• Sonuç bulunamadı

Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers

N/A
N/A
Protected

Academic year: 2021

Share "Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Colloids

and

Surfaces

B:

Biointerfaces

jou rn a l h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / c o l s u r f b

Drug

delivery

system

based

on

cyclodextrin-naproxen

inclusion

complex

incorporated

in

electrospun

polycaprolactone

nanofibers

M.

Fatih

Canbolat

a,c,∗∗

,

Asli

Celebioglu

a,b

,

Tamer

Uyar

a,b,∗ aUNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,Ankara06800,Turkey bInstituteofMaterialsScience&Nanotechnology,BilkentUniversity,Ankara06800,Turkey cSuleymanDemirelUniversity,EngineeringFaculty,TextileEngineering,Isparta32260,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received4July2013

Receivedinrevisedform9November2013 Accepted11November2013

Availableonline19November2013 Keywords: Nanofibers Drug Cyclodextrin Inclusioncomplex Naproxen Release

a

b

s

t

r

a

c

t

Inthisstudy,we selectnaproxen(NAP) asareferencedrugand electrospunpoly(␧-caprolactone)

(PCL)nanofibersasafibrousmatrix forourdrug-deliverysystem.NAPwas complexedwith

beta-cyclodextrin(␤CD)toforminclusioncomplex(NAP-␤CD-IC)andthenNAP-␤CD-ICwasincorporated

intoPCLnanofibersviaelectrospinning.TheincorporationofNAPwithoutCD-ICintoelectrospunPCL

wasalsocarriedoutforacomparativestudy.OuraimistoanalyzethereleaseprofilesofNAPfrom

PCL/NAPandPCL/NAP-␤CD-ICnanofibersandweinvestigatetheeffectofCD-IContherelease

behav-iorofNAPfromthenanofibrousPCLmatrix.ThecharacterizationofNAP-␤CD-ICandthepresenceof

CD-ICinPCL/NAP-␤CD-ICnanofiberswerestudiedbyFTIR,XRD,TGA,NMRandSEM.TheSEMimaging

oftheelectrospunPCL/NAPandPCL/NAP-␤CD-ICnanofibersrevealthattheaveragefiberdiameterof

thesenanofibersisaround300nm,inaddition,theaggregatesofCD-ICinPCL/NAP-␤CD-ICnanofibersis

observed.ThereleasestudyofNAPinbuffersolutionelucidatethatthePCL/NAP-␤CD-ICnanofibershave

higherreleaseamountofNAPthanthePCL/NAPnanofibersduetothesolubilityenhancementofNAPby

CD-IC.

©2013ElsevierB.V.Allrightsreserved.

1. Introduction

Themainfunctionofdrugdeliverysystemsistotransport vari-ousdrugstothetargetsitesinthebodyinasecurewayandadjust thereleasemechanismsbycontrollingtheamountofdrugsand treatmenttime[1,2].Thereareseveralcarriersandformulations usedfordrugdeliverypurposessuchaspolymericmatrices,gels, cyclodextrins,liposomes,microspheres,foams,filmsandsome oth-ers[3–8].Indrugdelivery,itisexpectedfromacarriermaterialto haveatleastfollowingproperties;biocompatibility,non-toxicity, lackof immunogenicity, acceptablebiodegradationtime, repro-ducibility,andcontinuousactivationtillarrivaltothetarget[9,10]. Nanostructures and cyclodextrins (CD) present significant opportunities in drug delivery systems with their unique and promising characteristic features. Nanostructures improve the releasebehaviorandstabilityofthedrugsbymaintainingthedrug

∗ Correspondingauthorat:UNAM-NationalNanotechnologyResearchCenter, BilkentUniversity,Ankara06800,Turkey.Tel.:+903122903571;

fax:+903122664365.

∗∗ Correspondingauthorat:SuleymanDemirelUniversity,EngineeringFaculty, TextileEngineering,Isparta32260,Turkey.Tel.:+902462111188;

fax:+902462111180.

E-mailaddresses:fatihcanbolat@sdu.edu.tr(M.F.Canbolat), tamer@unam.bilkent.edu.tr(T.Uyar).

concentrationwithinatherapeuticwindowandovercomingthe biologicalbarriersforcellularuptake[11,12].Ontheotherhand, CDsinduceimprovementindrugreleaseprofilesandenhancement indrugsolubilizationandstabilizationbyforminginclusion com-plexes(ICs)withdrugs[13,14].However,thereisnostandardor idealstructureavailablefordrugdeliverypurposeandmany stud-iesarereportedondevelopingmuchbetterstructuresforthesite specificdrugtargeting[15–17].

Naproxen(NAP)isapoorlywatersoluble,non-steroidal anti-inflammatory drug (NSAIDs) that is used to relieve pain or inflammation [18,19]. Yet, enhanced solubilityachievements of naproxen by formingcyclodextrin inclusion complexes (CD-IC) were reported [20,21]. Apart from CD, the use of electrospun nanofibersasanincorporatingmatrixalsoenhancedtherelease behaviorofNAPincomparisonwithcastfilms[22].However,the main functionofelectrospunnanofibersin drugdelivery appli-cationscanbedefinedastheircontrolledandsustainedrelease behaviors[23,24].Indrugdeliveryfield,whilethere arestudies aboutincorporationofCDsintopolymericstructuressuchas hydro-gelsandfilms[25,26],averylimitednumberofreportsareavailable relatedtoincorporationofCD-ICofactiveagents suchasdrugs [27],antibacterials[28],essentialoils[29]andflavors/fragrances [30–33]intoelectrospunnanofibersfordeliveryandstabilization purposes.Forinstance,usingcyclodextrinasastabilizingand solu-bilizingagentandelectrospunnanofibermatsasacarriermatrix 0927-7765/$–seefrontmatter©2013ElsevierB.V.Allrightsreserved.

(2)

16 M.F.Canbolatetal./ColloidsandSurfacesB:Biointerfaces115(2014)15–21 forsustainedreleasemayopenupnewpathwaysfordrugdelivery

purposebasedonimprovedreleaseperformanceofthedrug. CDs(␣-,␤-,and ␥-types)are cyclic oligosaccharides which areenzymaticallyconvergedfromstarchthatcomprise glucopy-ranosideunitslinkedwith␣(1–4)bonds[34].CDsarehollowand truncatedconeshapedmoleculesthathavehydrophobiccavityand hydrophilicoutershellwhichenablethemtoconstitute noncova-lenthost–guestinclusioncomplexationwithvarietyofmolecules invariousforms[34,35].Ontheotherhand,electrospunnanofibers areotherpromisingnanostructuresindrugdeliveryapplications [36–38].Therearemanyreasonsfornanofiberstructurestobe pre-ferredandusedinbiomedicalapplicationareas,i.e.,smallfibersize, highporosity,interconnectedporousstructure,andcapabilityto embedvariousfunctionaladditivesintothem.

In this study, naproxen (NAP) and inclusion complex of naproxenwithbeta-cyclodextrin(NAP-␤CD-IC)wasincorporated intopolycaprolactone(PCL)electrospunnanofibersforour drug-deliverysystem.Wecompared therelease profilesofNAPfrom PCL/NAPand PCL/NAP-␤CD-ICnanofibersandwe examinedthe effectofinclusion complexationonthereleasebehavior ofNAP fromthenanofibrousPCLmatrix.Inthisregard,wefirsttestedthe effectof␤CDonthesolubilityofNAPbyforminginclusion complex-ation.NAPshowshighersolubilityinNAP-␤CD-ICwhencompared tofreeNAPwhichisconsistentwiththeliterature[39,40].Parallel tothisresult,improvedreleaseprofileofNAPfromPCL/NAP- ␤CD-ICnanofibersisobserved,aswell.

2. Experimental 2.1. Materials

Naproxen (NAP) was commercially purchased from Abdi Ibrahim Pharmaceutical Company (Turkey). Polycaprolactone (PCL)(Mw:80,000,SigmaAldrich),N,N-dimethylformamide(DMF)

(Riedel,Pestanal),dicholoromethane (DCM)(Sigma,ExtraPure), and potassium dihydrogen phosphate (VWR, Chromanorm for HPLC)wereobtainedcommerciallyfromvarioussuppliers. Beta-cyclodextrin (␤CD) was obtained from Wacker Chemie AG (Germany)andthede-ionizedwaterwasobtainedfromthe Mil-liporeMilli-QUltrapure WaterSystem.Allmaterialswereused withoutanypurification.

2.2. ThepreparationofsolidˇCD-NAPinclusioncomplex (NAP-ˇCD-IC)

FortheNAP-␤CD-ICformation,1gof␤CDwasdissolvedin18ml waterand250mgNAPwasdispersedin2ml water,separately. Then,theNAPsolutionwasaddedintoCDsolutionslowly. Ulti-matesolutionwasstirredover-nightandaturbiddispersionwas obtained.Itwaskeptat−80◦Candfreeze-dried toobtain

NAP-␤CD-ICpowder.

2.3. Thepreparationofelectrospinningsolutions

TheNAP-␤CD-ICincludingPCLsolutionwasobtainedby dis-persingtheNAP-␤CD-ICpowderinclearandhomogenousPCL(15% (w/v),withrespecttosolvent)DMF/DCM(3:1,v/v)solution,atthe 20%(w/w)polymerconcentration.Forcomparison,thepurePCL (15%,w/v)andonlyNAPincluding(4%(w/w)withrespectto poly-merconcentration)PCL(15%,w/v)solutionswerealsopreparedin DMF/DCM(3/1,v/v)blendsystem.

2.4. Electrospinning

ThePCL,PCL/NAPandPCL/NAP-␤CD-ICsolutionswereplaced ina 3mlsyringe fittedwitha metallic needle of 0.6mm inner

diameter. The syringe was fixed horizontally on the syringe pump (model SP 101IZ, WPI, USA). The positive electrode of thehigh-voltagepowersupply (MatsusadaPrecision,AUSeries, Japan)wasclampedtothemetalneedle tip,and thecylindrical aluminum collectorwasgrounded.The parameters ofthe elec-trospinningwereadjustedas;feedrateofsolutions=1ml/h,the appliedvoltage=15kV,andthetip-to-collector distance=10cm. Electrospunnanofibersweredepositedonagroundedstationary cylindricalmetalcollectorcoveredwithapieceofaluminumfoil. TheelectrospinningapparatuswasenclosedinaPlexiglasbox,and electrospinningwascarried outat25◦C,20% relativehumidity. Thecollectednanofibersweredriedatroomtemperatureunder thefumehoodovernight.

2.5. Measurementsandcharacterization

TheexactmolarratiobetweenNAP:␤CDintheinclusion com-plexwasdeterminedbyusingprotonnuclearmagneticresonance (1HNMR,BrukerDPX-400)system.TheNAP-␤CD-ICpowderwas

dissolvedind6-DMSO(in20g/Lconcentration).Thespectrawere recordedat 400MHz and at16 total scan. A rheometer(Anton PaarPhysicaCR301)equippedwithacone/plateaccessory (spin-dletypeCP40-2)wasusedtomeasuretherheologicalbehaviorof PCL,PCL/NAPandPCL/NAP-␤CD-ICsolutionintherangeof0.1to 1001/sshearrate.Thescanningelectronmicroscope(SEM)(FEI Quanta200FEG)wasusedforthemorphologicalanalysisofthe electrospunnanofibers.Samplesweresputteredwith5nmAu/Pd priortoSEMimaging.Theaveragefiberdiameter(AFD)was deter-minedfromtheSEMimages,andaround100fiberswereanalyzed. The crystallinestructure determination of the NAP, ␤CD, NAP-␤CD-ICpowderandPCL,PCL/NAPandPCL/NAP-␤CD-ICnanofibers wereinvestigated byusingX-raydiffraction(XRD) (PANalytical X’Pertpowderdiffractometer)havingCuK␣radiationinarangeof 2=5–30◦.Thethermalpropertiesofelectrospunnanofiberswere studiedbythermogravimetricanalysis(TGA)(TAQ500)andthe measurementswerecarriedout from25to500◦C at20◦C/min heatingrate,andN2wasusedasapurgegas.Theinfraredspectraof

thenanofiberswereobtainedbyusingaFouriertransforminfrared spectrometer(FTIR)(Bruker-VERTEX70).For measurement,the samplesweremixedwithpotassiumbromide(KBr)andpressed aspellets.Thescans(64scans)wererecordedbetween4000cm−1 and400cm−1ataresolutionof4cm−1.UV–vis-spectroscopy (Var-ianCary5000) wasused todeterminethesolubility difference betweenpureNAPandNAP-␤CD-IC.Forthispurpose,5×10−4M NAPpowderandNAP-␤CD-ICthatincludesthesameamountof NAPweredissolvedinwater.After24hstirring,thesolutionswere filteredandtheUVabsorbanceofsampleswasmeasuredinthe 250–370nmrange.

2.6. TheNAPreleaseprofilefromelectrospunPCLnanofibers TheHPLCsystem(Agilent1200Series)wasusedtoinvestigate thereleaseprofilesofPCL/NAP andPCL/NAP-␤CD-ICnanofibers. TheseparationofNAPwasperformedwithZorbaxEclipseXDB-C18 column(150mm×4.6mm,5␮mparticlesize)anditwasdetected at 230nm wavelength. Acetonitrile (100%) was used asmobile phaseataflowrateof1ml/minandtheinjectionvolumewaskept at10␮l.Forthetest,30mgweightedPCL/NAPandPCL/NAP- ␤CD-ICnanofiberswereimmersedinto30mlbuffersolutionsandthey werekeptinthatbuffertodeterminethereleasedamountofNAP attheprogressingtimeintervals.Theexperimentswererepeated threetimesforbothcompositenanofibers.Thecalibrationcurve of NAP was prepared by using stock solutions in 7 different concentrations;20ppm, 10ppm, 5ppm, 2ppm, 1ppm, 0.5ppm and0.2ppm.ItshowedlinearityandacceptabilitywithR20.99.

(3)

Fig.1.1HNMRspectrumofNAP-␤CD-ICdissolvedind6-DMSO.

Themeasurementresultswereadaptedtothiscalibrationcurve intermsofpeakareaundercurves.

3. Resultsanddiscussion

Naproxen(NAP)waschosenasareferencedruginthisstudy based on its well-known inclusion complex formation ability withbeta-cyclodextrin(␤CD)[19,41,42].Thereleasebehaviorof NAPafterdirectincorporationintoPCLnanofibers(PCL/NAP)and afterNAP-␤CD-ICformationandincorporationintoPCLnanofibers (PCL/NAP-␤CD-IC)wereexaminedinthepresentstudy.Themain objectiveofthisstudyistogetbetterreleaseprofileofNAPfrom PCL/NAP-␤CD-ICnanofibersduetohighersolubilityenhancement ofNAPby␤CD-ICformation.

In the first step, NAP-␤CD-IC was formed by freeze-drying method.Themixingratiosof1:4(w/w)waschosenforNAP-␤CD to provide molar ratio as 1:1.2 for the proper inclusion com-plex formation. In further steps, several characterization tests were performed to prove theinclusion complex formation. To testthesolubilityofNAP by␤CD-ICformation,UV–visanalysis wasperformed.Then,releaseprofilesofNAPfromPCL/NAPand PCL/NAP-␤CD-ICnanofibrousmatsinbuffersolutionswere ana-lyzedbyHPLCmethod.

3.1. Inclusioncomplexcharacterization

1HNMRstudywasperformedtofigureoutthemolarratioof

NAP-␤CDandamountofNAPintheinclusioncomplex.Fig.1 indi-catesthe1HNMRspectrumoftheNAP-␤CD-ICpowder.Themolar

ratiowascalculatedbytakingtheintegralofNAPpeakatabout 1.4ppm[43]and␤CD’scharacteristicpeakatabout4.8ppm[44]in d6-DMSOsystem.Itwasfoundthat,NAP-␤CD-IChave1:1.2molar ratiowhentheintegralsofmentionedpeakswereproportionedto eachotherandthisratioisquitewellagreewithourinitialmixing ratio.

Then,weusedFTIRspectroscopytoobservethespectralchanges and therepresentative bands of thespectrafor the substances beforeandafterICformation.TheFTIRspectraofpureNAP,pure ␤CDandNAP-␤CD-ICaredepictedinFig.2a.IntheFTIRspectrum ofNAP,distinctabsorptionbandat1029cm−1correspondstoC O stretching,at1228cm−1 correspondsto O stretching,and at 1395cm−1 correspondstoCH3 bending.Peaksat1685cm−1 and

1729cm−1correspondtoanti-symmetricalandsymmetricalC O stretchingvibrations[45,46].Incaseof␤CDspectra,characteristic peaksareappearedat1029cm−1,at1080cm−1and1157cm−1due toC Ostretch,at1638cm−1duetoH OHbending,at2927cm−1 duetoC Haliphaticstretch,andat3401cm−1duetoO H stretch-ing[45–47].TheFTIRspectrumofNAP-␤CD-ICshowsabandat about1730cm−1whichcomesfromNAPwithaslightshiftwhich isinanagreementwiththeliterature[41,42,46].Alsoitwasseen thattypicalpeaksoftheNAPweresuppressedintheNAP-␤CD-IC spectrawhichsuggestedthesuccessfulICformation.

Fig.2. FTIRspectraof(a)NAP,␤-CDandNAP-␤CD-IC,and(b)PCL,PCL/NAPand PCL/NAP-␤CD-ICnanofibers.

(4)

18 M.F.Canbolatetal./ColloidsandSurfacesB:Biointerfaces115(2014)15–21

Fig.3.XRDdiffractionpatternsof(a)NAP,␤-CDandNAP-␤CD-IC,and(b)PCL, PCL/NAPandPCL/NAP-␤CD-ICnanofibers.

TheXRDpatternsofthepureNAP,pure␤CDandNAP- ␤CD-IC were recorded toinvestigate thepossible differences in the crystallinityofthestructures.AsitcanbeseenfromFig.3a,for theNAP-␤CD-IC,distinctdiffractionpeaksforthecrystallineNAP weredetectedintheXRDpatternsindicatingthatsomefreeNAP presentintheNAP-␤CD-ICpowder.Alsothecharacteristicpeaks ofchannel-typepackingstructureat2∼12◦,18◦,and19◦of␤CD wereobservedfortheNAP-␤CD-ICwhichshowsthesuccessfulIC formationofNAPwith␤CD[48].

TGAthermogramsofpureNAP,pure␤CDandNAP-␤CD-ICare shown inFig. 4a. TGAthermogramsshow weightlosses below 100◦Cforboth␤CDandNAP-␤CD-ICduetowaterlossandmain degradation wasobserved for NAP at 268◦C and at 350◦C for ␤CD.Thewaterlosswasabout11%for␤CDwhileitwasaround 8%for NAP-␤CD-IC.The 3%difference mightbe attributableto theexistenceofNAP insteadofwater inthe␤CD cavity.Other thantheinitialweightloss,therearetwoweightlossesseenfor NAP-␤CD-IC.Firstoneisbetween150◦C and250◦Candsecond oneisbetween300◦Cand350◦CwhichcorrespondstofreeNAP and IC weight losses that merged with theCD decomposition, respectively.Therelativelessdecomposedamountofuncomplexed free NAP than the initial amount and the higher temperature shift in the NAP–␤CD part prove the successful formation of NAP-␤CD-IC.

TheUV–visspectroscopymeasurementsofNAPandNAP- ␤CD-ICsolutionsweredisplayedinFig.5.Asitcanbeseenfromthe spectra,theabsorptionintensityofNAP-␤CD-ICsolutionishigher thanNAP powder for thesameamount ofNAP (5×10−4M).It ismainlybecause,theinclusioncomplexationofNAPwith␤CD enhancethesolubilityofinsolubledrug,NAP,in watermedium andleadstohigherintensityoccurrenceinUV–vis-spectra.Thus, theinclusioncomplexationandthesolubilityenhancementarealso provedbytheUV–vismeasurements.

Fig.4.TGAthermogramsof(a)NAP,␤-CDandNAP-␤CD-IC,and(b)PCL,PCL/NAP andPCL/NAP-␤CD-ICnanofibers.

3.2. Characterizationofelectrospunnanofibers

Following the characterization studies of NAP-␤CD-IC, PCL polymer matrix was chosen for the production of electrospun nanofibers.SincePCLiswaterinsolubleandbiodegradable poly-mer[49,50],itisthoughtthattheuseofPCLnanofibersasadrug deliverysystemmightexhibitconvenientreleaseprofileforNAP. FollowingconcentrationadjustmentsofthePCL/NAPand PCL/NAP-␤CD-ICblends,electrospinningandcharacterizationstudieswere performed.

Weinvestigatedthemorphologyofelectrospunnanofibersof purePCL,PCL/NAPandPCL/NAP-␤CD-ICbySEMimaging.The rep-resentativeimagesofSEMmicrographsweregiveninFig.6and fiberdiameterdistributiondataweresummarizedinTable1. Uni-form,beadfreenanofiberswithdiametervariationwereobtained fromallthreePCLbasednanofibroussamples.Itis clearlyseen intheFig.6cthatthereareICcrystalaggregatesaccumulatedin

Fig.5.SolubilityanalysisofNAPbyUV–visspectroscopy;solubilityofpureNAPand solubilityofNAPfromNAP-␤CD-IC.

(5)

Table1

Polymersolutionparametersandaveragefiberdiametervaluesofelectrospunnanofibers(thefibersizeisreportedastheaverage±standarddeviation;foreachcase100 fiberswereanalyzed).

Solvents Concentrations Viscosity(Pas) Averagefiberdiameter(nm)

PCL DMF/DCM(3:1,v/v) 15%(w/v) 0.465 336±100

PCL/NAP DMF/DCM(3:1,v/v) 15%(w/v)/4%(w/w) 0.675 361±152

PCL/NAP-␤CD-IC DMF/DCM(3:1,v/v) 15%(w/v)/20%(w/w) 0.745 389±167

thefibermatrixwhichprovesthesuccessfulincorporationof

NAP-␤CD-ICintoelectrospunPCLnanofibers.Itwasfoundoutthatfiber

diameterdistributions have good correlationwiththeviscosity

measurementresultsascanbeseeninTable1.Theincorporation

ofNAPandNAP-␤CD-ICintoPCLmatrixcausedviscosityincrease inthepolymersolutionswhichfinallytriggeredtheformationof nanofiberswithlargerdiameters.

WeperformedFTIRstudiesfornanofibersofpurePCL,PCL/NAP andPCL/NAP-␤CD-ICsamples(Fig.2b).TypicalpeaksforthePCLare observedat2949cm−1and2865cm−1duetoCH2stretching

vibra-tions,at1731cm−1duetoC Ostretchingvibrations,at1471cm−1, 1397cm−1,and 1365cm−1 due toCH2 bendingvibrations.Also

C OandC Cstretchingvibrationsat1293cm−1,C O C stretch-ingvibrationsat1240cm−1,1169cm−1,1108cm−1,and1048cm−1 wedetected[51–53].InFTIRspectraofPCL/NAPnanofibers,the characteristicpeaksofPCLmostlyexistwhilenoneofthe character-isticpeaksofNAPwasobservedwhichismostprobablyduetothe dominanteffectofthePCLpeaksandtherelativelylow concentra-tionofNAPinthepolymermatrix(∼4%,w/w).Forinstance,almost allthepeaksinthefingerprintregionarequitewellfittedwith PCLcharacteristicpeaks.However,thereisagoodindicationabout theexistenceofNAPduetosomeshiftedpeaksat2869cm−1and 2952cm−1whiletheyarelocatedat2865cm−1and2949cm−1in thePCLspectra.TheFTIRspectrumofPCL/NAP-␤CD-ICnanofibers hasverysimilarcharacteristicfeatureswithPCL/NAPnanofibers. Again,PCLpeakswereoversaturatedinthespectrawhile␤CD-IC peaksweresuppressed,evenoneofthemostdistinctpeakof␤CD at1029cm−1isnotvisible.AlthoughtheFTIRspectradidnotdepict

Fig.6. SEMmicrographsof(a)PCL,(b)PCL/NAPand(c)PCL/NAP-␤CD-ICnanofibers.

anyinteractionbetweenPCLand NAP-␤CD-ICin terms ofpeak shifts,wecannotrule-outsuchcase.Itisduetothefactthatthe signalfromtheFTIRspectraoriginatesfromtwospecies,namely, interactionandnon-interactionofPCLwithNAP-␤CD-IC.Alsowe haveonly4%ofNAPinPCLandhencethesignalispredominantly comingfromPCL.

X-raydiffractionpatternsofpurePCL,PCL/NAPand PCL/NAP-␤CD-ICnanofibrousmatsaregiveninFig.3b.NAPandNAP-␤CD-IC arecrystallinematerials,however,theXRDpatternsofPCL/NAP andPCL/NAP-␤CD-ICnanofibrousmatsrevealedthat both NAP-␤CD-ICandNAPtransformedintoamorphousphasefollowingthe incorporationintothePCLnanofibrousmatrix.

In TGA thermograms,main degradation of NAP in PCL/NAP nanofiberswasfoundoutbetween200–250◦Cwhilefor PCL/NAP-␤CD-ICnanofibers, it wasfound outbetween 300–375◦C from theTGAanalysis.TheTGAthermograminFig.4brevealsthatPCL nanofibersshowmaindegradationatabout420◦C.BylookingTGA thermograms,itispossibletoclaimtheexistenceofNAPmolecules andNAP-␤CD-ICinthePCL/NAP-␤CD-ICnanofibers.Inbothcases, forPCL/NAP andPCL/NAP-␤CD-ICnanofibers,two weightlosses wereseenafter100◦Cwhichareindependentfromwaterlosses.

We studied the release profiles of NAP from PCL/NAP and PCL/NAP-␤CD-ICnanofibersinbuffersolutionforabout20htime period by HPLC. The amount of PCL/NAP and PCL/NAP-␤CD-IC nanofibersusedforthereleasestudywasadjustedaccordinglyin ordertohavethesameamountofNAPinthesesamples.Forboth samples,afterslightburstingofthedrug,slowreleasebehavior wasobservedfor12hperiod.Then,NAPshowedsustainedrelease profilesduetothebalancedconditionssuchashavingsame diffu-sionresistancefordifferenttimeintervals[54].Thereleaseprofiles revealedthatPCL/NAP-␤CD-ICnanofibroussystemhasmorethan twotimeshigherreleaseratethanPCL/NAPnanofibroussystem whichisverypromisingresultforthedrugdeliverypurpose(Fig.7). ItalsorevealedthattheformationofNAP-␤CD-IChelpedNAPto releasefromnanofibrousmatmucheasierwhichisquitevitalin drugdeliveryapplications.Asitwasprovenbyoursolubilitytest, CD-ICformationhelpsNAPtodissolveinwatermuchbetterwhich showsitseffectonthereleasebehaviorofNAPafterincorporated intonanofibrousmat.Theeasyandhigherreleaseofdrugis impor-tantfor somespecifictargetsindrugdelivery.It iswell-known

Fig.7.ReleaseprofileofNAPfromPCL/NAPandPCL/NAP-␤CD-ICnanofibrousmats byHPLCwithstandarddeviations(eachanalysisrepeated3times,n=3).

(6)

20 M.F.Canbolatetal./ColloidsandSurfacesB:Biointerfaces115(2014)15–21 phenomenathatnanofiberscanenhancethereleasebehaviorof

drugswiththeirhighsurfaceareatovolumeratio[55,56].Inthis study,thepositiveeffectofinclusioncomplexformationonthe releaseprofilesofNAPinadditiontonanofiberincorporationhas beendemonstratedandthismaybeapromisingresultfordesigning noveldrugdeliverysystems.

4. Conclusions

Themainideabehindthisstudywastocomparetheefficiencies oftwodifferentdeliverysystemsfortheNAP;direct incorpora-tionofNAPandNAPincludedcomplexincorporationfollowingIC formationwith␤CDintoelectrospunPCLnanofibers.Initially,the formationofNAP-␤CD-ICwasstudiedandthentheincorporation ofNAPandNAP-␤CD-ICintoPCLnanofiberswasperformedvia electrospinning.ThereleaseperformanceoftheNAPwasincreased morethantwotimesincaseofPCL/NAP-␤CD-ICnanofiberswhen comparedwithPCL/NAP nanofibers.Thus, it is understoodthat incorporationofNAP-␤CD-ICinapolymericnanofibroussystem stillpreservetheimprovedsolubilityeffectofCD-IContherelease rateofNAPandprovidesastableenvironmentforit.

Acknowledgment

StatePlanningOrganization(DPT)ofTurkeyisacknowledged for the support of UNAM-National Nanotechnology Research Center, BilkentUniversity. Dr. T. Uyar acknowledges TUBITAK-The Scientific and Technological Research Council of Turkey (project#111M459)andEUFP7-PEOPLE-2009RGMarieCurie-IRG (NANOWEB,PIRG06-GA-2009-256428)andTheTurkishAcademy ofSciences-OutstandingYoungScientistsAwardProgram (TUBA-GEBIP)for funding the research. A. Celebioglu acknowledges TUBITAK-BIDEBforthenationalPh.D.studyscholarship.

References

[1]T.M.Allen,P.R.Cullis,Drugdeliverysystems:enteringthemainstream,Science 303(2004)1818–1822.

[2]J.L. Frandsen, H. Ghandehari, Recombinant protein-based polymers for advanceddrugdelivery,Chem.Soc.Rev.41(2012)2696–2706.

[3]J.H.Jung,J.H.Lee,J.R.Silverman,G.John,Coordinationpolymergelswith impor-tantenvironmentalandbiologicalapplications,Chem.Soc.Rev.42(2013) 924–936.

[4]Y.Zhang,J.Zhang,T.Jiang,S.Wang,Inclusionofthepoorlywater-soluble drugsimvastatininmesocellularfoamnanoparticles:drugloadingandrelease properties,Int.J.Pharm.410(2011)118–124.

[5]R.Machin,J.R.Isasi,I.Vélaz,␤-Cyclodextrinhydrogelsaspotentialdrugdelivery systems,Carbohydr.Polym.87(2012)2024–2030.

[6]J.Kowapradit,A.Apirakaramwong,T.Ngawhirunpat,T.Rojanarata,W. Sajom-sang, P.Opanasopit, MethylatedN-(4-N,N-dimethylaminobenzyl)chitosan coatedliposomesfororalproteindrugdelivery,Eur.J.Pharm.Sci.47(2012) 359–366.

[7]E.D‘Aurizio,P.Sozio,L.S.Cerasa,M.Vacca,L.Brunetti,G.Orlando,A.Chiavaroli, R.J.Kok,W.E.Hennink,A.D.Stefano,Biodegradablemicrospheresloadedwith ananti-parkinsonprodrug:aninvivopharmacokineticstudy,Mol.Pharm.8 (2011)2408–2415.

[8]J.B.Wolinsky,Y.L.Colson,M.W.Grinstaff,Localdrugdeliverystrategiesfor can-certreatment:gels,nanoparticles,polymericfilms,rods,andwafers,J.Control. Release159(2012)14–26.

[9]S.D.Koker,R.Hoogenboom,B.G.D.Geest,Polymericmultilayercapsulesfor drugdelivery,Chem.Soc.Rev.41(2012)2867–2884.

[10]J.H.Kang,D.H.Oh,Y.-K.Oh,C.S.Yong,H.-G.Choi,Effectsofsolidcarriersonthe crystallineproperties,dissolutionandbioavailabilityofflurbiprofeninsolid self-nanoemulsifyingdrugdeliverysystem(solidSNEDDS),Eur.J.Pharm. Bio-pharm.80(2012)289–297.

[11]J.M.Rabanel,V.Aoun,I.Elkin,M.Mokhtar,P.Hildgen,Drug-loaded nanocarri-ers:passivetargetingandcrossingofbiologicalbarriers,Curr.Med.Chem.19 (2012)3070–3102.

[12]L.H.Reddy,J.L.Arias,J.Nicolas,P.Couvreur,Magneticnanoparticles:design characterizationtoxicitybiocompatibilitypharmaceuticalbiomedical applica-tions,Chem.Rev.112(2012)5818–5878.

[13]T.Loftsson,M.E.Brewster,Cyclodextrinsasfunctionalexcipients:methodsto enhancecomplexationefficiency,J.Pharm.Sci.101(2012)3019–3032.

[14]F.V.d.Manakker,T.Vermonden,C.F.V.Nostrum,W.E.Hennink, Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/ biomedicalapplications,Biomacromolecules10(2009)3157–3175. [15]W.Gu,C.Wu,J.Chen,Y.Xiao,Nanotechnologyinthetargeteddrugdeliveryfor

bonediseasesandboneregeneration,Int.J.Nanomed.8(2013)2305–2317. [16]R. Cheng,F. Meng,C.Deng, H.-A.Klok,Z.Zhong,Dual andmulti-stimuli

responsivepolymericnanoparticlesforprogrammedsite-specificdrug deliv-ery,Biomaterials34(2013)3647–3657.

[17]M.A.Petersen,M.A.Hillmyer,E.Kokkoli,Bioresorbablepolymersomesfor tar-geteddeliveryofcisplatin,Bioconjug.Chem.24(2013)533–543.

[18]N.Sadlej-Sosnowska,L.Kozerski,E.Bednarek,J.Sitkowski,Fluorometricand NMRstudiesofthenaproxen-cyclodextrininclusioncomplexesinaqueous solutions,J.Incl.Phenom.Macrocycl.Chem.37(2000)383–394.

[19]A.Banik,P.Gogoi,M.D.Saikia,Interactionofnaproxenwith␤-cyclodextrinand itsderivatives/polymer:experimentalandmolecularmodelingstudies,J.Incl. Phenom.Macrocycl.Chem.72(2012)449–458.

[20]M.Cirri,F.Maestrelli,G.Corti,S.Furlanetto,P.Mura,Simultaneouseffectof cyclodextrincomplexation,pH,andhydrophilicpolymersonnaproxen solubi-lization,J.Pharm.Biomed.Anal.4(2)(2006)126–131.

[21]H.L.Ramírez,R.Cao,A.Fragoso,J.J.Torres-Labandeira,A.Dominguez,E.H. Schacht, M.Ba ˜nos, R. Villalonga, Improvedanti-inflammatory properties fornaproxenwithcyclodextrin-graftedpolysaccharides,Macromol.Biosci.6 (2006)555–561.

[22]S.Tungprapa,I.Jangchud,P.Supaphol,Releasecharacteristicsoffourmodel drugsfromdrug-loadedelectrospuncelluloseacetatefibermats,Polymer48 (2007)5030–5041.

[23]E.-R.Kenawy,F.I.Abdel-Hay,M.H.El-Newehy,G.E.Wnek,Processingof poly-mernanofibersthroughelectrospinningasdrugdeliverysystems,Mater.Chem. Phys.113(2009)296–302.

[24]T.J.Sill,H.A.v.Recum,Electrospinningapplicationsindrugdeliveryandtissue engineering,Biomaterials29(2008)1989–2006.

[25]M.J.Kutyla,L.K.Lambert,N.M.Davies,R.P.McGeary,P.N.Shaw,B.P.Ross, Cyclodextrin-crosslinkedpoly(acrylicacid):synthesis,physicochemical char-acterizationandcontrolledreleaseofdiflunisalandfluconazolefromhydrogels, Int.J.Pharm.444(2013)175–184.

[26]M.Jug,F.Maestrelli,P.Mura,Nativeandpolymeric␤-cyclodextrinsin per-formanceimprovementofchitosanfilmsaimedforbuccaldeliveryofpoorly solubledrugs,J.Incl.Phenom.Macrocycl.Chem.74(2012)87–97.

[27]T. Vigh, T. Horváthová, A. Balogh, P.L. Sóti, G. Drávavölgyi, Z.K. Nagy, G. Marosi,Polymer-freeand polyvinylpyrrolidone-basedelectrospunsolid dosageformsfordrugdissolutionenhancement,Eur.J.Pharm.Sci.49(2013) 595–602.

[28]F.Kayaci,O.C.O.Umu,T.Tekinay,T.Uyar,Antibacterialelectrospun polylac-ticacid(PLA)nanofibrouswebsincorporatingtriclosan/cyclodextrininclusion complexes,J.Agric.FoodChem.61(2013)3901–3908.

[29]F.Kayaci,Y.Ertas,T.Uyar,Enhancedthermalstabilityofeugenolbycyclodextrin inclusioncomplexencapsulatedinelectrospunpolymericnanofibers,J.Agric. FoodChem.61(2013)8156–8165.

[30]F.Kayaci,T.Uyar,Encapsulationofvanillin/cyclodextrininclusioncomplexin electrospunpolyvinylalcohol(PVA)nanowebs:prolongedshelf-lifeandhigh temperaturestabilityofvanillin,FoodChem.133(2012)641–649.

[31]T.Uyar,Y.Nur,J.Hacaloglu,F.Besenbacher,Electrospinningoffunctional poly(methyl methacrylate) (PMMA) nanofibers containing cyclodextrin-mentholinclusioncomplexes,Nanotechnology20(2009)125703.

[32]T.Uyar,J.Hacaloglu,F.Besenbacher,Electrospunpolyethyleneoxide(PEO) nanofiberscontainingcyclodextrininclusioncomplex,J.Nanosci.Nanotechnol. 5(2011)3949–3958.

[33]T.Uyar,J.Hacaloglu,F.Besenbacher,Electrospunpolystyrenefiberscontaining hightemperaturestablevolatilefragrance/flavorfacilitatedbycyclodextrin inclusioncomplexes,React.Funct.Polym.3(2009)145–150.

[34]J.Szejtli,Introductionandgeneraloverviewofcyclodextrinchemistry,Chem. Rev.98(1998)1743–1754.

[35]E.D.Valle,Cyclodextrinsandtheirusesareview,ProcessBiochem.39(2004) 1033–1046.

[36]S.T. Yohe,V.L.M.Herrera,Y.L.Colson,M.W.Grinstaff, 3D superhydropho-bicelectrospunmeshesasreinforcementmaterialsforsustainedlocaldrug delivery against colorectal cancer cells, J. Control. Release 162 (2012) 92–101.

[37]X. Li, M.A. Kanjwal, L. Lin, I.S. Chronakis, Electrospun polyvinyl-alcohol nanofibersasoralfast-dissolvingdeliverysystemofcaffeineandriboflavin, ColloidsSurf.B103(2013)182–188.

[38]R.Murugan,S.Ramakrishna,Nano-featuredscaffoldsfortissueengineering:a reviewofspinningmethodologies,TissueEng.12(2006)435–447.

[39]T. Miletic, K. Kyriakos, A. Graovac, S. Ibric, Spray-dried voriconazole– cyclodextrincomplexes:solubility,dissolutionrateandchemicalstability, Car-bohydr.Polym.98(2013)122–131.

[40]H.S.Mahajan,M.H.Pingale,K.M.Agrawal,Solubilityanddissolution enhance-ment ofsaquinavirmesylatebyinclusioncomplexationtechnique,J.Incl. Phenom.Macrocycl.Chem.76(2013)467–472.

[41]J.Blanco,J.L.Vila-Jato,F.Otero,S.Anguiano,Influenceofmethodofpreparation oninclusioncomplexesofnaproxenwithdifferentcyclodextrins,DrugDev.Ind. Pharm.17(1991)943–957.

[42]S.Junco,T.Casimiro,N.Ribeiro,M.N.D.Ponte,H.C.Marques,Acomparative study ofnaproxen–betacyclodextrincomplexespreparedbyconventional methodsandusingsupercriticalcarbondioxide,J.Incl.Phenom.Macrocycl. Chem.44(2002)117–121.

(7)

[43]E.Marco-Urrea,M.Pérez-Trujillo,P.Blánquez,T.Vicent,G.Caminal, Biodegra-dationoftheanalgesicnaproxenbytrametesversicolorandidentificationof intermediatesusingHPLC-DAD-MSandNMR,Bioresour.Technol.101(2010) 2159–2166.

[44]S.Divakar,M.Maheswaran,Structuralstudiesoninclusioncompoundsof ␤-cyclodextrinwithsomesubstitutedphenols,J.Incl.Phenom.Macrocycl.Chem. 27(1997)113–126.

[45]H.E.Grandelli,B.Stickle,A.Whittington,E.Kiran,Inclusioncomplexformation of␤-cyclodextrinandnaproxen:astudyonexothermiccomplexformationby differentialscanningcalorimetry,J.Incl.Phenom.Macrocycl.Chem.77(2013) 269–277.

[46]M.Valero,B.I.Perez-Revuelta,L.J.Rodriguez,EffectofPVPK-25ontheformation ofthenaproxen:␤-cyclodextrincomplex,Int.J.Pharm.253(2003)97–110. [47]L.-F.Chen,Q.Shen,J.-P.Shen,D.-T.Shi,T.Chen,H.-R.Yu,Studiesandcomparison

oftheliquidadsorptionandsurfacepropertiesof␣-,␤-,and␥-cyclodextrins byFTIRandcapillaryrisemethod,ColloidsSurf.A411(2012)69–73. [48]A.Harada,M.Okada,J.Li,M.Kamachi,Preparationandcharacterizationof

inclu-sioncomplexesofpoly(propyleneglycol)withcyclodextrins,Macromolecules 28(1995)8406–8411.

[49]K.Tapan,T.K.Dash,V.B.Konkimalla,Poly-␧-caprolactonebasedformulations fordrugdeliveryandtissueengineering:areview,J.Control.Release158(2012) 15–33.

[50]C.Wu,T.F.Jim,Z.Gan,Y.Zhao,S.Wang,Aheterogeneouscatalytickineticsfor enzymaticbiodegradationofpoly(␧-caprolactone)nanoparticlesinaqueous solution,Polymer41(2000)3593–3597.

[51]A.Elzubair,C.N.Elias,J.C.M.Suarez,H.P.Lopes,M.V.B.Vieira,Thephysical char-acterizationofathermoplasticpolymerforendodonticobturation,J.Dent.34 (2006)784–789.

[52]S.A.Catledge,W.C.Clem,N.Shrikishen,S.Chowdhury,A.V.Stanishevsky,M. Koopman,Y.K.Vohra,Anelectrospuntriphasicnanofibrousscaffoldforbone tissueengineering,Biomed.Mater.2(2007)142–150.

[53]L.Ghasemi-Mobarakeh,M.P.Prabhakaran,M.Morshed,M.H.Nasr-Esfahani, S.Ramakrishna,Bio-functionalizedPCLnanofibrousscaffoldsfornervetissue engineering,Mater.Sci.Eng.C30(2010)1129–1136.

[54]X.Sheng,L.Fan,C.He,K.Zhang,X.Mo,H.Wang,VitaminE-loadedsilkfibroin nanofibrousmatsfabricatedbygreenprocessforskincareapplication,Int.J. Biol.Macromol.56(2013)49–56.

[55]X.-Z.Sun,G.R.Williams,X.-X.Hou,L.-M.Zhu,Electrospuncurcumin-loaded fiberswithpotentialbiomedicalapplications,Carbohydr.Polym.94(2013) 147–153.

[56]D.W.Chen,Y.-H.Hsu,J.-Y.Liao,S.-J.Liu,J.-K.Chen,S.W.-N.Ueng, Sustain-ablereleaseofvancomycin,gentamicinandlidocainefromnovelelectrospun sandwich-structuredPLGA/collagennanofibrousmembranes,Int.J.Pharm.430 (2012).

Referanslar

Benzer Belgeler

No Arcobacter was isolated when the de Boer method was used for minced meat samples but the same five meat samples were found positive for arcobacters when CAT-supplemented media

Bingöl ekolojik koĢullarında bir yıllık olarak yürütülen ve 8 adet nohut çeĢidinin verim ve verim komponentleri yönünden denendiği çalıĢmada ele alınan

In this study, our population (F 1001) samples should be classified as a separate and new species called Veronica edremitense.. We believe that this work will

yüzyılda Bizans devleti ve Kutsal Roma imparatorluğu arasında yarattığı siyasi krizlerden çok uzak olmanın ötesinde ve Chalkokondyles’in çağdaşı Dukas gibi

in the field of vapor sensing properties, the kinetic response of the LB sample to the benzene, toluene, isopropyl alcohol, ethyl alcohol and chloroform vapors was recorded by

However, “coerced compliance” in international society is only an exception and it is only performed when the sustainability of the society is under threat by some

Both experimental and numerical results show that there exists an optimal mesa size for the current density and power density performance of the LTM-LEDs with the mesa area

In the following, we will derive and analyze a standard form for spacetimes admitting a shear-free reference frame, and apply the results in the construction of cosmological