiği yerde (vatanı­ nın içinde, dışında, Magosada- ki zindanında, Radostaki men­ fasında) ateşten ve ışıktan

Also, extended information on an important clustering tecnique, Fuzzy c-means method, which is needed in student clustering for construction of student groups is given in

As a re- sult of the survey of alternative forms of tourism, gastronomy and culture to be developed in terms of tourism, Gaziantep, where appropriate, the development of tourism

Re- fah devleti, muhtaç durumda kalan vatandaşlara en azından asgari yaşam sevi- yesi temin etmek ve sosyal adaleti sağlamak amacıyla devletin müdahalesini ge- rekli

this civilization socially .have come into being from what are called in social sciences ’’Particularist formations*’ based on a strong agr.icul-r oural work(life)