• Sonuç bulunamadı

Search for anomalous couplings in boosted WW/WZ???qq? production in proton–proton collisions at s=8 TeV

N/A
N/A
Protected

Academic year: 2021

Share "Search for anomalous couplings in boosted WW/WZ???qq? production in proton–proton collisions at s=8 TeV"

Copied!
22
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

anomalous

couplings

in

boosted

WW/WZ

→ 

ν

qq

production

in

proton–proton

collisions

at

s

=

8 TeV

.TheCMS Collaboration CERN,Switzerland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received17March2017

Receivedinrevisedform20May2017 Accepted5June2017

Availableonline12June2017 Editor:M.Doser

Keywords:

CMS Physics aTGC

ThisLetter presents asearch fornew physics manifested as anomalous triple gaugeboson couplings inWW andWZ dibosonproductioninproton–proton collisions.Thesearchisperformedusingevents containingaW bosonthatdecaysleptonicallyandaW orZ bosonwhosedecayproductsaremergedinto asinglereconstructedjet.Thedata,collectedat√s=8 TeV withtheCMSdetectorattheLHC,correspond toanintegratedluminosityof19 fb−1.Noevidenceforanomaloustriplegaugecouplingsisfoundandthe following95%confidencelevellimitsaresetontheirvalues: λ([−0.011, 0.011]), κγ ([−0.044, 0.063]), and gZ

1([−0.0087, 0.024]).Theselimitsarealsotranslatedintotheireffectivefieldtheoryequivalents: cWWW/ 2([−2.7, 2.7]TeV−2),cB/ 2([−14, 17]TeV−2),andcW/ 2([−2.0, 5.7]TeV−2).

©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Measurementsofelectroweakdibosonproductioncanbe trans-latedintomeasurementsofgaugebosonself-couplings,whichare amongthemostfundamentalaspectsofthestandardmodel(SM). At leading order (LO), only s-channel qq annihilation diagrams have a triple-boson vertex. In WW production, the WWγ and WWZ verticescontribute, whileinWZ productiononlytheWWZ vertexispresent.PhysicsbeyondtheSMcanmodifythecouplings atthesevertices,leadingtoobservabledifferencesinthecross sec-tionandthekinematicdistributions offinalstate particles [1].In thesearchforanomaloustriplegaugecouplings(aTGCs),weadopt theeffectiveLagrangianandLEPparametrizationinRef. [2], with-out form factors: λγ = λZ= λ, Z= gZ1− κγ tan2θW. We focus in particular on the parameters λ, κγ , and gZ

1, where the deltas represent deviations from their respective SM values (λSM =0). We also translate these into the equivalent parame-ters defined in an effective field theory (EFT) approach, namely

cWWW/ 2, cW/ 2, and cB/ 2, where is the scale of new physics[3].

This Letter presents a search for new physics manifested as anomalouscouplingsoftriplegaugebosonverticesinWW orWZ dibosonproductionfromppcollisionsat√s=8 TeV attheCERN LHC.WefocusonthecasewhereoneW bosondecaysleptonically (Wlep→ ν,with=e, μ),whiletheothervectorbosonVhad

de- E-mailaddress:cms-publication-committee-chair@cern.ch.

cayshadronically,givingrisetoasinglemergedjet( J )inthefinal state. Previous searches inthischannel at the LHCcan be found inRefs.[4,5].Otherrecentsearchesintheleptonicchannelare de-scribed inRefs. [6,7]. Theadvantages ofreconstructing WVpairs inthe qq decay mode over purelyleptonic final states are the largerbranchingfractionsofW andZ bosonstoquarks,andinthe caseof two W bosons, the abilityto reconstructtheir transverse momenta(pT).Theseadvantages arepartially offsetbythelarger backgroundsintheqq channel,arisingmainlyfromW+jets pro-duction.ThesensitivityofWW productionto theWWγ coupling andofbothWW andWZ productiontotheWWZ coupling, espe-ciallyathighboson pT, makestheseprocessesparticularlyuseful asaprobeofaTGCs.

Comparedto our previous search at√s=7 TeV [4], we have added anothercoupling parameter, gZ1, to theparameter space, andwefocusexclusivelyontheLorentz-boostedfinalstates,where Vhadisreconstructedasasinglemergedjet,sincethesefinalstates arefarmoresensitivetoanaTGCsignalthantheresolvedtwo-jet states.

2. TheCMSdetector

The central feature of the CMS apparatus is a superconduct-ing solenoidof6 m internal diameter,providinga magneticfield of3.8 T.Withinthesolenoidvolume area siliconpixelandstrip tracker,aleadtungstatecrystalelectromagneticcalorimeter(ECAL), andabrassandscintillator hadroncalorimeter,each composedof a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded inthe steel flux-returnyoke

out-http://dx.doi.org/10.1016/j.physletb.2017.06.009

0370-2693/©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

side the solenoid. The CMS detector isnearly hermetic, allowing formeasurementsofthemissingtransversemomentum(EmissT ) in theevent. EmissT isdefinedasthemagnitudeofthenegativevector

pTsumofallreconstructedparticlesinanevent.Atwo-tiertrigger systemselectstheevents ofinterest.Amoredetaileddescription ofthe CMSdetector,together with adefinition ofthe coordinate systemusedandtherelevantkinematicvariables,canbefoundin Ref.[8].

3. Dataandsimulationsamples

The data were collected using single-lepton triggers with pT thresholdsof 24(27)GeV for muons(electrons). Theoverall trig-ger efficiency is about 94% (90%) for the muon (electron) data, withasmalldependence(afewpercent)on pTand pseudorapid-ity η. The total integrated luminosity collected andprocessed is 19.3(19.2)fb−1 formuon(electron)triggers.

Weuse the MadGraph5 1.3.30[9]eventgeneratorto produce both the W+jets and Drell–Yan samples, with up to four addi-tionalpartonsinthematrixelementcalculation.Singletop quark and top quark–antiquark pair (tt) samples are generated with powheg 1.0[10–14]. The dibosonsamples (WW, WZ) are gener-atedon-shellatnext-to-LO(NLO)with MadGraph5_amc@nlo ver-sion2.0.0[15] and MadSpin version3.2[16].ThedecaysW→τ ν

are includedforall processes.The τ lepton decaysare simulated with tauola [17]. The pythia 6.422 generator [18] provides the fragmentationandpartonshowersimulation,withtheparameters ofthe underlyingeventset tothe Z2*tune [19,20].The kT-MLM matching scheme is used to interface pythia6 with MadGraph5 atLO[21].Thesetofpartondistributionfunctions(PDFs)usedis CTEQ6L1[22]forLOgeneratorsandCT10[23]forNLOgenerators. A Geant4-basedsimulation[24]oftheCMSdetectorisusedinthe productionof all MonteCarlo (MC) samples.The simulationalso includesmultipleproton–protoncollisionswithinabunchcrossing (pileup).Simulated eventsare reconstructed and analyzed inthe samewayasmeasured collisionevents,subjectto additional cor-rectionsthataccountfordifferencesbetweendataandsimulation intriggerandselectionefficiencies,andinthevertexmultiplicity distribution.

4. Eventreconstruction

Allobservable objects, namelyleptons, jets, and EmissT , are re-constructed witha particle-flowtechnique [25,26]that combines information from several subdetectors. Muons are reconstructed within|η|<2.4 withtheinnertrackerandthemuonsystem[27]. Electrons are reconstructed within |η|<2.5 from tracks in the trackerpointingtoenergyclustersintheECAL,andidentified us-ingamultivariatediscriminator[28].Theselectionsappliedtothis discriminator are tuned to match the η-binned efficiencies used for Ref. [4]. Muons (electrons) are required to have pT greater than 25(30) GeV. The lepton candidates are required to be con-sistent with originatingfrom the event’s primary vertex, and to beisolatedfromotheractivityintheevent.The isolation require-ments formuons(electrons)are basedon theparticle-flow tech-niquewithan isolation coneof R =0.4(0.3),andare designed to reduce theeffects ofpileup andneutralparticles. Events with additionallooselyidentifiedleptonsarevetoedtoreducethe back-groundsfromfullyleptonicdecays,suchasthoseoriginatingfrom theDrell–Yan process anddibosonproduction. Decaysof the tau leptontoelectronsormuonsthatpassthesecriteriaareincluded aspotentialsignalevents.

The anti-kT (AK) [29,30] andCambridge–Aachen (CA) [29–31] clusteringalgorithmsareusedtoreconstructjetsintheevent.The AKalgorithmusesadistanceparameterof R =0.5 (AK5).TheCA

jetsareclusteredwithR =0.8 (CA8)andareusedfor reconstruct-ingVhad,wheretheVbosondecayproductsaremergedintoa sin-gle jet.The combinedsecondary vertexalgorithmatthemedium operatingpointisusedtotagAK5jetsasbjets[32].Weassignthe

EmissT measured inthe eventtothe neutrinocandidateand com-binethiswiththeidentifiedleptontoreconstructWlep.BoostedW eventsareselectedbyrequiringpT>200 GeV forWlep.

We requireone CA8jetwith pT>200 GeV,andnoadditional CA8jetswith pT>80 GeV,intheregion|η|<2.4.The EmissT is re-quiredtobeabove50(70)GeV forthemuon(electron)channelto suppressmultijetbackgrounds.Weensurethatthetwobosonsare back-to-backbyrequiringR(, J)>π/2,φ (EmissT , J)>2.0,and

φ (Wlep, J)>2.0. Wevetoeventsbased onthe presenceofany b-taggedAK5jetswith pT>20 GeV andoutsidetheCA8jetcone toreducethett background.Afterthekinematicselections,we ap-ply jetsubstructuretechniques.Improvedseparationbetweenthe signalandthemultijetbackgroundisobtainedinthejetmass ob-servable by means of a “pruning” algorithm [33,34] designed to remove soft gluon radiation and pileup contributions from jets. The “N-subjettiness”variable[35]isa jetsubstructureobservable thatdefinesameasure, τN,forajettohaveN subjets. Werequire

τ21,whichistheratioof2-subjettinessto1-subjettiness,ofthe leadingCA8jettobelessthan0.55todiscriminateagainstW+jets backgrounds.

5. Backgroundandsignalmodeling

Afterallselectionsthebackgroundcomprisesthreemain com-ponents:W+jets,topquark(tt andsingletopquark),andSM dibo-sonproduction.Multijets,Z+jets,ZZ,Zγ,H(125)→WW∗,andfully hadronic and leptonic WW decay mode backgrounds were esti-matedanddeterminedtobenegligible.

FortheaTGCsearchweselectthemergedjet pT, pTJ,asthe ob-servable, whichfor dibosonpairs isthe pT of Vhad. We take the binned shapeofthe pTJ distributionforeach contributingprocess from MC samples. However, since the LO W+jets predictionfalls below the data, we choose to extract the normalizations of the largestbackgroundcomponentsfirstfromanunbinned maximum-likelihoodfitto thedatadistributionofthe mergedjetmass, mJ. The diboson mJ shapeinthefitregionisunaffectedbytheaTGC signalatthelevelofsensitivityofthisanalysis.

5.1. Normalization extractions from the mJfit

Forthispartoftheanalysisweemployatwo-stageprocedure: firstwefitthedistributioninsimulationforeachprocess individ-ually.TheMCtemplatesusedinthe7 TeV analysisarereplacedby analytical functions, whichprovide additionalflexibility to model the data accurately. Second, we utilize the results from the first setoffitstoperformanunbinnedmaximum-likelihoodfittodata thatincludesallcomponents.Duetothedifferencesinbackground compositions andshapes, the fitto data is performedseparately for the muon andelectron channels. All fits are performed over the mass range40<mJ<140 GeV. Withineach fit to data,the normalizationforeachbackgroundprocessiseitherfreetofloator allowed tovaryaroundacentralvaluesubjecttoaGaussian con-straint.Somecomponentshavebeencombinedbecauseof similar-ityinshape,orbecausetheW andZ bosonsarenotwell-resolved in mJ.Finally,theyieldsusedtonormalizebackground pTJ compo-nentsareextractedfromthesignalregionof70<mJ<100 GeV.

Toassistinthebackgrounddetermination,wedefinea control sample intended to isolatepure top quark eventsforcomparison with simulation[36].The sample isconstructed by inverting the selectiononthenumberofb-taggedAK5jetsoutsidetheCA8jet, thus requiring that there be at least one AK5 b-taggedjet. This

(3)

Fig. 1. Post-fitdistributionsofthemergedjetinvariant massformuons(top)andelectrons (bottom)withthe estimatesofthe relevantbackgrounds.Themergedjet invariantmassisplottedforallevents(left),aftersubtractionofallcomponentsexceptthediboson(center),andthesubsequentnormalizedresidualorpulldistributions:

(data−fit)/(fit uncertainty)(right).Theerrorbarsrepresentstatisticaluncertainties.Thedashedverticallinesmarkthesignalregionof70<mJ<100 GeV,fromwhichthe

pTdistributionnormalizationsareextracted.

controlsample issubsequentlyreferredtoasthetopcontrol sam-ple.

Thedibosonprobabilitydensityfunction(pdf)in mJ is param-etrizedbya sumoftwoGaussian functionscorresponding tothe W and Z resonances. The position and width of the Z Gaussian are fixed withrespect to those ofthe W Gaussian, which is ini-tially taken from simulation. The relative fractions of WW (84% of the total) and WZ (16%) are also taken from simulation. The broad background from jets misassigned to Vhad is modeled by anerror functiontimesan exponential function.The W Gaussian parametersaresubsequentlycorrectedwithMC-to-datascale fac-torsdeterminedfromthetop controlsample, inordertoaccount formismodelingofthemerged-jetmassinsimulation.Alldiboson shapeparametersarethenfixedduring thefitstothedata,while thenormalizationsarefreeparameterstobemeasured.

FortheW+jetsprocess,theshapeofthe mJ distributionis de-scribed by a kinematicturn-on at lower masses(error function) followedbyarapidlyfallingtail(exponential).Thepre-fit normal-izationissettotheLO MadGraph+pythia6crosssectiontimesan empiricalfactor of 1.3. Thisfactor provides an initial estimate of thedifference betweendata andsimulationinthetopologies, ef-fectivelyaccountingfortheexpectedincreaseintheinclusivecross sectionfromNNLOcorrections,andgivenaloose±50%constraint. Theshapeparametersofthefunctionareallowedtovaryinthefit tothedatawithoutconstraint.

Thetopquarkbackgroundisacombinationoftt andsingletop quarkproductionprocesses.Thetop quarkmodelisparametrized byasumofanerrorfunctiontimesanexponentialfunctionanda doubleGaussianfunction, corresponding tobothmerged and un-merged jetsfrom hadronic W decays. The top control sample is used to correct the W resonance shape parameters, to estimate theexpectedyield andyielduncertainties byextrapolating tothe signalregion,andtoadjustthetopnormalizationuncertainty.All topshapeparametersarefixedinthefittothedata,andthe nor-malizationisconstrainedtoaGaussianwithawidthof8(10)%for

muons(electrons).Thesecomefromacombinationoftheory un-certainty anduncertainties associatedwithuseofthetopcontrol sample.

Fig. 1showstheresultsofoneofthefits tothedata.Theleft plots show the observed mJ distributions, together with the fit-ted contributions of the three largest SM processes. The central plots show the same distribution after subtracting all SM con-tributions from data except for diboson events. The right plots showthepulldistribution,i.e.,thenormalizedresidualdefinedas

(data−fit)/(fit uncertainty),wherethefituncertaintyiscomputed ateach datapointby propagatingthe uncertaintyinthe normal-izationcoefficients.

Theindividual processyields, asdetermined bythefit,are re-portedin Table 1.The acceptancetimes efficiency() is deter-mined fromthe diboson MC.The electron channel has asmaller

because ofits higherkinematic threshold.The top quark re-sultsreflect theinabilityofthe fitto furtherconstrain this back-ground. The W+jets yields are about 20% higher than the prefit value of 1.3times the LO prediction, which exhibits our limited knowledge of this boostedregime. For the diboson process, 1.35 (2.23) times the expected event count is observed in the muon (electron) channel. This excess isstatistically consistent withthe SM NLO prediction [15]. Overall, the approach produces a high quality model of the data (Fig. 1 (left)), with pull distributions consistent withzero(Fig. 1(right)), thatallows usto extract the dibosoncontributiontotheVhadresonance(Fig. 1(center)). 5.2. Fit validation

We validate the fit procedure by performing pseudo-exper-iments.Foreachexperiment,wegeneratethe mJ pseudo-datafor the SM processes using the fitted pdf, taking into account the correlations between the yields, and then perform a fit to each pseudo-data mJ distribution asifitwere the realdata.Likewise, weensurethat theparametrizationusedissufficientlygeneralby

(4)

Table 1

Observedeventyieldsand associatedratios(inparentheses)with respecttothe pre-fitvaluesextractedinthesignalregion(70<mJ<100 GeV).Theterm (acceptance×efficiency)includesW andZ branchingfractions[37].

Quantity μchannel e channel

Data 1977 1666 W+jets 1318 (1.22±0.06) 1023 (1.17±0.07) Top quark 450 (1.00±0.08) 364 (1.00±0.10) WV 204 (1.35±0.77) 285 (2.23±0.84) 9.7×10−5 8 .3×10−5

Fig. 2. Vhad pTdistributionsforthemuon(top)andelectron(bottom)channels

af-terfullselectionandwiththerequirement70<mJ<100 GeV.TheMCerrorsare purelystatistical.ExamplesoftheeffectsofaTGCsareshownbythesolidand dot-tedlines.Belowweshowthedata/MCratio.Thelastbinincludestheoverflow. generating pseudo-data with more general functional forms and fitting them with the default configuration. The results indicate that biases in all background yields and yield uncertainties are small.

5.3. Signal modeling

The dependence of the pTJ distribution on specific aTGCs is modeled by reweighting the simulations of SM WW and WZ by theratioofsquaredmatrixelementswithandwithoutthe anoma-louscoupling,i.e.,|M|2/|M|SM2 ,where|M|2isthesquaredmatrix element in the presence of anomalous couplings and |M|2SM is thesquaredmatrixelementintheSM,calculatedwith mcfm ver-sion 6.0[38].Theseratiosare calculated,parametrizedwith poly-nomials, and the polynomials encapsulated into a unified signal modelintwo-dimensional(2D)spaceforthreepairwise combina-tionsoftheeffectiveLagrangianparametersbeingstudied.

5.4. Preparing pTJdistributions

Distributionsof pTJ intheformofhistograms binnedover the range200–800 GeV (Fig. 2)are usedtocomputelimits. All selec-tions havebeenapplied,includingthe signalwindow, 70<mJ< 100 GeV. The W+jets and top quark background normalizations are fixedaccordingto theresultsfromthe mJ fits.The SM dibo-son components,however,arenormalizedtotheNLOpredictions, sincea)wearesearchingforenhancementstothediboson produc-tion relative to those predictions, andb) given the excess ofSM diboson events obtained fromthe fits in both channels, normal-izingto theorypredictions yieldssubstantially moreconservative, lesssensitive expectedlimits. We treatthe twolepton categories asseparatechannelsinthelimitsettingprocess.

Since the W+jets shape is only calculated to LO, and we are exploring a newregion ofphase space, we adjust theshape and normalizationfrom MCby comparing itto a distributionderived using an alternative method. This method involves extrapolating theW+jets pTJ distributionfroma mJ datasidebandtothesignal region bymeans ofatransfer function.The transferfunctionis a ratio ofcurvesfittedto theW+jets pTJ distributions inthesignal andsidebandregionsofW+jetssimulation[36,39].Thecomparison showsthattheratiooftheW+jetsbackgroundsderivedusingthe twomethodsisstatisticallyconsistentwithunity.

6. Systematicuncertainties

Themainsourceofsystematicuncertaintyisthenormalization uncertaintyintheW+jetsbackgroundestimate.Fromthe alterna-tivemethoddescribedinSec.5.4,weextracta20%uncertaintyin thetotal backgroundnormalizationby takingtheprecision ofthe ratiooftheW+jetsbackgrounddistributionderived fromthetwo methods and summing over the high pT region (400–800 GeV), wherethesignalisexpected.

The theoretical uncertainties in the signal normalization are associated with the renormalizationand factorizationscales, and with the choice of PDF, for pW

T >1 TeV. For PDF uncertainties we compare amc@nlo samples employing 41 alternative sets of CTEQ6MPDFsfollowingtheprescriptioninRef.[22].Factorization andrenormalizationscaleuncertainties areestimatedby simulta-neouslyvaryingthemupordownbyafactorof2.Both scaleand PDFuncertaintiesareestimatedtobeapproximately18–26%.

Theuncertaintyinthesignalshapecomingfromtheeffectsof reconstruction is estimated by comparing the aTGC/SM ratios at the generator levelandthe aTGC/SM ratios atthe reconstruction level after all major selectionsare applied forboth samples.The ratioisconsistentwithunity,andthereforeonlythestatistical er-rorontheratioispropagatedasanuncertaintyinthemodelingof differentaTGCsignalgridpoints.

The uncertainty in the luminosity measurement is 2.6% [40]. Additional sources of uncertainty from limited MC sample size, jet energyscaleandresolution, Emiss

T resolution,triggerefficiency, lepton reconstruction andselection efficiency, additionaljet veto, pileup,andb-tagefficiencyarenegligibleincomparisontothe pri-marysources.Theseuncertaintiesaretreatedasnuisance parame-tersinthemodelandprofiledaccordingtoRef. [41],Appendix A. Luminosityandtheoryuncertaintiesaretreatedas100%correlated betweenthetwochannels.

7. Couplinglimitsandsummary

Two-dimensional likelihood fits are performed in the three planesdescribedinSec.5.3.Eachtimethethirdparameteris pro-filed.Theelectronandmuonchannelsarefittedsimultaneouslyin

(5)

Fig. 3. The68and95%CLobservedandexpectedexclusioncontoursinNLLaredepictedforthreepairwisecombinationsoftheaTGCparametersintheLEPparametrization (top)andintheEFTformulation(bottom).Theblackdotrepresentsthebestfitpoint.TheoriginrepresentstheSMprediction.Theasymmetryofexpectedlimitsaroundthe SMisallowedbythetheoreticalparametrization.

Table 2

Summaryofexpectedandobservedone-dimensionallimitsintheLEP parametriza-tion.Eachnumberpairrepresentsthe observed95%confidenceintervalfor that parameter.

Parameter Expected limits Observed limits

λZ [−0.014,0.013] [−0.011,0.011]

κγ [−0.068,0.082] [−0.044,0.063] gZ

1 [−0.018,0.028] [−0.0087,0.024]

Table 3

Summaryofone-dimensionallimitsintheEFTformulationforthisanalysis(*) com-paredtopreviousresults.

cWWW/ 2 cB/ 2 cW/ 2

(TeV−2) (TeV−2) (TeV−2)

* [−2.7,2.7] [−14,17] [−2.0,5.7]

[6] [−5.7,5.9] [−29.2,23.9] [−11.4,5.4]

[7] [−4.61,4.60] [−20.9,26.3] [−5.87,10.54] [43] [−4.6,4.2] [−260,210] [−4.2,8.0] [44] [−3.9,4.0] [−320,210] [−4.3,6.8]

thelimitsettingprocedure. Noevidence foranomalouscouplings isfound, and we calculate the 68 and95% confidence level (CL) exclusioncontours,usingthedifferencesofthenegativelog likeli-hood(NLL)relativetothebestfitpoint.Noformfactorsareused. The limits are subsequently translated [3] into equivalent limits on the parameters within the EFT approach, namely cWWW/ 2, cW/ 2,and cB/ 2,showninFig. 3.Wealsoset1D95%CLlimits onallsixparameters,withthesecondparameterprofiledandthe thirdparameterfixedtozero.TheseareshowninTables 2 and 3. Thelatteralsoshowsotherrecent8 TeV resultsforcomparison.

Insummary, ourlimitsare consistent withthe SM prediction andimprove upon the sensitivity of the fullyleptonic 8 TeV re-sults[6,7]andthecombinedLEPexperiments[37,42].

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technicalandadministrative staffsatCERN andatother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentersand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythe computinginfrastructureessential to ouranalyses. Finally, we acknowledge the enduring support for the construc-tionandoperation oftheLHC andtheCMSdetectorprovidedby thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIEN-CIAS(Colombia);MSESandCSF(Croatia);RPF(Cyprus);SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Fin-land,MEC,andHIP(Finland);CEAandCNRS/IN2P3(France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hun-gary);DAEandDST(India);IPM(Iran);SFI(Ireland);INFN(Italy); MSIPandNRF(RepublicofKorea);LAS (Lithuania);MOEandUM (Malaysia); BUAP, CINVESTAV,CONACYT, LNS, SEP, andUASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT(Portugal);JINR(Dubna);MON,ROSATOM,RAS,RFBR andRAEP(Russia);MESTD (Serbia);SEIDI,CPAN, PCTIandFEDER (Spain);SwissFundingAgencies(Switzerland);MST(Taipei); ThEP-Center, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey);NASUandSFFR(Ukraine); STFC(United Kingdom);DOE andNSF(USA).

Individuals have received support from the Marie-Curie pro-gram and the European Research Council and EPLANET (Euro-pean Union); the Leventis Foundation; the Alfred P. Sloan Foun-dation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium);

(6)

the Agentschap voor Innovatie door Wetenschap en Technolo-gie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) ofthe Czech Republic;the Council ofScience and Indus-trial Research, India; the HOMING PLUS program of the Foun-dation for Polish Science, cofinanced from European Union, Re-gional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contractsHarmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861,Sonata-bis2012/07/E/ST2/01406;theNationalPriorities Re-search Program by Qatar National Research Fund; the Programa Clarín-COFUNDdelPrincipadodeAsturias;theThalisandAristeia programscofinancedbyEU-ESFandtheGreekNSRF;the Rachada-pisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University andthe Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Founda-tion,contractC-1845.

References

[1] L.J.Dixon,Z.Kunszt,A.Signer,Vectorbosonpairproductioninhadronic colli-sionsatorder αs:leptoncorrelationsandanomalouscouplings,Phys.Rev.D60 (1999) 114037, http://dx.doi.org/10.1103/PhysRevD.60.114037, arXiv:hep-ph/ 9907305.

[2] K.Hagiwara,S.Ishihara,R.Szalapski,D.Zeppenfeld,Lowenergyeffectsofnew interactions inthe electroweak bosonsector, Phys. Rev.D48 (1993)2182, http://dx.doi.org/10.1103/PhysRevD.48.2182.

[3] C.Degrande,N.Greiner,W.Kilian,O.Mattelaer,H.Mebane,T.Stelzer,S. Willen-brock,C.Zhang,Effectivefieldtheory:amodernapproachtoanomalous cou-plings,Ann. Phys.335(2013)21, http://dx.doi.org/10.1016/j.aop.2013.04.016, arXiv:1205.4231.

[4] CMSCollaboration,MeasurementofthesumofWWandWZproductionwith W+dijeteventsinppcollisionsat√s=7 TeV,Eur.Phys.J.C73(2013)2283, http://dx.doi.org/10.1140/epjc/s10052-013-2283-3,arXiv:1210.7544. [5] ATLASCollaboration,MeasurementoftheWW+WZcrosssectionandlimitson

anomaloustriplegaugecouplingsusingfinalstateswithonelepton,missing transversemomentum,andtwojetswiththeATLASdetectorat√s=7 TeV, J.HighEnergyPhys.01(2015)049,http://dx.doi.org/10.1007/JHEP01(2015)049, arXiv:1410.7238.

[6] CMS Collaboration, Measurement ofthe W+W− cross section in pp colli-sionsat√s=8 TeV andlimitsonanomalousgaugecouplings,Eur.Phys.J. C76(2016)401,http://dx.doi.org/10.1140/epjc/s10052-016-4219-1,arXiv:1507. 03268.

[7] ATLASCollaboration,MeasurementoftotalanddifferentialW+W−production crosssectionsinproton–protoncollisionsat√s=8 TeV withtheATLAS detec-torandlimitsonanomaloustriple-gauge-bosoncouplings,J.HighEnergyPhys. 09(2016)029,http://dx.doi.org/10.1007/JHEP09(2016)029,arXiv:1603.01702. [8] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008)

S08004,http://dx.doi.org/10.1088/1748-0221/3/08/S08004.

[9] J.Alwall,M.Herquet,F.Maltoni,O.Mattelaer,T.Stelzer,MadGraph5:going beyond,J.HighEnergyPhys.06(2011)128,http://dx.doi.org/10.1007/JHEP06 (2011)128,arXiv:1106.0522.

[10] P.Nason,AnewmethodforcombiningNLOQCDwithshowerMonteCarlo algorithms,J.HighEnergyPhys.11(2004)040, http://dx.doi.org/10.1088/1126-6708/2004/11/040,arXiv:hep-ph/0409146.

[11] S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithParton Showersimulations:thePOWHEGmethod,J.HighEnergyPhys.11(2007)070, http://dx.doi.org/10.1088/1126-6708/2007/11/070,arXiv:0709.2092.

[12] S.Alioli, P.Nason, C. Oleari,E.Re, A general frameworkfor implementing NLOcalculationsinshowerMonteCarloprograms:thePOWHEGBOX,J. High EnergyPhys.06(2010)043,http://dx.doi.org/10.1007/JHEP06(2010)043,arXiv: 1002.2581.

[13] S.Frixione,P.Nason,G.Ridolfi,Apositive-weightnext-to-leading-orderMonte Carloforheavyflavourhadroproduction,J.HighEnergyPhys.09(2007)126, http://dx.doi.org/10.1088/1126-6708/2007/09/126,arXiv:0707.3088.

[14] S.Alioli, P.Nason,C.Oleari,E.Re,NLOsingle-topproductionmatchedwith showerinPOWHEG: s- andt-channelcontributions,J.HighEnergyPhys.09 (2009)111,http://dx.doi.org/10.1088/1126-6708/2009/09/111,arXiv:0907.4076. [15] J.Alwall,R.Frederix,S.Frixione,V.Hirschi,F.Maltoni,etal.,Theautomated computationoftree-levelandnext-to-leadingorderdifferentialcrosssections, and their matching toparton shower simulations,J. HighEnergy Phys. 07 (2014)079,http://dx.doi.org/10.1007/JHEP07(2014)079,arXiv:1405.0301. [16] P.Artoisenet,R.Frederix,O.Mattelaer,R.Rietkerk,Automaticspin-entangled

decaysofheavyresonancesinMonteCarlosimulations,J.HighEnergyPhys. 03(2013)015,http://dx.doi.org/10.1007/JHEP03(2013)015,arXiv:1212.3460.

[17] S.Jadach,Z.W ˛as,R.Decker,J.H.Kühn,ThetaudecaylibraryTAUOLA,version 2.4, Comput.Phys. Commun.76 (1993) 361, http://dx.doi.org/10.1016/0010-4655(93)90061-G.

[18] T. Sjöstrand, S.Mrenna, P.Skands, PYTHIA6.4 physicsand manual, J.High EnergyPhys.05(2006)026,http://dx.doi.org/10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[19] CMSCollaboration, Studyofthe underlyingeventatforwardrapidityinpp collisionsat√s=0.9,2.76,and 7 TeV,J.HighEnergyPhys.04(2013)072, http://dx.doi.org/10.1007/JHEP04(2013)072,arXiv:1302.2394.

[20] CMSCollaboration,Eventgeneratortunesobtainedfromunderlyingeventand multipartonscatteringmeasurements,Eur.Phys.J.C76(2016)155,http://dx. doi.org/10.1140/epjc/s10052-016-3988-x,arXiv:1512.00815.

[21] J.Alwall,S.Höche,F.Krauss,N.Lavesson,L.Lönnblad,F.Maltoni,M.L.Mangano, M.Moretti,C.G.Papadopoulos,F.Piccinini,S.Schumann,M.Treccani,J.Winter, M.Worek,Comparativestudyofvariousalgorithmsforthemergingofparton showersandmatrixelementsinhadroniccollisions,Eur.Phys.J.C53(2008) 473,http://dx.doi.org/10.1140/epjc/s10052-007-0490-5,arXiv:0706.2569. [22] J.Pumplin,D.R.Stump,J.Huston,H.L.Lai,P.M.Nadolsky,W.K.Tung,New

gen-erationofpartondistributions withuncertaintiesfromglobalQCD analysis, J.HighEnergyPhys.07(2002)012,http://dx.doi.org/10.1088/1126-6708/2002/ 07/012,arXiv:hep-ph/0201195.

[23] H.-L.Lai,M.Guzzi,J.Huston,Z.Li,P.M.Nadolsky,J.Pumplin,C.-P.Yuan,New partondistributionsforcolliderphysics,Phys.Rev.D82(2010)074024,http:// dx.doi.org/10.1103/PhysRevD.82.074024,arXiv:1007.2241.

[24] S. Agostinelli,et al., GEANT4 Collaboration,GEANT4 –a simulationtoolkit, Nucl. Instrum. MethodsPhys. Res., Sect. A,Accel. Spectrom. Detect.Assoc. Equip.506(2003)250,http://dx.doi.org/10.1016/S0168-9002(03)01368-8. [25] CMSCollaboration,Particle-floweventreconstructioninCMSandperformance

forjets,taus,andEmiss

T ,CMSPhysicsAnalysisSummaryCMS-PAS-PFT-09-001,

2009.http://cdsweb.cern.ch/record/1194487.

[26] CMS Collaboration,Commissioning oftheparticle-flowevent reconstruction with the first LHC collisions recorded in the CMS detector, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010. http://cdsweb.cern.ch/record/ 1247373.

[27] CMS Collaboration,The performanceofthe CMSmuondetectorinproton– protoncollisionsat√s=7 TeV attheLHC,J.Instrum.8(2013)P11002,http:// dx.doi.org/10.1088/1748-0221/8/11/P11002,arXiv:1306.6905.

[28] CMSCollaboration,Performanceofelectronreconstructionandselectionwith theCMSdetector inproton–proton collisionsat √s=8 TeV,J. Instrum.10 (2015)P06005,http://dx.doi.org/10.1088/1748-0221/10/06/P06005,arXiv:1502. 02701.

[29] M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High EnergyPhys.04(2008)063,http://dx.doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[30] M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,http://dx.doi.org/10.1140/epjc/s10052-012-1896-2,arXiv:1111.6097. [31] Y.L.Dokshitzer, G.D. Leder,S. Moretti,B.R.Webber, Betterjet clustering

al-gorithms,J.HighEnergyPhys.08(1997)001, http://dx.doi.org/10.1088/1126-6708/1997/08/001,arXiv:hep-ph/9707323.

[32] CMS Collaboration,Identification ofb-quarkjetswiththe CMSexperiment, J.Instrum.8(2013)P04013,http://dx.doi.org/10.1088/1748-0221/8/04/P04013, arXiv:1211.4462.

[33] CMSCollaboration, Studiesofjetmassindijetand W/Z+jetevents,J.High EnergyPhys.05(2013)090,http://dx.doi.org/10.1007/JHEP05(2013)090. [34] S.D.Ellis, C.K.Vermilion, J.R.Walsh,Recombinationalgorithms andjet

sub-structure:pruningasatoolforheavyparticlesearches,Phys.Rev.D81(2010) 094023,http://dx.doi.org/10.1103/PhysRevD.81.094023,arXiv:0912.0033. [35] J. Thaler, K. Van Tilburg, Identifying boosted objects with N-subjettiness,

J. HighEnergyPhys.03(2011)015,http://dx.doi.org/10.1007/JHEP03(2011)015, arXiv:1011.2268.

[36] CMS Collaboration, Search for massive resonances decaying into pairs of boostedbosonsinsemi-leptonicfinalstatesat√s=8 TeV,J.HighEnergyPhys. 08(2014)174,http://dx.doi.org/10.1007/JHEP08(2014)174,arXiv:1405.3447. [37] C.Patrignani,etal.,ParticleDataGroup,Reviewofparticlephysics,Chin.Phys.

C40(2016)100001,http://dx.doi.org/10.1088/1674-1137/40/10/100001. [38] J.M.Campbell,R.K.Ellis, MCFMfortheTevatronandtheLHC,Nucl.Phys.B,

Proc.Suppl.205–206(2010)10, http://dx.doi.org/10.1016/j.nuclphysbps.2010. 08.011,arXiv:1007.3492.

[39] CMSCollaboration,Searchfor aHiggsbosoninthemassrangefrom145to 1000 GeVdecayingtoapairofWorZbosons,J.HighEnergyPhys.10(2015) 144,http://dx.doi.org/10.1007/JHEP10(2015)144,arXiv:1504.00936.

[40] CMS Collaboration,CMSluminositybased onpixel clustercounting– sum-mer2013update,CMSPhysicsAnalysisSummaryCMS-PAS-LUM-13-001,2013. http://cdsweb.cern.ch/record/1598864.

[41] ATLASandCMSCollaborations,LHCHiggsCombinationGroup,Procedurefor theLHCHiggsbosonsearchcombinationinSummer2011, TechnicalReport ATL-PHYS-PUB 2011-11, CMS-NOTE 2011-005, 2011, http://cdsweb.cern.ch/ record/1379837.

(7)

[42] S.Schael,etal.,ALEPH,DELPHI,L3,OPAL,LEPElectroweak,Electroweak mea-surementsinelectron-positroncollisionsatW-boson-pairenergiesatLEP,Phys. Rep. 532 (2013) 119, http://dx.doi.org/10.1016/j.physrep.2013.07.004, arXiv: 1302.3415.

[43] CMSCollaboration,MeasurementoftheWZproductioncrosssectioninpp col-lisionsat√s=7 and 8 TeV andsearchforanomaloustriplegaugecouplings

at √s=8 TeV,Eur.Phys. J.C77(2017)236,http://dx.doi.org/10.1140/epjc/ s10052-017-4730-z,arXiv:1609.05721.

[44] ATLASCollaboration,MeasurementsofW±Z productioncrosssectionsinpp collisions at√s=8 TeV withthe ATLASdetector andlimitson anomalous gaugebosonself-couplings,Phys.Rev.D93(2016)092004,http://dx.doi.org/ 10.1103/PhysRevD.93.092004,arXiv:1603.02151.

TheCMSCollaboration

A.M. Sirunyan,A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, E. Asilar,T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö,M. Flechl, M. Friedl,

R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec,M. Jeitler1,A. König, I. Krätschmer, D. Liko,

T. Matsushita,I. Mikulec, D. Rabady, N. Rad, B. Rahbaran,H. Rohringer, J. Schieck1,J. Strauss,

W. Waltenberger, C.-E. Wulz1

InstitutfürHochenergiephysik,Wien,Austria

O. Dvornikov,V. Makarenko, V. Mossolov,J. Suarez Gonzalez, V. Zykunov

InstituteforNuclearProblems,Minsk,Belarus

N. Shumeiko

NationalCentreforParticleandHighEnergyPhysics,Minsk,Belarus

S. Alderweireldt, E.A. De Wolf,X. Janssen,J. Lauwers, M. Van De Klundert, H. Van Haevermaet,

P. Van Mechelen,N. Van Remortel, A. Van Spilbeeck

UniversiteitAntwerpen,Antwerpen,Belgium

S. Abu Zeid,F. Blekman, J. D’Hondt, N. Daci,I. De Bruyn, K. Deroover, S. Lowette,S. Moortgat, L. Moreels,

A. Olbrechts,Q. Python, K. Skovpen, S. Tavernier,W. Van Doninck, P. Van Mulders, I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella,L. Favart, R. Goldouzian, A. Grebenyuk,

G. Karapostoli,T. Lenzi,A. Léonard, J. Luetic, T. Maerschalk,A. Marinov, A. Randle-conde,T. Seva,

C. Vander Velde, P. Vanlaer,D. Vannerom, R. Yonamine,F. Zenoni, F. Zhang2

UniversitéLibredeBruxelles,Bruxelles,Belgium

A. Cimmino,T. Cornelis, D. Dobur,A. Fagot, M. Gul, I. Khvastunov,D. Poyraz, S. Salva, R. Schöfbeck,

M. Tytgat,W. Van Driessche, E. Yazgan, N. Zaganidis

GhentUniversity,Ghent,Belgium

H. Bakhshiansohi,C. Beluffi3,O. Bondu, S. Brochet,G. Bruno, A. Caudron, S. De Visscher, C. Delaere,

M. Delcourt,B. Francois, A. Giammanco, A. Jafari,M. Komm, G. Krintiras,V. Lemaitre, A. Magitteri,

A. Mertens, M. Musich, K. Piotrzkowski,L. Quertenmont,M. Selvaggi, M. Vidal Marono, S. Wertz

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

N. Beliy

UniversitédeMons,Mons,Belgium

W.L. Aldá Júnior, F.L. Alves,G.A. Alves,L. Brito, C. Hensel,A. Moraes, M.E. Pol,P. Rebello Teles

(8)

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato4,A. Custódio, E.M. Da Costa, G.G. Da Silveira5,

D. De Jesus Damiao,C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson,

D. Matos Figueiredo, C. Mora Herrera,L. Mundim, H. Nogima,W.L. Prado Da Silva, A. Santoro,

A. Sznajder,E.J. Tonelli Manganote4, F. Torres Da Silva De Araujo,A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahujaa, C.A. Bernardesa, S. Dograa,T.R. Fernandez Perez Tomeia,E.M. Gregoresb,P.G. Mercadanteb,

C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb,J.C. Ruiz Vargasa

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev,M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

InstituteforNuclearResearchandNuclearEnergy,Sofia,Bulgaria

A. Dimitrov, I. Glushkov,L. Litov, B. Pavlov,P. Petkov

UniversityofSofia,Sofia,Bulgaria

W. Fang6

BeihangUniversity,Beijing,China

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen,M. Chen, Y. Chen7,T. Cheng, C.H. Jiang, D. Leggat, Z. Liu,

F. Romeo,M. Ruan, S.M. Shaheen, A. Spiezia,J. Tao, C. Wang, Z. Wang, H. Zhang,J. Zhao

InstituteofHighEnergyPhysics,Beijing,China

Y. Ban, G. Chen, Q. Li, S. Liu,Y. Mao, S.J. Qian, D. Wang,Z. Xu

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

C. Avila,A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. González Hernández,

J.D. Ruiz Alvarez8, J.C. Sanabria

UniversidaddeLosAndes,Bogota,Colombia

N. Godinovic, D. Lelas, I. Puljak,P.M. Ribeiro Cipriano, T. Sculac

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic, M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,D. Ferencek, K. Kadija,B. Mesic, T. Susa

InstituteRudjerBoskovic,Zagreb,Croatia

M.W. Ather,A. Attikis, G. Mavromanolakis, J. Mousa,C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

UniversityofCyprus,Nicosia,Cyprus

M. Finger9, M. Finger Jr.9

CharlesUniversity,Prague,CzechRepublic

E. Carrera Jarrin

UniversidadSanFranciscodeQuito,Quito,Ecuador

A.A. Abdelalim10,11,E. El-khateeb12,E. Salama13,12

(9)

M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,J. Pekkanen, M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Härkönen,T. Järvinen, V. Karimäki,R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti,T. Lindén,

P. Luukka, J. Tuominiemi,E. Tuovinen, L. Wendland

HelsinkiInstituteofPhysics,Helsinki,Finland

J. Talvitie,T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,F. Couderc, M. Dejardin, D. Denegri,B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour,

S. Ghosh,A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci,M. Machet,

J. Malcles,J. Rander, A. Rosowsky, M. Titov

IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

A. Abdulsalam,I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon,C. Charlot,

O. Davignon,R. Granier de Cassagnac, M. Jo, S. Lisniak,P. Miné, M. Nguyen, C. Ochando, G. Ortona,

P. Paganini,P. Pigard, S. Regnard, R. Salerno,Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi,

A. Zghiche

LaboratoireLeprince-Ringuet,EcolePolytechnique,IN2P3-CNRS,Palaiseau,France

J.-L. Agram14,J. Andrea, A. Aubin,D. Bloch, J.-M. Brom,M. Buttignol, E.C. Chabert,N. Chanon, C. Collard,

E. Conte14,X. Coubez, J.-C. Fontaine14, D. Gelé, U. Goerlach,A.-C. Le Bihan, P. Van Hove

InstitutPluridisciplinaireHubertCurien(IPHC),UniversitédeStrasbourg,CNRS-IN2P3,France

S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul,C.A. Carrillo Montoya, R. Chierici,D. Contardo, B. Courbon,

P. Depasse,H. El Mamouni, J. Fay, S. Gascon,M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh,

M. Lethuillier,L. Mirabito, A.L. Pequegnot, S. Perries,A. Popov15,V. Sordini, M. Vander Donckt,

P. Verdier,S. Viret

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

T. Toriashvili16

GeorgianTechnicalUniversity,Tbilisi,Georgia

Z. Tsamalaidze9

TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann,S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten,C. Schomakers, J. Schulz,

T. Verlage

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

A. Albert, M. Brodski,E. Dietz-Laursonn, D. Duchardt, M. Endres,M. Erdmann, S. Erdweg, T. Esch,

R. Fischer,A. Güth, M. Hamer,T. Hebbeker, C. Heidemann, K. Hoepfner,S. Knutzen, M. Merschmeyer,

A. Meyer,P. Millet, S. Mukherjee,M. Olschewski, K. Padeken, T. Pook,M. Radziej, H. Reithler, M. Rieger,

F. Scheuch,L. Sonnenschein, D. Teyssier,S. Thüer

(10)

V. Cherepanov, G. Flügge, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller,A. Nehrkorn,

A. Nowack,C. Pistone, O. Pooth,A. Stahl17

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

M. Aldaya Martin,T. Arndt, C. Asawatangtrakuldee, K. Beernaert,O. Behnke, U. Behrens,A.A. Bin Anuar,

K. Borras18,A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos,G. Dolinska,

G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo19,J. Garay Garcia, A. Geiser, A. Gizhko,

J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb,J. Hauk, M. Hempel20,H. Jung,

A. Kalogeropoulos, O. Karacheban20, M. Kasemann,J. Keaveney, C. Kleinwort, I. Korol,D. Krücker,

W. Lange, A. Lelek, T. Lenz,J. Leonard, K. Lipka,A. Lobanov, W. Lohmann20, R. Mankel,

I.-A. Melzer-Pellmann,A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, D. Pitzl,R. Placakyte, A. Raspereza,

B. Roland, M.Ö. Sahin,P. Saxena, T. Schoerner-Sadenius,S. Spannagel, N. Stefaniuk,G.P. Van Onsem,

R. Walsh, C. Wissing

DeutschesElektronen-Synchrotron,Hamburg,Germany

V. Blobel, M. Centis Vignali, A.R. Draeger,T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Hoffmann,

A. Junkes, R. Klanner, R. Kogler,N. Kovalchuk, T. Lapsien, I. Marchesini, D. Marconi,M. Meyer,

M. Niedziela, D. Nowatschin, F. Pantaleo17,T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt,

S. Schumann,J. Schwandt, H. Stadie,G. Steinbrück, F.M. Stober,M. Stöver, H. Tholen, D. Troendle,

E. Usai, L. Vanelderen,A. Vanhoefer, B. Vormwald

UniversityofHamburg,Hamburg,Germany

M. Akbiyik, C. Barth,S. Baur, C. Baus, J. Berger,E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer,

A. Dierlamm, S. Fink,B. Freund,R. Friese, M. Giffels,A. Gilbert, P. Goldenzweig,D. Haitz, F. Hartmann17,

S.M. Heindl,U. Husemann, F. Kassel17,I. Katkov15, S. Kudella, H. Mildner, M.U. Mozer,Th. Müller,

M. Plagge, G. Quast, K. Rabbertz,S. Röcker, F. Roscher, M. Schröder,I. Shvetsov, G. Sieber, H.J. Simonis,

R. Ulrich, S. Wayand,M. Weber, T. Weiler, S. Williamson,C. Wöhrmann, R. Wolf

InstitutfürExperimentelleKernphysik,Karlsruhe,Germany

G. Anagnostou, G. Daskalakis,T. Geralis,V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

NationalandKapodistrianUniversityofAthens,Athens,Greece

I. Evangelou, G. Flouris,C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos,E. Paradas

UniversityofIoánnina,Ioánnina,Greece

N. Filipovic, G. Pasztor

MTA-ELTELendületCMSParticleandNuclearPhysicsGroup,EötvösLorándUniversity,Budapest,Hungary

G. Bencze,C. Hajdu, D. Horvath21,F. Sikler, V. Veszpremi,G. Vesztergombi22,A.J. Zsigmond

WignerResearchCentreforPhysics,Budapest,Hungary

N. Beni, S. Czellar, J. Karancsi23,A. Makovec, J. Molnar,Z. Szillasi

InstituteofNuclearResearchATOMKI,Debrecen,Hungary

M. Bartók22,P. Raics, Z.L. Trocsanyi, B. Ujvari

InstituteofPhysics,UniversityofDebrecen,Hungary

J.R. Komaragiri

(11)

S. Bahinipati24,S. Bhowmik25, S. Choudhury26,P. Mal, K. Mandal, A. Nayak27, D.K. Sahoo24, N. Sahoo, S.K. Swain

NationalInstituteofScienceEducationandResearch,Bhubaneswar,India

S. Bansal,S.B. Beri, V. Bhatnagar, R. Chawla, U. Bhawandeep, A.K. Kalsi,A. Kaur, M. Kaur, R. Kumar,

P. Kumari,A. Mehta, M. Mittal, J.B. Singh, G. Walia

PanjabUniversity,Chandigarh,India

Ashok Kumar,A. Bhardwaj, B.C. Choudhary, R.B. Garg,S. Keshri, S. Malhotra,M. Naimuddin, K. Ranjan,

R. Sharma,V. Sharma

UniversityofDelhi,Delhi,India

R. Bhattacharya,S. Bhattacharya, K. Chatterjee, S. Dey,S. Dutt, S. Dutta, S. Ghosh, N. Majumdar,

A. Modak, K. Mondal,S. Mukhopadhyay, S. Nandan,A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury,

S. Sarkar,M. Sharan, S. Thakur

SahaInstituteofNuclearPhysics,Kolkata,India

P.K. Behera

IndianInstituteofTechnologyMadras,Madras,India

R. Chudasama,D. Dutta, V. Jha, V. Kumar, A.K. Mohanty17, P.K. Netrakanti,L.M. Pant, P. Shukla,A. Topkar

BhabhaAtomicResearchCentre,Mumbai,India

T. Aziz,S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida,N. Sur, B. Sutar

TataInstituteofFundamentalResearch-A,Mumbai,India

S. Banerjee, R.K. Dewanjee,S. Ganguly, M. Guchait,Sa. Jain, S. Kumar, M. Maity25, G. Majumder,

K. Mazumdar,T. Sarkar25, N. Wickramage28

TataInstituteofFundamentalResearch-B,Mumbai,India

S. Chauhan,S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

IndianInstituteofScienceEducationandResearch(IISER),Pune,India

S. Chenarani29, E. Eskandari Tadavani,S.M. Etesami29, M. Khakzad, M. Mohammadi Najafabadi,

M. Naseri, S. Paktinat Mehdiabadi30,F. Rezaei Hosseinabadi, B. Safarzadeh31,M. Zeinali

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran

M. Felcini,M. Grunewald

UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, C. Calabriaa,b, C. Caputoa,b, A. Colaleoa,D. Creanzaa,c, L. Cristellaa,b,N. De Filippisa,c, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia,G. Minielloa,b,S. Mya,b,S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c,R. Radognaa,b,A. Ranieria, G. Selvaggia,b, A. Sharmaa, L. Silvestrisa,17, R. Vendittia,b, P. Verwilligena

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilana, D. Bonacorsia,b, S. Braibant-Giacomellia,b,L. Brigliadoria,b,R. Campaninia,b, P. Capiluppia,b,A. Castroa,b,F.R. Cavalloa, S.S. Chhibraa,b, G. Codispotia,b, M. Cuffiania,b,

(12)

S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa,b,A. Perrottaa, A.M. Rossia,b,T. Rovellia,b, G.P. Sirolia,b,N. Tosia,b,17

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

S. Albergoa,b,S. Costaa,b,A. Di Mattiaa,F. Giordanoa,b,R. Potenzaa,b,A. Tricomia,b,C. Tuvea,b

aINFNSezionediCatania,Catania,Italy bUniversitàdiCatania,Catania,Italy

G. Barbaglia, V. Ciullia,b,C. Civininia, R. D’Alessandroa,b,E. Focardia,b,P. Lenzia,b, M. Meschinia, S. Paolettia,L. Russoa,32, G. Sguazzonia, D. Stroma, L. Viliania,b,17

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi, S. Bianco, F. Fabbri,D. Piccolo, F. Primavera17

INFNLaboratoriNazionalidiFrascati,Frascati,Italy

V. Calvellia,b, F. Ferroa, M.R. Mongea,b,E. Robuttia, S. Tosia,b

aINFNSezionediGenova,Genova,Italy bUniversitàdiGenova,Genova,Italy

L. Brianzaa,b,17,F. Brivioa,b,V. Ciriolo, M.E. Dinardoa,b,S. Fiorendia,b,17,S. Gennaia,A. Ghezzia,b, P. Govonia,b,M. Malbertia,b, S. Malvezzia, R.A. Manzonia,b,D. Menascea,L. Moronia,M. Paganonia,b, D. Pedrinia,S. Pigazzinia,b,S. Ragazzia,b,T. Tabarelli de Fatisa,b

aINFNSezionediMilano-Bicocca,Milano,Italy bUniversitàdiMilano-Bicocca,Milano,Italy

S. Buontempoa, N. Cavalloa,c, G. De Nardo, S. Di Guidaa,d,17, M. Espositoa,b, F. Fabozzia,c,F. Fiengaa,b, A.O.M. Iorioa,b, G. Lanzaa,L. Listaa, S. Meolaa,d,17,P. Paoluccia,17, C. Sciaccaa,b, F. Thyssena

aINFNSezionediNapoli,Napoli,Italy bUniversitàdiNapoli’FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy

P. Azzia,17, N. Bacchettaa, L. Benatoa,b,D. Biselloa,b, A. Bolettia,b,R. Carlina,b,

A. Carvalho Antunes De Oliveiraa,b, P. Checchiaa,M. Dall’Ossoa,b,P. De Castro Manzanoa,T. Dorigoa,

U. Dossellia,F. Gasparinia,b,U. Gasparinia,b,A. Gozzelinoa,S. Lacapraraa, M. Margonia,b, A.T. Meneguzzoa,b,J. Pazzinia,b,N. Pozzobona,b, P. Ronchesea,b,F. Simonettoa,b, E. Torassaa, M. Zanettia,b,P. Zottoa,b,G. Zumerlea,b

aINFNSezionediPadova,Padova,Italy bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy

A. Braghieria,F. Fallavollitaa,b, A. Magnania,b, P. Montagnaa,b,S.P. Rattia,b, V. Rea, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa,b

aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy

L. Alunni Solestizia,b,G.M. Bileia, D. Ciangottinia,b,L. Fanòa,b, P. Laricciaa,b,R. Leonardia,b,

G. Mantovania,b,V. Mariania,b, M. Menichellia,A. Sahaa,A. Santocchiaa,b

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova,32,P. Azzurria,17, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia,M.A. Cioccia,32, R. Dell’Orsoa,S. Donatoa,c,G. Fedi, A. Giassia, M.T. Grippoa,32, F. Ligabuea,c,T. Lomtadzea,L. Martinia,b,

(13)

A. Messineoa,b, F. Pallaa,A. Rizzia,b,A. Savoy-Navarroa,33, P. Spagnoloa,R. Tenchinia, G. Tonellia,b,

A. Venturia,P.G. Verdinia

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

cScuolaNormaleSuperiorediPisa,Pisa,Italy

L. Baronea,b, F. Cavallaria,M. Cipriania,b, D. Del Rea,b,17, M. Diemoza, S. Gellia,b, E. Longoa,b, F. Margarolia,b, B. Marzocchia,b,P. Meridiania, G. Organtinia,b,R. Paramattia,b,F. Preiatoa,b, S. Rahatloua,b,C. Rovellia, F. Santanastasioa,b

aINFNSezionediRoma,Roma,Italy bUniversitàdiRoma,Roma,Italy

N. Amapanea,b,R. Arcidiaconoa,c,17,S. Argiroa,b,M. Arneodoa,c,N. Bartosika,R. Bellana,b, C. Biinoa, N. Cartigliaa,F. Cennaa,b, M. Costaa,b,R. Covarellia,b,A. Deganoa,b,N. Demariaa, L. Fincoa,b, B. Kiania,b, C. Mariottia, S. Masellia,E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa,M.M. Obertinoa,b, L. Pachera,b,N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b,F. Raveraa,b,A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa,A. Solanoa,b,A. Staianoa,P. Traczyka,b

aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy

cUniversitàdelPiemonteOrientale,Novara,Italy

S. Belfortea,M. Casarsaa, F. Cossuttia,G. Della Riccaa,b, A. Zanettia

aINFNSezionediTrieste,Trieste,Italy bUniversitàdiTrieste,Trieste,Italy

D.H. Kim,G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh,S. Sekmen, D.C. Son,Y.C. Yang

KyungpookNationalUniversity,Daegu,RepublicofKorea

A. Lee

ChonbukNationalUniversity,Jeonju,RepublicofKorea

H. Kim

ChonnamNationalUniversity,InstituteforUniverseandElementaryParticles,Kwangju,RepublicofKorea

J.A. Brochero Cifuentes,T.J. Kim

HanyangUniversity,Seoul,RepublicofKorea

S. Cho,S. Choi, Y. Go,D. Gyun, S. Ha,B. Hong, Y. Jo, Y. Kim, K. Lee,K.S. Lee,S. Lee,J. Lim, S.K. Park, Y. Roh

KoreaUniversity,Seoul,RepublicofKorea

J. Almond,J. Kim, H. Lee,S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang,H.D. Yoo, G.B. Yu

SeoulNationalUniversity,Seoul,RepublicofKorea

M. Choi,H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu

UniversityofSeoul,Seoul,RepublicofKorea

Y. Choi,J. Goh, C. Hwang, J. Lee,I. Yu

SungkyunkwanUniversity,Suwon,RepublicofKorea

V. Dudenas, A. Juodagalvis,J. Vaitkus

(14)

I. Ahmed,Z.A. Ibrahim, M.A.B. Md Ali34,F. Mohamad Idris35,W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

H. Castilla-Valdez, E. De La Cruz-Burelo,I. Heredia-De La Cruz36,A. Hernandez-Almada,

R. Lopez-Fernandez, R. Magaña Villalba, J. Mejia Guisao,A. Sanchez-Hernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

UniversidadIberoamericana,MexicoCity,Mexico

S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico

A. Morelos Pineda

UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico

D. Krofcheck

UniversityofAuckland,Auckland,NewZealand

P.H. Butler

UniversityofCanterbury,Christchurch,NewZealand

A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, W.A. Khan, A. Saddique,M.A. Shah, M. Shoaib, M. Waqas

NationalCentreforPhysics,Quaid-I-AzamUniversity,Islamabad,Pakistan

H. Bialkowska, M. Bluj,B. Boimska, T. Frueboes,M. Górski, M. Kazana, K. Nawrocki,

K. Romanowska-Rybinska, M. Szleper,P. Zalewski

NationalCentreforNuclearResearch,Swierk,Poland

K. Bunkowski,A. Byszuk37, K. Doroba,A. Kalinowski, M. Konecki,J. Krolikowski, M. Misiura,

M. Olszewski, M. Walczak

InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

P. Bargassa,C. Beirão Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli,P.G. Ferreira Parracho,

M. Gallinaro,J. Hollar, N. Leonardo,L. Lloret Iglesias, M.V. Nemallapudi,J. Rodrigues Antunes, J. Seixas,

O. Toldaiev, D. Vadruccio,J. Varela

LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,Lisboa,Portugal

S. Afanasiev,P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev,V. Karjavin, A. Lanev,

A. Malakhov,V. Matveev38,39,V. Palichik, V. Perelygin, S. Shmatov, S. Shulha,N. Skatchkov, V. Smirnov,

N. Voytishin,A. Zarubin

JointInstituteforNuclearResearch,Dubna,Russia

L. Chtchipounov,V. Golovtsov, Y. Ivanov, V. Kim40, E. Kuznetsova41,V. Murzin, V. Oreshkin, V. Sulimov,

A. Vorobyev

PetersburgNuclearPhysicsInstitute,Gatchina(St.Petersburg),Russia

Yu. Andreev,A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu,M. Kirsanov, N. Krasnikov,

A. Pashenkov,D. Tlisov, A. Toropin

(15)

V. Epshteyn,V. Gavrilov, N. Lychkovskaya,V. Popov, I. Pozdnyakov,G. Safronov, A. Spiridonov, M. Toms,

E. Vlasov,A. Zhokin

InstituteforTheoreticalandExperimentalPhysics,Moscow,Russia

T. Aushev,A. Bylinkin39

MoscowInstituteofPhysicsandTechnology,Moscow,Russia

M. Chadeeva42, O. Markin,V. Rusinov

NationalResearchNuclearUniversity’MoscowEngineeringPhysicsInstitute’(MEPhI),Moscow,Russia

V. Andreev,M. Azarkin39,I. Dremin39, M. Kirakosyan, A. Leonidov39,A. Terkulov

P.N.LebedevPhysicalInstitute,Moscow,Russia

A. Baskakov,A. Belyaev, E. Boos,M. Dubinin43,L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin,

O. Kodolova,I. Lokhtin,I. Miagkov, S. Obraztsov, S. Petrushanko,V. Savrin, A. Snigirev

SkobeltsynInstituteofNuclearPhysics,LomonosovMoscowStateUniversity,Moscow,Russia

V. Blinov44, Y. Skovpen44,D. Shtol44

NovosibirskStateUniversity(NSU),Novosibirsk,Russia

I. Azhgirey,I. Bayshev,S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov,

V. Krychkine, V. Petrov, R. Ryutin, A. Sobol,S. Troshin, N. Tyurin,A. Uzunian, A. Volkov

StateResearchCenterofRussianFederation,InstituteforHighEnergyPhysics,Protvino,Russia

P. Adzic45,P. Cirkovic, D. Devetak,M. Dordevic, J. Milosevic,V. Rekovic

UniversityofBelgrade,FacultyofPhysicsandVincaInstituteofNuclearSciences,Belgrade,Serbia

J. Alcaraz Maestre,M. Barrio Luna, E. Calvo,M. Cerrada,M. Chamizo Llatas, N. Colino, B. De La Cruz,

A. Delgado Peris,A. Escalante Del Valle, C. Fernandez Bedoya,J.P. Fernández Ramos, J. Flix, M.C. Fouz,

P. Garcia-Abia,O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa,E. Navarro De Martino,

A. Pérez-Calero Yzquierdo,J. Puerta Pelayo, A. Quintario Olmeda,I. Redondo, L. Romero,M.S. Soares

CentrodeInvestigacionesEnergéticasMedioambientalesyTecnológicas(CIEMAT),Madrid,Spain

J.F. de Trocóniz,M. Missiroli, D. Moran

UniversidadAutónomadeMadrid,Madrid,Spain

J. Cuevas,J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández,E. Palencia Cortezon,

S. Sanchez Cruz,I. Suárez Andrés, P. Vischia, J.M. Vizan Garcia

UniversidaddeOviedo,Oviedo,Spain

I.J. Cabrillo, A. Calderon, E. Curras, M. Fernandez,J. Garcia-Ferrero,G. Gomez, A. Lopez Virto, J. Marco,

C. Martinez Rivero,F. Matorras, J. Piedra Gomez, T. Rodrigo,A. Ruiz-Jimeno, L. Scodellaro,N. Trevisani,

I. Vila, R. Vilar Cortabitarte

InstitutodeFísicadeCantabria(IFCA),CSIC-UniversidaddeCantabria,Santander,Spain

D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball,D. Barney, P. Bloch, A. Bocci, C. Botta,

T. Camporesi, R. Castello,M. Cepeda, G. Cerminara, Y. Chen,D. d’Enterria, A. Dabrowski,V. Daponte,

A. David,M. De Gruttola, A. De Roeck, E. Di Marco46,M. Dobson, B. Dorney, T. du Pree,D. Duggan,

M. Dünser, N. Dupont, A. Elliott-Peisert,P. Everaerts, S. Fartoukh, G. Franzoni, J. Fulcher,W. Funk, D. Gigi,

K. Gill,M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Guthoff, P. Harris,J. Hegeman, V. Innocente,

(16)

M. Krammer1,C. Lange, P. Lecoq, C. Lourenço,M.T. Lucchini,L. Malgeri, M. Mannelli,A. Martelli,

F. Meijers, J.A. Merlin, S. Mersi, E. Meschi,P. Milenovic47,F. Moortgat, S. Morovic, M. Mulders,

H. Neugebauer,S. Orfanelli, L. Orsini, L. Pape,E. Perez, M. Peruzzi,A. Petrilli, G. Petrucciani, A. Pfeiffer,

M. Pierini,A. Racz, T. Reis,G. Rolandi48, M. Rovere,H. Sakulin, J.B. Sauvan, C. Schäfer, C. Schwick,

M. Seidel,A. Sharma, P. Silva,P. Sphicas49,J. Steggemann, M. Stoye,Y. Takahashi, M. Tosi, D. Treille,

A. Triossi,A. Tsirou, V. Veckalns50,G.I. Veres22,M. Verweij, N. Wardle, H.K. Wöhri, A. Zagozdzinska37,

W.D. Zeuner

CERN,EuropeanOrganizationforNuclearResearch,Geneva,Switzerland

W. Bertl,K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,U. Langenegger,

T. Rohe, S.A. Wiederkehr

PaulScherrerInstitut,Villigen,Switzerland

F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Grab, C. Heidegger,

D. Hits, J. Hoss,G. Kasieczka, W. Lustermann,B. Mangano,M. Marionneau, P. Martinez Ruiz del Arbol,

M. Masciovecchio, M.T. Meinhard,D. Meister, F. Micheli,P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata,

F. Pauss,G. Perrin, L. Perrozzi,M. Quittnat, M. Rossini, M. Schönenberger, A. Starodumov51,

V.R. Tavolaro, K. Theofilatos, R. Wallny

InstituteforParticlePhysics,ETHZurich,Zurich,Switzerland

T.K. Aarrestad, C. Amsler52, L. Caminada,M.F. Canelli, A. De Cosa, C. Galloni,A. Hinzmann, T. Hreus,

B. Kilminster, J. Ngadiuba,D. Pinna,G. Rauco, P. Robmann, D. Salerno, C. Seitz,Y. Yang, A. Zucchetta

UniversitätZürich,Zurich,Switzerland

V. Candelise,T.H. Doan, Sh. Jain,R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, A. Pozdnyakov,S.S. Yu

NationalCentralUniversity,Chung-Li,Taiwan

Arun Kumar, P. Chang, Y.H. Chang,Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu,

R.-S. Lu, M. Miñano Moya,E. Paganis, A. Psallidas, J.f. Tsai

NationalTaiwanUniversity(NTU),Taipei,Taiwan

B. Asavapibhop, G. Singh, N. Srimanobhas,N. Suwonjandee

ChulalongkornUniversity,FacultyofScience,DepartmentofPhysics,Bangkok,Thailand

A. Adiguzel, M.N. Bakirci53, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut,

Y. Guler, I. Hos54,E.E. Kangal55, O. Kara, U. Kiminsu,M. Oglakci, G. Onengut56,K. Ozdemir57,

S. Ozturk53, A. Polatoz, D. Sunar Cerci58, S. Turkcapar,I.S. Zorbakir, C. Zorbilmez

CukurovaUniversity- PhysicsDepartment,ScienceandArtFaculty,Turkey

B. Bilin, S. Bilmis, B. Isildak59, G. Karapinar60, M. Yalvac, M. Zeyrek

MiddleEastTechnicalUniversity,PhysicsDepartment,Ankara,Turkey

E. Gülmez,M. Kaya61,O. Kaya62, E.A. Yetkin63, T. Yetkin64

BogaziciUniversity,Istanbul,Turkey

A. Cakir,K. Cankocak, S. Sen65

IstanbulTechnicalUniversity,Istanbul,Turkey

B. Grynyov

(17)

L. Levchuk,P. Sorokin

NationalScientificCenter,KharkovInstituteofPhysicsandTechnology,Kharkov,Ukraine

R. Aggleton,F. Ball, L. Beck, J.J. Brooke, D. Burns,E. Clement, D. Cussans, H. Flacher,J. Goldstein,

M. Grimes, G.P. Heath, H.F. Heath,J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold66, S. Paramesvaran,

A. Poll, T. Sakuma,S. Seif El Nasr-storey, D. Smith,V.J. Smith

UniversityofBristol,Bristol,UnitedKingdom

K.W. Bell,A. Belyaev67,C. Brew, R.M. Brown, L. Calligaris,D. Cieri, D.J.A. Cockerill, J.A. Coughlan,

K. Harder,S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea,I.R. Tomalin, T. Williams

RutherfordAppletonLaboratory,Didcot,UnitedKingdom

M. Baber,R. Bainbridge, O. Buchmuller, A. Bundock,D. Burton, S. Casasso,M. Citron, D. Colling, L. Corpe,

P. Dauncey,G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan,Y. Haddad,

G. Hall,G. Iles, T. James, R. Lane, C. Laner, R. Lucas66,L. Lyons, A.-M. Magnan,S. Malik, L. Mastrolorenzo,

J. Nash, A. Nikitenko51,J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards,A. Rose,E. Scott,

C. Seez,S. Summers,A. Tapper, K. Uchida, M. Vazquez Acosta68,T. Virdee17,J. Wright, S.C. Zenz

ImperialCollege,London,UnitedKingdom

J.E. Cole, P.R. Hobson,A. Khan, P. Kyberd,I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

BrunelUniversity,Uxbridge,UnitedKingdom

A. Borzou,K. Call,J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

BaylorUniversity,Waco,USA

R. Bartek,A. Dominguez

CatholicUniversityofAmerica,Washington,DC,USA

A. Buccilli, S.I. Cooper,C. Henderson, P. Rumerio, C. West

TheUniversityofAlabama,Tuscaloosa,USA

D. Arcaro, A. Avetisyan, T. Bose,D. Gastler, D. Rankin, C. Richardson,J. Rohlf, L. Sulak,D. Zou

BostonUniversity,Boston,USA

G. Benelli, D. Cutts, A. Garabedian,J. Hakala, U. Heintz, J.M. Hogan,O. Jesus, K.H.M. Kwok,E. Laird,

G. Landsberg, Z. Mao,M. Narain, S. Piperov,S. Sagir, E. Spencer, R. Syarif

BrownUniversity,Providence,USA

R. Breedon,D. Burns, M. Calderon De La Barca Sanchez,S. Chauhan, M. Chertok, J. Conway,R. Conway,

P.T. Cox,R. Erbacher, C. Flores, G. Funk, M. Gardner,W. Ko, R. Lander, C. Mclean,M. Mulhearn, D. Pellett,

J. Pilot, S. Shalhout, M. Shi,J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi

UniversityofCalifornia,Davis,Davis,USA

M. Bachtis,C. Bravo,R. Cousins, A. Dasgupta,A. Florent, J. Hauser, M. Ignatenko,N. Mccoll, D. Saltzberg,

C. Schnaible,V. Valuev, M. Weber

UniversityofCalifornia,LosAngeles,USA

E. Bouvier, K. Burt,R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi,G. Hanson,J. Heilman, P. Jandir,

E. Kennedy,F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva,A. Shrinivas, W. Si,H. Wei,

S. Wimpenny,B.R. Yates

(18)

J.G. Branson, G.B. Cerati,S. Cittolin, M. Derdzinski, R. Gerosa,A. Holzner, D. Klein, V. Krutelyov, J. Letts,

I. Macneill,D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel,A. Vartak,

S. Wasserbaech69,C. Welke, J. Wood, F. Würthwein,A. Yagil, G. Zevi Della Porta

UniversityofCalifornia,SanDiego,LaJolla,USA

N. Amin, R. Bhandari,J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George,

F. Golf, L. Gouskos,J. Gran, R. Heller, J. Incandela,S.D. Mullin, A. Ovcharova,H. Qu, J. Richman, D. Stuart,

I. Suarez,J. Yoo

UniversityofCalifornia,SantaBarbara- DepartmentofPhysics,SantaBarbara,USA

D. Anderson,J. Bendavid,A. Bornheim, J. Bunn, J. Duarte, J.M. Lawhorn,A. Mott, H.B. Newman, C. Pena,

M. Spiropulu, J.R. Vlimant,S. Xie, R.Y. Zhu

CaliforniaInstituteofTechnology,Pasadena,USA

M.B. Andrews,T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg

CarnegieMellonUniversity,Pittsburgh,USA

J.P. Cumalat, W.T. Ford,F. Jensen, A. Johnson, M. Krohn,S. Leontsinis, T. Mulholland, K. Stenson,

S.R. Wagner

UniversityofColoradoBoulder,Boulder,USA

J. Alexander, J. Chaves,J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman,J.R. Patterson,

A. Rinkevicius, A. Ryd,L. Skinnari, L. Soffi, S.M. Tan,Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

CornellUniversity,Ithaca,USA

D. Winn

FairfieldUniversity,Fairfield,USA

S. Abdullin,M. Albrow, J. Anderson, G. Apollinari, A. Apresyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas,

J. Berryhill,P.C. Bhat, G. Bolla, K. Burkett,J.N. Butler, H.W.K. Cheung, F. Chlebana,S. Cihangir†,

M. Cremonesi,V.D. Elvira, I. Fisk,J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche,

D. Hare, R.M. Harris, S. Hasegawa,J. Hirschauer, Z. Hu, B. Jayatilaka,S. Jindariani, M. Johnson, U. Joshi,

B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln,R. Lipton, M. Liu, T. Liu, R. Lopes De Sá,J. Lykken,

K. Maeshima, N. Magini, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride,P. Merkel,K. Mishra,

S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, O. Prokofyev,G. Rakness, L. Ristori, E. Sexton-Kennedy,A. Soha,

W.J. Spalding,L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor,S. Tkaczyk, N.V. Tran,L. Uplegger,

E.W. Vaandering, C. Vernieri, M. Verzocchi,R. Vidal,M. Wang, H.A. Weber, A. Whitbeck,Y. Wu,F. Yang

FermiNationalAcceleratorLaboratory,Batavia,USA

D. Acosta, P. Avery, P. Bortignon, D. Bourilkov,A. Brinkerhoff, A. Carnes, M. Carver, D. Curry,S. Das,

R.D. Field, I.K. Furic, J. Konigsberg,A. Korytov, J.F. Low, P. Ma,K. Matchev, H. Mei, G. Mitselmakher,

D. Rank, L. Shchutska,D. Sperka, L. Thomas, J. Wang, S. Wang,J. Yelton

UniversityofFlorida,Gainesville,USA

S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

FloridaInternationalUniversity,Miami,USA

A. Ackert, T. Adams,A. Askew,S. Bein, S. Hagopian, V. Hagopian, K.F. Johnson,T. Kolberg, H. Prosper,

A. Santra,R. Yohay

Referanslar

Benzer Belgeler

performed (small bowel passage radiogram, contrast enema, distal loopogram), strictures detected on contrast studies, age at ostomy closure, strictures detected at further

1) Glomerüler hemodinamideki değişikliklerden bağımsız glomerülünün permselektif özelliklerinde düzelme (60,61). Bu hipotez aşağıdaki bulgulara

Herhangi bir anlatının oluşması için de en azından bir başlangıç durumu (başlangıç durumu) ile bir sonuç durumu (bir başka durum sözcesi) ve bu iki

j Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People ’s Republic of China.. k Present

l Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People ’s Republic of China.. m School of Physics and Electronics, Hunan

a Also at State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of..

Points are data; the (red) solid lines are the total fits; the (blue) dashed lines are the background shapes, and the hatched histograms are peaking background estimated from 2D M

Batı paradigması demok- rasiyi sosyalizmi gerçekleştirmek için bir araç ola- rak gören ‘Eski Sol’ akımlara veya insanı insan ya- pan değerleri direkt olarak tehdit eden