• Sonuç bulunamadı

On New Inequalities via Riemann-Liouville Fractional Integration

N/A
N/A
Protected

Academic year: 2021

Share "On New Inequalities via Riemann-Liouville Fractional Integration"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Volume 2012, Article ID 428983,10pages doi:10.1155/2012/428983

Research Article

On New Inequalities via Riemann-Liouville

Fractional Integration

Mehmet Zeki Sarikaya

1

and Hasan Ogunmez

2

1Department of Mathematics, Faculty of Science and Arts, D ¨uzce University, D ¨uzce, Turkey 2Department of Mathematics, Faculty of Science and Arts, Afyon Kocatepe University, Afyon, Turkey

Correspondence should be addressed to Mehmet Zeki Sarikaya,sarikayamz@gmail.com Received 9 August 2012; Accepted 6 October 2012

Academic Editor: Ciprian A. Tudor

Copyrightq 2012 M. Z. Sarikaya and H. Ogunmez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We extend the Montgomery identities for the Riemann-Liouville fractional integrals. We also use these Montgomery identities to establish some new integral inequalities. Finally, we develop some integral inequalities for the fractional integral using differentiable convex functions.

1. Introduction

The inequality of Ostrowski 1 gives us an estimate for the deviation of the values of a

smooth function from its mean value. More precisely, if f : a, b → R is a differentiable function with bounded derivative, then

  fx − 1 b − a b a ftdt ≤  1 4 x − a  b/22 b − a2  b − af, 1.1

for every x ∈ a, b. Moreover, the constant 1/4 is the best possible.

For some generalizations of this classic fact see2, pages 468–484 by Mitrinovi´c

et al. A simple proof of this fact can be done by using the following identity2.

If f : a, b → R is differentiable on a, b with the first derivative fintegrable on a, b, then Montgomery identity holds

fx  1 b − a b a ftdt  b a P1x, tftdt, 1.2

(2)

where P1x, t is the Peano kernel defined by P1x, t : ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ t − a b − a, a ≤ t < x, t − b b − a, x ≤ t ≤ b. 1.3

Recently, several generalizations of the Ostrowski integral inequality are considered by many authors; for instance, covering the following concepts: functions of bounded variation, Lipschitzian, monotonic, absolutely continuous, and n-times differentiable mappings with error estimates with some special means together with some numerical quadrature rules. For recent results and generalizations concerning Ostrowski’s inequality, we refer the reader to the recent papers3–10.

In this paper, we extend the Montgomery identities for the Riemann-Liouville frac-tional integrals. We also use these Montgomery identities to establish some new integral inequalities of Ostrowski’s type. Finally, we develop some integral inequalities for the fractional integral using differentiable convex functions. Later, we develop some integral inequalities for the fractional integral using differentiable convex functions. From our results, the weighted and the classical Ostrowski’s inequalities can be deduced as some special cases.

2. Fractional Calculus

Firstly, we give some necessary definitions and mathematical preliminaries of fractional cal-culus theory which are used further in this paper. For more details, one can consult11,12.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α ≥ 0 with a ≥ 0 is

defined as Jaαfx  1 Γα x a x − tα−1 ftdt, Ja0fx  fx. 2.1

Recently, many authors have studied a number of inequalities by using the Riemann-Liouville fractional integrals, see13–16 and the references cited therein.

3. Main Results

In order to prove some of our results, by using a different method of proof, we give the following identities, which are proved in 13. Later, we will generalize the Montgomery

identities in the next theorem.

Lemma 3.1. Let f : I ⊂ R → R be a differentiable function on Iwith a, b ∈ Ia < b and

f∈ L1a, b, then fx  Γα b − ab − x 1−αJα afb − Jaα−1 P2x, bfb  Jα a P2x, bfb , α ≥ 1, 3.1

(3)

where P2x, t is the fractional Peano kernel defined by P2x, t : ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ t − a b − ab − x 1−αΓα, a ≤ t < x, t − b b − ab − x 1−αΓα, x ≤ t ≤ b. 3.2

Proof. By definition of P1x, t, we have

ΓαJα a P1x, bfb  b a b − tα−1P 1x, tftdt  x a b − tα−1 t − a b − a  ftdt  b x b − tα−1 t − b b − a  ftdt  1 b − a x a b − tα−1t − aftdt −b x b − tαftdt   1 b − aI1 I2. 3.3

Integrating by parts, we can state

I1 b − tα−1t − aft x a− x a  −α − 1b − tα−2t − a  b − tα−1 ftdt  b − xα−1x − afx  α − 1 x a b − tα−2t − aftdt − x a b − tα−1 ftdt, 3.4 and similarly, I2 −b − tαftbx− α b x b − tα−1 ftdt  b − xαfx − α b x b − tα−1 ftdt. 3.5

Adding3.4 and 3.5, we get

ΓαJα a P1x, bfb  1 b − a  b − ab − xα−1fx  α − 1 x a b − tα−2t − aftdt −α b x b − tα−1 ftdt − x a b − tα−1 ftdt  . 3.6

(4)

If we add and subtract the integralα − 1xbb − tα−2t − bftdt to the right-hand side of the equation above, then we have

ΓαJα a P1x, bfb  1 b − a  b − ab − xα−1 fx  b − aα − 1 b a b − tα−2P 1x, tftdt − b a b − tα−1 ftdt   b − xα−1fx  α − 1 b a b − tα−2P 1x, tftdt − 1 b − a b a b − tα−1 ftdt  b − xα−1fx − Γα b − aJ α afb  ΓαJaα−1 P1x, bfb . 3.7

Multiplying both sides byb − x1−α, we obtain

a P2x, bfb  fx − Γα b − ab − x 1−αJα afb  Jaα−1 P2x, bfb , 3.8 and so fx  Γα b − ab − x 1−αJα afb − Jaα−1 P2x, bfb  Jα a P2x, bfb . 3.9

This completes the proof.

Now, we extendLemma 3.1as follows.

Theorem 3.2. Let f : I ⊂ R → R be a differentiable function on Iwith f ∈ L

1a, b, then the

following identity holds:

1 − 2λfx  Γα b − ab − x 1−αJα afb − λ b − a b − x α−1 fa − Jα−1 a P3x, bfb  Jα a P3x, bfb , α ≥ 1, 3.10

(5)

where P3x, t is the fractional Peano kernel defined by P3x, t : ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ t −1 − λa − λb b − a b − x 1−αΓα, a ≤ t < x, t −1 − λb − λa b − a b − x 1−αΓα, x ≤ t ≤ b, 3.11 for 0≤ λ ≤ 1.

Proof. By similar way in proof ofLemma 3.1, we have

ΓαJα a P3x, bfb  b a b − tα−1 P3x, tftdt  Γαb − x1−α b − a x a b − tα−1t − 1 − λa − λbftdt  b x b − tα−1t − 1 − λb − λaftdt   Γαb − x1−α b − a J1 J2. 3.12

Integrating by parts, we can state

J1 b − xα−1x − 1 − λa − λbfx  b − aαfa  α − 1 x a b − tα−2t − 1 − λa − λbftdt − x a b − tα−1ftdt, 3.13 and similarly, J2 − b − xαx − 1 − λb − λafx  α − 1 b x b − tα−2t − 1 − λa − λbftdt − b x b − tα−1ftdt. 3.14

Thus, by using J1and J2in3.12, we get 3.10 which completes the proof.

Remark 3.3. We note that in the special cases, if we take λ  0 inTheorem 3.2, then we get 3.1 with the kernel P2x, t.

(6)

Theorem 3.4. Let f : a, b → R be a differentiable on a, b such that f∈ L

1a, b, where a < b.

If|fx| ≤ M for every x ∈ a, b and α ≥ 1, then the following inequality holds:

  1− 2λfx −b − aΓαb − x 1−αJα afb  λ b − a b − x α−1 fa  Jα−1 a P3x, bfb   ≤ M αα  1  b − aαb − x1−αα1 21 − λα1 λb − a − 1 b − x  2αb − x b − a− α  1  . 3.15

Proof. FromTheorem 3.2, we get

  1− 2λfx −b − aΓαb − x 1−αJα afb  λ b − a b − x α−1 fa  Jaα−1 P3x, bfb   ≤ 1 Γα b a b − tα−1|P 3x, t|ftdt  b − x1−α b − a x a b − tα−1|t − 1 − λa − λb| ftdt  b x b − tα−1|t − 1 − λb − λa|ftdt  ≤ Mb − x1−α b − a x a b − tα−1|t − 1 − λa − λb|dt  b x b − tα−1|t − 1 − λb − λa|dt   Mb − x1−α b − a {J3 J4}. 3.16 By simple computation, we obtain

J3 x a b − tα−1|t − 1 − λa − λb|dt  λb1−λa a b − tα−1λb  1 − λa − tdt  x λb1−λa b − tα−1t − λb − 1 − λadt  b − aα1 αα  1  21 − λα1 λb − a − 1b − xα αα  1αb − x − 1 − λb − aα  1, 3.17

(7)

and similarly J4  b x b − tα−1|t − 1 − λb − λa|dt  λa1−λb x b − tα−1λa  1 − λb − tdt  b λa1−λb b − tα−1t − λa − 1 − λbdt  2λα1b − aα1 αα  1  b − xα αα  1αb − x − λb − aα  1. 3.18

By using J3and J4in3.16, we obtain 3.15.

Remark 3.5. If we take λ  0 inTheorem 3.4, then it reduces Theorem 4.1 proved by Anas-tassiou et al.13. So, our results are generalizations of the corresponding results of

Anas-tassiou et al.13.

Theorem 3.6. Let f : a, b → R be a differentiable convex function on a, b and f ∈ L 1a, b.

Then for any x ∈ a, b, the following inequality holds:

1 αα  1  αb − x 2 b − a f  x −  b − aαb − x1−α αb − x2 b − a − α  1b − x  fx  ≤ Γα b − ab − x 1−αJα afb − Jaα−1 P2x, bfb − fx, α ≥ 1. 3.19

Proof. Similarly to the proof ofLemma 3.1, we have

fx − Γα b − ab − x 1−αJα afb  Jaα−1 P2x, bfb  b − x1−α b − a x a b − tα−1t − aftdt −b x b − tα ftdt  . 3.20

Since f is convex, then for any x ∈ a, b we have the following inequalities:

ft ≤ fx for a.e. t ∈ a, x, 3.21 ft ≥ fx for a.e. t ∈ x, b. 3.22

If we multiply3.21 by b − tα−1t − a ≥ 0, t ∈ a, x, α ≥ 1 and integrate on a, x, we get

x a b − tα−1t − aftdt ≤ x a b − tα−1t − af −xdt  1 αα  1  b − aα1 b − xααb − x − α  1b − a fx, 3.23

(8)

and if we multiply3.22 by b − tα≥ 0, t ∈ x, b, α ≥ 1 and integrate on x, b, we also get b x b − tα ftdt ≥ b x b − tα fxdt  b − x α1 α  1 f  x. 3.24

Finally, if we subtract3.24 from 3.23 and use the representation 3.20 we deduce the

desired inequality3.19.

Corollary 3.7. Under the assumptionsTheorem 3.6with α  1, one has

1 2  b − x2f x − a − x2f−x  ≤ b a ftdt − b − afx. 3.25

The proof of Corollary 3.7 is proved by Dragomir in 6. Hence, our results in Theorem 3.6are generalizations of the corresponding results of Dragomir6.

Remark 3.8. If we take x  a  b/2 inCorollary 3.7, we get

0≤ b − a 8  f a  b 2  − f − a  b 2  ≤ 1 b − a b a ftdt − f a  b 2  . 3.26

Theorem 3.9. Let f : a, b → R be a differentiable convex function on a, b and f ∈ L 1a, b.

Then for any x ∈ a, b, the following inequality holds:

Γα b − ab − x 1−αJα afb − Jaα−1 P2x, bfb − fx ≤ 1 αα  1  αb − x 2 b − a f  −b −  b − aαb − x1−α αb − x2 b − a − α  1b − x  , α ≥ 1. 3.27

Proof. Assume that fa and fb are finite. Since f is convex on a, b, then we have the

following inequalities:

ft ≥ fa for a.e. t ∈ a, x, 3.28 ft ≤ fb for a.e. t ∈ x, b. 3.29

(9)

If we multiply3.28 by b − tα−1t − a ≥ 0, t ∈ a, x, α ≥ 1 and integrate on a, x, we have x a b − tα−1t − aftdt ≥ x a b − tα−1t − af adt  1 αα  1  b − aα1 b − xααb − x − α  1b − af a, 3.30 and if we multiply3.29 by b − tα≥ 0, t ∈ x, b, α ≥ 1 and integrate on x, b, we also have

b x b − tαftdt ≤b x b − tαf −bdt  b − x α1 α  1 f  −b. 3.31

Finally, if we subtract 3.30 from 3.31 and use the representtation 3.20 we deduce the

desired inequality3.27.

Corollary 3.10. Under the assumptionsTheorem 3.9with α  1, one

b a ftdt − b − afx ≤ 1 2  b − x2 fb − a − x2fa. 3.32

The proof ofCorollary 3.10is proved by Dragomir in6. So, our results inTheorem 3.9

are generalizations of the corresponding results of Dragomir6.

Remark 3.11. If we take x  a  b/2 inCorollary 3.10, we get

0≤ 1 b − a b a ftdt − f a  b 2  ≤ b − a 8  f−b − fa. 3.33

References

1 A. M. Ostrowski, “ ¨Uber die absolutabweichung einer differentiebaren funktion von ihrem inte-gralmitelwert,” Commentarii Mathematici Helvetici, vol. 10, pp. 226–227, 1938.

2 D. S. Mitrinovi´c, J. E. Peˇcari´c, and A. M. Fink, Inequalities Involving Functions and Their Integrals and

Derivatives, vol. 53, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.

3 P. Cerone and S. S. Dragomir, “Trapezoidal-type rules from an inequalities point of view,” in Handbook

of Analytic-Computational Methods in Applied Mathematics, pp. 65–134, Chapman & Hall/CRC, Boca

Raton, Fla, USA, 2000.

4 J. Duoandikoetxea, “A unified approach to several inequalities involving functions and derivatives,”

Czechoslovak Mathematical Journal, vol. 51, no. 126, pp. 363–376, 2001.

5 S. S. Dragomir and N. S. Barnett, “An Ostrowski type inequality for mappings whose second derivatives are bounded and applications,” RGMIA Research Report Collection, vol. 1, pp. 67–76, 1999. 6 S. S. Dragomir, “An Ostrowski type inequality for convex functions,” Univerzitet u Beogradu.

Publikacije Elektrotehniˇckog Fakulteta. Serija Matematika, vol. 16, pp. 12–25, 2005.

7 Z. Liu, “Some companions of an Ostrowski type inequality and applications,” Journal of Inequalities in

Pure and Applied Mathematics, vol. 10, no. 2, article 52, 12 pages, 2009.

8 M. Z. Sarikaya, “On the Ostrowski type integral inequality,” Acta Mathematica Universitatis

(10)

9 M. Z. Sarikaya, “On the Ostrowski type integral inequality for double integrals,” Demonstratio

Mathematica, vol. 45, no. 3, pp. 533–540, 2012.

10 M. Z. Sarikaya and H. Ogunmez, “On the weighted Ostrowski-type integral inequality for double integrals,” Arabian Journal for Science and Engineering, vol. 36, no. 6, pp. 1153–1160, 2011.

11 R. Gorenflo and F. Mainardi, Fractionalcalculus: Integral and Differentiable Equations of Fractional Order, Springer, Wien, Austria, 1997.

12 S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives Theory and Application, Gordan and Breach Science, New York, NY, USA, 1993.

13 G. Anastassiou, M. R. Hooshmandasl, A. Ghasemi, and F. Moftakharzadeh, “Montgomery identities for fractional integrals and related fractional inequalities,” Journal of Inequalities in Pure and Applied

Mathematics, vol. 10, no. 4, article 97, 6 pages, 2009.

14 S. Belarbi and Z. Dahmani, “On some new fractional integral inequalities,” Journal of Inequalities in

Pure and Applied Mathematics, vol. 10, no. 3, article 86, 5 pages, 2009.

15 Z. Dahmani, L. Tabharit, and S. Taf, “Some fractional integral inequalities,” Nonlinear Science Letters, vol. 2, no. 1, pp. 155–160, 2010.

16 Z. Dahmani, L. Tabharit, and S. Taf, “New inequalities via Riemann-Liouville fractional integration,”

(11)

may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express

written permission. However, users may print, download, or email articles for individual use.

Referanslar

Benzer Belgeler

Bulgular gözlemleri de içerecek şekilde görüş- melerdeki alıntılardan örnekler verile- rek yorumlanmış ve öne çıkan beş ana tema başlığı (boşanmalar için

Düzce İli fındık bahçelerinde Mayıs böceği popülasyon yoğunluğu ekonomik zarar eşiği açısından incelendiğinde; İl genelinde incelenen 32 bahçenin 3’ünde,

İşletmenin yabancı sermaye ile ortaklık yapıp yapmama durumuna göre örgüt- çevre etkileşimi arasında anlamlı bir fark olup olmadığını belirlemek amacıyla

Changes in maternal behavior have been observed in mice, rats and other laboratory animals a il]. Differences in maternal aggression have been observed between

The aim of this study is to determine the influence of short duration rotational grazing in a pasture area grazed in an uncontrolled and heavy way for a long time on some

After the use of sugammadex as a reversal agent and rocu- ronium as a neuromuscular blocking agent, the time to reach TOF 0.7, 0.8 and 0.9 in relation to intubation time and the

However, the most successful results for all tested properties were determined in the styrene pretreated samples in which hygroscopicity decreased and dimensional stability

Numerous experimental studies have been carried out to investigate the effect of deep cryogenic heat treatment on the mechanical properties of tool steels; however, very little