• Sonuç bulunamadı

Effect of Ti(IV) loading on CH4 oxidation activity and SO2 tolerance of Pd catalysts supported on silica SBA-15 and HMS

N/A
N/A
Protected

Academic year: 2021

Share "Effect of Ti(IV) loading on CH4 oxidation activity and SO2 tolerance of Pd catalysts supported on silica SBA-15 and HMS"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Catalysis

B:

Environmental

j ou rna l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t b

Effect

of

Ti(IV)

loading

on

CH

4

oxidation

activity

and

SO

2

tolerance

of

Pd

catalysts

supported

on

silica

SBA-15

and

HMS

A.M.

Venezia

a,∗

,

G.

Di

Carlo

b

,

L.F.

Liotta

a

,

G.

Pantaleo

a

,

M.

Kantcheva

c

aIstitutoperloStudiodeiMaterialiNanostrutturati(ISMN-CNR),viaUgoLaMalfa,153,PalermoI-90146,Italy

bIstitutoperloStudiodeiMaterialiNanostrutturati(ISMN-CNR),viaSalariakm29300,00015MonterotondoStazione,Rome,Italy cDepartmentofChemistry,BilkentUniversity,06800Bilkent,Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received4April2011

Receivedinrevisedform3June2011 Accepted11June2011

Available online 17 June 2011 Keywords: Pdcatalyst CH4oxidation TiO2-SBA-15 TiO2-HMS SO2effect

a

b

s

t

r

a

c

t

PuresilicaSBA-15andHMSandcorrespondingTi(IV)modifiedmesoporoussilica,with5and10wt% ofTiO2,werepreparedandusedassupportforpalladium(1wt%)catalysts.Thematerials,analysedby XPS,XRD,BET,NH3-TPDandFT-IRtechniques,weretestedinthetotaloxidationofmethane.The cat-alyticactivitywasmeasuredinleanconditionsatWHSV=60,000mlg−1h−1intheabsenceandpresence of10vol.ppmSO2.Moreover,theeffectofaprolongedreactionagingandsevereSO2poisoningonthe catalyticperformanceofthebestperformingcatalystwasinvestigated.TheadditionofTiO2improved thecatalyticperformanceoftheSBA-15supportedcatalystsbyincreasingthesulfurtoleranceandmost importantlybyfavoringtheregenerationofthecatalystinsubsequentSO2-freeruns.Anopposite behav-iorwasobservedwiththepalladiumsupportedonTi(IV)-modifiedHMSsupportwhichexhibitedlower activityandasubstantialworseningoftheSO2toleranceascomparedtopalladiumsupportedonpure HMS.Onthebasesofthestructuralandchemicalinvestigation,thedifferencesbetweenthetwoseries ofcatalystswereascribedtothedistinctstructuralandacidicpropertiesofthesupports.Inparticular, thegoodperformanceoftheTi(IV)dopedSBA-15supportedcatalystswasduetothecombinationof Ti(IV)structurallyincorporatedintothesilicalatticeandpresentassurfacedispersedTiO2particles.The negativeeffectoftheTi(IV)overtheHMSsupportedcatalystswasrelatedtothehighacidityinducedby themorehomogeneousincorporationofTi(IV)intothesilicastructure.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Natural gas, mainly consisting of methane, is increasingly

replacinggasolineordieselasfuelfortransportationvehicles[1,2].

Thereasonforthischangeisthedeclineofthepetroleumreserves

and theloweremission of pollutantsassociated withthe

com-bustionofmethane.Sincethenaturalgasfuelledvehicles(NGV)

typicallyrunatlowtemperature(320–420◦C)theemissionofNOx

islowerandduetothehighH:CratioalsotheproducedCO2 is

lessascomparedtotheotherfueldrivenvehicles[2].Nevertheless

amajorconcernrelatedtotheuseofnaturalgasistheemission

oftheunburnedmethanewhichhasanevenstrongergreenhouse

effectascomparedtotheCO2[3].Sincemethaneisanalmostinert

molecule,itrequireshightemperatureforitscompleteoxidation.

Acrucialstepintheachievementofthetotalcombustionprocess

istheactivationofthefirstC–Hbond[4,5].Eitherhomolyticbond

cleavagewiththeformationofradicals,orheterolyticC–Hbond

cleavageattheacid–basepairofsitesisgenerallyconsidered.In

anycase,inordertoincreasetheefficiencyofthemethane

com-∗ Correspondingauthor.Tel.:+390916809372;fax:+390916809399. E-mailaddresses:venezia@pa.ismn.cnr.it,anna@pa.ismn.cnr.it(A.M.Venezia).

bustionatlowtemperature(below600◦C)itisnecessarytousea

suitablecatalyst.Forthisspecificreaction,twoclassesofcatalysts

arecurrentlyinvestigated,thosebasedontransitionmetaloxides

assolidsolutionoxides[6,7],perovskites[8,9],hexaaluminate[10],

andthosebasedonnoblemetals[11–14].Amongthislatterclass,

Pd-basedcatalystsarethemostactiveforthemethanetotal

oxi-dationatlowtemperatures.Aspointedoutinseveralstudies,their

catalyticactivitydependsstronglyonthenatureofthesupport[12],

onthepalladiumprecursors[15,16]andonthesizeofthePdO

particles[17].Theirmajordrawbackisrepresentedbytheireasy

poisoningbysulfurderivedfromthegasandenginelubricating

oil[11].Accordingtotheliterature,whenasulfatingsupportlike

Al2O3isused,palladiumdeactivatesslowly,duetothe

preferen-tialinteractionofSOxwiththesupport,atvariancewithpalladium

overtheinertSiO2deactivatingquicklybecauseofthedirect

inter-actionbetweenpalladiumandSOx.Nevertheless,theuseofsilica,

intheabsenceofparticlesintering,allowsaneasierregenerationof

thesulfur-poisonedcatalystthroughthethermaldecompositionof

thepalladiumsulfateoccurringattemperatureabove600◦C[1,11].

Recentstudiesinourgrouphaveshownthatbothmethane

conver-sionactivityandsulfurtolerancecouldbeimprovedsubstantially

by using high surface areasilica with specific characteristic of

acidityand morphology. In particular,supportingpalladium on

0926-3373/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.apcatb.2011.06.013

(2)

mesoporous silica HMS yielded more efficientand more sulfur

resistantcatalystsascomparedtoalowersurfaceareasilica

sup-portedcatalyst[18].Incorporationofapreciseamount(10wt%)

ofTiO2 duringthesol–gelpreparation ofamorphoussilica

pro-ducedanadditionalimprovementofthesulfurtoleranceduring

themethaneoxidation inthepresenceofSO2,stillallowingthe

completecatalystregenerationtypicalofasilicasupport[19,20].

Thepositive behaviorwasattributedtothecombination ofthe

highsurfaceareasupportandthescavengeractionofthesulfating

oxidelikeTiO2.Withinthisframe,thepresentstudyintendsto

fur-therimprovethecatalyticbehaviorofpalladiumfortheoxidation

ofmethanebyusingtitania-dopedsilicamesoporousmaterialsas

catalystsupports.Tothisaimtwoseriesofpalladiumcatalysts

sup-portedonTi(IV)-modifiedHMSandTi(IV)-modifiedSBA-15were

prepared.Inordertocomparewiththeprevioussol–gelprepared

titaniamodifiedsilica[19],Ti(IV)wasincorporatedusingtheone

stepsynthesisinwhichtitaniumprecursorwasaddedduringthe

preparationofthemesoporousmaterials.Toevaluatetheeffectof

thesupportstructureonthePdactivityandstability,analysesby

XPS,XRD,BET,NH3-TPDandFT-IRtechniqueswereperformed.

2. Experimental

2.1. Supportandcatalystpreparation

ThemesostructuredHMSmaterialwassynthesizedaccording

toapublishedprocedure[21].Basically,HMSwasassembledfrom

4:1molarmixturesoftetraethylorthosilicate(TEOS)(Aldrich)as

theinorganicprecursoranddodecylamine(DDA)(Aldrich)asthe

structure-directingsurfactantin90:10(v/v)water/ethanol.About

49mmolofDDAweredissolvedin50mlofethanoland450mlof

H2O.Tothesurfactantsolution,heatedto60◦C,196mmolofTEOS

wereadded.Thegelmixturewaskeptina closedTeflonvessel

at60◦Cfor20h.Thereactionproductwasfiltered,washedwith

distilledwateranddriedatroomtemperaturefor24h.The

surfac-tantwasremovedbycalcinationinairat500◦Cfor4h.Titanium

containingHMSmaterialsweresynthesizedaccordingtothe

pro-cedurereportedbyTanevetal.[22]usingTi(iso-OC3H7)4(Aldrich)

astitaniumprecursor,andfollowingthesamestepsasabove.The

titaniumprecursor wasaddedin appropriateamounttoyield a

5wt%and10wt%ofTiO2inthefinalmixedoxide.

SBA-15 was synthesized following a procedure described

by Zhao et al. [23]. Accordingly, 8.1g of Pluronic P123

(EO20PO70EO20,Aldrich)wasdissolvedin146.8gdistilledwater

and4.4gof conc.HCl (37%) and stirredover night at35◦C. To

thissolution16gofTEOS(Si(OC2H5)4,Aldrich98%)wasquickly

addedandstirredfor24hat35◦C.Thesuspensionwasannealed

at100◦Cfor24hinclosedpolypropylenebottle.Thesolidproduct

wasfiltered,washedwithwaterandcalcinedat500◦Cfor5hin

air.Similarprocedurewasusedforthesynthesisofthetitanium

containingSBA-15materials.Themaindifferenceconsistedinthe

pre-hydrolysisofTEOSfor5hat35◦Cbeforeaddingappropriate

amountofTi(iso-OC3H7)4 dropbydropundervigorousstirring.

Thetitaniumprecursorwasaddedinappropriateamounttoyield

sampleswith5wt%and10wt%ofTiO2inthefinaloxide.

Attainment of the ordered mesoporous structures was

con-firmed by the SAXS patterns and by the typical type IV N2

adsorption–desorptionisotherms[21,24].

Palladiumwasdepositedbywetimpregnationusingan

aque-oussolutionofpalladiumnitrateintheappropriateamounttoyield

1wt%Pd loadedcatalysts.Thesampleswere calcinedat 500◦C

for4h.Thechemicalcompositionofthesampleswascheckedby

X-rayfluorescenceanalyses.ThesampleswerelabelledPd/HMS,

Pd/TixHMS,Pd/SBA-15andPd/TixSBA-15wherexrepresentedthe

TiO2weightpercentage(wt%).

2.2. Catalystcharacterization

X-raydiffractionpatternsweremeasuredwithaPhilips

verti-calgoniometerusingNi-filteredCuK␣radiation.Aproportional

counterand0.05◦stepsizesin2wereused.Theassignmentofthe

variouscrystallinephaseswasbasedontheJPDSpowder

diffrac-tionfilecards[25].Fromthelinebroadeningofthemainreflection

peaks,usingtheScherrerequation,particlesizesabovethe

detec-tionlimitsof3nmweredetermined[26].

SAXS measurements were performed with BRUKER AXS

NANOSTARwithstepsizesof0.02◦in2.

X-rayfluorescencewasperformedusingtheBrukerS2Ranger

spectrophotometer.

The microstructural properties of thematerials were

deter-minedfromN2adsorption–desorptionisothermsat−196◦Cusing

aSorptomatic1900(CarloErba)instrument.Beforethe

measure-ments,sampleswereheatedinvacuumat250◦Cfor2h.Specific

surfaceareasandporedistributionsofthematerialswereobtained

respectively using the Brunauer–Emmett–Teller (BET) and the

Barret–Joyner–Hatenda(BJH)calculationmethods[24].

TheX-rayphotoelectronspectroscopyanalyseswereperformed

withaVGMicrotechESCA3000Multilab,usingthe

unmonochro-matisedAlK␣source(1486.6eV)runat14kVand15mA.Forthe

individualpeakenergyregions,apassenergyof20eVwasused.

Samplesweremountedwithdouble-sidedadhesivetape.Binding

energieswerereferencedtotheC1sbindingenergyofadventitious

carbonsetat285.1eV.ThesoftwareprovidedbyVGwasusedfor

peakanalysesandforthecalculationoftheatomicconcentrations.

Theprecisiononthebindingenergyandontheatomicpercentage

valueswasrespectively±0.15eVand±10%.

The acidity of the oxide catalysts wasdetermined by

mea-surements oftemperature-programmeddesorptionof ammonia

(NH3-TPD).Thesampleamountof0.1gwasout-gassedina5vol.%

O2/He flow at 500◦C for 1h. This was followed by

ammonia-saturation by flowing 5% NH3/He stream (30ml/min) at room

temperaturefor1h.Afterpurgingwith100ml/minHeflowfor1h

at100◦Candthencoolingdowntoroomtemperature,thecatalyst

washeatedunderHe(30ml/min)inalinearrateof10◦C/minto

950◦Candtheammoniadesorptionwascontinuouslymonitored

bytheTCD.In ordertodeterminethetotalacidityof the

cata-lystfromitsNH3desorptionprofile,theareaunderthecurvewas

integrated.

The type of acidity (Lewis and Brønsted) was investigated

by FT-IR spectroscopy of adsorbed pyridine. The FT-IR spectra

wererecordedusingaBomemHartman&BraunMB-102model

FT-IRspectrometerwith a liquid-nitrogencooled MCTdetector

ata resolution of 4cm−1 (100scans).The self-supportingdiscs

(∼0.013g/cm2)wereactivatedintheIRcellbyheatingfor1hina

vacuumat450◦Candinoxygen(100mbar,passedthroughatrap,

cooledinliquidnitrogen) atthesametemperature,followedby

evacuationfor1hat450◦C.Thepyridine(Sigma–Aldrich)

adsorp-tiontestwascarriedoutbytheadmissionof1.6mbarofthebase

intotheIRcell,leftincontactwiththesamplefor15min.Theexcess

pyridinewasthenevacuatedatroomtemperaturefor15min,

fol-lowedbyadesorptionofthestronglybondedbasefractioninthe

temperaturerange 25–250◦C.Thespectraoftheadsorbed

com-poundswereobtainedbysubtractingthespectraoftheactivated

samplesfromthespectrarecorded.Thesamplespectrawerealso

gas-phasecorrected.

2.3. Catalyticactivity

Methaneoxidation catalytictests wereperformedusinga U

shapedquartzreactorwithaninnerdiameterof12mm,electrically

heatedinafurnace.Thecatalystpowder(sievedfractionbetween

(3)

thermalgradients,anditwasplacedonaporousquartzdisk.The

reactiontemperaturewasmeasuredbyaK-typethermocouplein

contactwiththecatalyticbedlong12mm.Priortothecatalytic

testing,thesamplesweretreated“insitu”underflowingO2(5vol.%

inHe,50ml/min)at350◦Cfor0.5handunderHeduringcooling

at200◦C.Thestandardreagentgasmixture,consistingof0.3vol.%

ofCH4+2.4vol.%O2 inHe,wasledoverthecatalyst(50mg)ata

flowrateof50ml/min(STP),equivalenttoaweighthourlyspace

velocity(WHSV)of60,000mlg−1h−1.Activitiesweremeasuredby

increasingthetemperaturefrom200◦Cto600◦C(bystepsof50◦C,

holdtime45min).Theinletandoutletgascompositionswere

anal-ysedbyonlinemassquadrupole(ThermostarTM,Balzers),inorder

tofollowtheevolutionofallthespecies,CH4,CO,CO2,H2,H2O,

O2.Moreover,theconcentrationsofCO,CO2andCH4specieswere

checkedbyIRanalysers(ABBUras14,Uras26),calibratedinthe

range0–3000ppmforCO,0–10,000ppmforCO2and0–30,000ppm

forCH4.ThereactionproductsofmethaneoxidationwereCO2and

H2O.NoCOwasdetectedintheoverallrangeoftemperature.

Car-bonbalancewascloseto±5%inallthecatalytictests.Experiments

ofmethaneoxidationinthepresenceofSO2wereperformedby

co-feeding10vol.ppmofSO2.Betweenconsecutiverunsthesample

wascooleddowninHeatmosphere.

3. Resultsanddiscussion

3.1. Characterization

3.1.1. N2adsorption–desorptionanalyses

TheN2adsorptionanddesorptionisothermsofthepuresilica

supportsandofthetitaniadopedonesareshowninFig.1.The

Fig.1. Nitrogenadsorption–desorptionisothermsofpureandTi(IV)dopedHMS andSBA-15supports.

Table1

TexturalandstructuraldataofpureandTi(IV)-modifiedSBA-15andHMSsupports.

Sample Sa(m2/g) d pb(nm) Vpc(cm3/g) a0d dwe(nm) HMS 824 3.2 0.99 4.6 1.4 Ti5HMS 845 2.5 1.33 4.5 2.0 Ti10HMS 728 2.6 1.00 4.3 1.7 SBA-15 838 7.7 0.99 11.3 3.6 Ti5SBA-15 912 7.1 1.35 11.3 4.2 Ti10SBA 841 7.1 0.96 11.0 3.9

aTheBETsurfaceareavalueswerecalculatedintherange0.05–0.2p/p0. bThemeanporediameterdeterminedusingtheBJHmodelfromN

2

adsorp-tion/desorptionisotherms.

c Theporevolumedeterminedconsideringtherangep/p0from0.1untilto0.98. dUnitcellparametercalculatedasa

0=2d100√3withd100beingtheplanedistance

computedaccordingtotheBragg’slaw(=2dsin).a0correspondstothedistance

betweenthepores.

eThewallthicknesscalculatedasd w=a0−dp.

isotherms areoftype IV,withhysteresisloopscharacteristicof

mesoporouscompounds.AccordingtotheIUPACclassification,the

hysteresisloopsoftheSBA-15andHMScanbeclassifiedasH1and

H3types,respectively[24].Asalreadyreportedinliterature,the

hysteresisloopsoftheSBA-15andTixSBA-15supportsarelarger

andtypicallyofthepresenceofmesopores[27].Incontrast,the

hysteresisloopsofHMSandTixHMSareratherflatandextended

overa largerange ofrelativepressures,indicating thepresence

ofbothframeworkmesoporosityandinterparticlemacroporosity

[27].ThetexturalpropertiesaresummarisedinTable1.TheBET

surfaceareasoftheHMSandSBA-15supportsaresimilarandquite

large.Bothsupportsareslightlyaffectedbythepresenceoftitania.

Asa functionofthetitanialoadingthesurfaceareasdo not

fol-lowanycleartrend,onthecontrary,theporediametersdecrease.

Asexpected,theaverageporediametersoftheSBA-15seriesare

morethandoublethoseoftheHMSseries.

3.1.2. SAXS

The SAXSpatterns of thetwo series of supports are shown

in Fig. 2. The correspondingunit cellparameters (a0), and the

wallthickness(dw)areprovidedinTable1.Theunitcell

param-eterswerecalculatedasa0=2d100√3,assumingahexagonalunit

cellforbothseriesofsupports.Thewallthicknesswasestimated

bysubtractingfroma0 theporediametersobtainedfromtheN2

physisorptionmeasurements.TheSAXScurvesoftheHMS

sam-plesarecharacterizedbyonemainbroadpeak,ataround2≈2◦

correspondingtoaunitcellparametersof≈4.4nmattributedto

abi-dimensionalhexagonalstructure[21].Theinsertionof

tita-niuminHMSresultedinaprogressivelossofthislong-rangeorder

andin aslightdecreaseoftheunitcellparameter.Onthe

con-trarySBA-15exhibitsthreemainreflectionpeaksindexedas(100),

(110)and(200)typicalofamoreorderedmaterial,withaunitcell

parameterof≈11.3nm.Theinsertionoftitaniadoesnotchange

sig-nificantlytheoriginalhexagonalstructurebut,inaccordwiththe

decreasedpeakintensity,slightlycausesadeteriorationofthelong

rangeorder.AsshowninTable1,aslightdecreaseoftheunitcell

parametersisobservedforthetitaniacontainingsupportsand

cor-respondinglyanincreaseoftheframeworkwallthickness,toalarge

extentintheHMSseries.Thiseffectwouldconfirmacertaindegree

oftitaniaincorporationinthestructureofthesilica[28,29].The

Table2

AcidpropertiesofthesupportsasdeterminedbyTPD-NH3intherange50–500◦C.

Sample T(◦C) VNH3(mlg−1)

HMS 114 1.4

Ti10HMS 157 7.8

SBA-15 118 2.0

(4)

Fig.2. SAXSCurvesofpureandTi(IV)dopedHMSandSBA-15supports.

subsequentimpregnationofpalladiumleavesunchangedtheSAXS

patterns(notshowninhereforbrevity)ofbothseriesofsupports.

3.1.3. TPD-NH3

Thechange of acidityupon insertion of titania was

investi-gatedbytemperatureprogrammeddesorptionofammonia.The

techniqueprovidedinformationonthetotalacidityofthesolids,

includingbothBrønstedandLewisacidityandaccountingforthe

differentstrengthandnumberofacidsites.TheTPDpatternsofthe

pureandofthe10wt%TiO2dopedmesoporoussilicasareshown

inFig.3.TheresultsaresummarisedinTable2,intermsof

tem-peratureofNH3desorptionandvolumesofdesorbedNH3.Forboth

typesofmesoporousmaterialsonlythefirstpeakwasconsidered.

Indeedtheotherfeature,consistingofabroadpeakobservedonly

inthe SBA-15samples,wasdue to theevolution of water and

organicmaterials,asdetectedbythequadrupolemeasurements,

andthereforenotincludedintheacidityevaluation.Accordingto

thepatternsandtothevalueslistedinTable2,itisevidentthatthe

insertionofTi(IV)inHMScausedasubstantialincreaseofacidity

intermsofboth,strengthandnumberofacidsites.Onthecontrary

theadditionoftitaniuminSBA-15producedonlyalimitedacidity

changes.

3.1.4. XRDanalyses

Inordertoidentifythecrystallinephasespresentinthesamples

theX-raydiffractionanalysesof thesupportedpalladium

cata-lystswereperformed.InFig.4thecorrespondingdiffractograms

areshownalongwiththediffractionlinesofthereferencephases,

anataseTiO2andPdO.TheXRDpatternsshowabroaddiffraction

bandbetween20◦and30◦2attributedtotheamorphouspartof

thesubstrate.CharacteristicPdOpeaksarepresentinthepatterns

Fig.3. TPD-NH3patternsintherange50–500◦Cofthemesoporoussupports.

ofbothseriesofsamples.Theanatasephaseisvisibleinthe

Ti(IV)-dopedSBA-15samples,butnotintheTi(IV)–dopedHMSseries.

Theanatasephasewasalsoobservedinasimilarlyprepared

Ti-SBA-15materialcontaining2.5at%Ti.DRSUV–visspectraofthis

samplepresentedanabsorptionbandaround334nmduetoTi4+

inoctahedralcoordinationtypicaloftheanatase[30].Generally

speaking,preparationof ion-dopedSBA-15bydirect

incorpora-tionduringthesynthesisofthemesoporousoxideisratherdifficult

duetothestrongacidicmedia[31].Indeed,understronglyacidic

conditions(pH<1)free titaniumspeciessuchasTi4+exist only

incationicformandthusarenotabletoentertheframeworkof

SBA-15[32].Thegraftingprocedureusingseveraltypesoftitanium

precursorsallowsinsertingonlyabout6at%oftitaniumrelativeto

siliconintoSBA-15matrix.Highertitanialoadings,8–10at%asin

thepresentcase(usedSi/Tiratiosof25and12),wouldproduce

anatasecrystallites ofTiO2 [33].Inthepresentwork,thedirect

synthesisprocedureadoptedforthepureSBA-15was

intention-allyused,aimingtoinvestigatetheeffectofTiO2eitherformedas

aggregatesandalsoasstructuralmodifier.ByapplyingtheScherrer

equationtothelinewidthofthemainreflectionpeaks,the

diam-etersofthePdOandTiO2 particlesinthedifferentsampleswere

estimated.ThecorrespondingcalculatedvaluesarelistedinTable3.

TiO2particlesizeof8nmwereobtainedfortheSBA-15supported

catalysts,whereasPdOparticlesizesof6–7nmwereobtainedfor

allthesamples,includedalsotheHMSsupportedones.

3.1.5. XPSanalyses

Informationonthe chemical stateand the surface chemical

compositionofthepalladiumsamples,beforethecatalytictests,

(5)

Fig.4.XRDpatternsofSBA-15andHMSsupportedpalladiumcatalystswithand withoutTi(IV).ThepatternsofpureanataseTiO2andPdOoxidesareshownas

references.

Table3

XRDderivedPdOandTiO2particlediametersinthefreshsamples.

Sample dPdO(nm) dTiO2(nm)

Pd/SBA-15 6 – Pd/Ti5SBA-15 6 8 Pd/Ti10SBA-15 7 8 Pd/HMS 7 – Pd/Ti5HMS 6 n.d.a Pd/Ti10HMS 6 n.d.a an.d.=notdetectable.

2p3/2andtheO1sbindingenergiesarecompiledalongwiththe

XPS-derivedatomicratiosTi/SiandPd/(Ti+Si).Thepalladium3d

photoelectronspectraarecharacterizedbythePd3d5/2binding

energyof337.2eV±0.2eV.ThevalueistypicalofPd4+asinPdO

2.

Fig.5. Ti2pphotoelectronspectraofPdcatalystssupportedon10wt%TiO2doped

mesoporoussilicas.

Thisoxidehasbeenalreadyreportedforsimilarsamples[19,34].

Itsformationmaybeattainedbyoxygenincorporation intothe

PdOcrystallatticeduringcalcination[34].TheTi2pspectraofthe

10wt%Ti(IV)dopedcatalystsareshowninFig.5.Theyare

char-acterizedbythetwospin-orbitcomponents,Ti2p3/2andTi2p1/2,

5.7eVapart.Thethirdcomponentat≈462.5eV±0.5eVincluded

inthefittedspectraisattributabletoacontributionfromtheO1s

lineexcitedbytheAlK␤lineofthenon-monochromatized

radi-ation(h=69.7eV)[31].ThebindingenergyoftheTi2p3/2 in

thepureTiO2oxidesis458.9eVtypicalofaTi4+species[30,35].In

accordwithapreviousstudy[19],largervaluesofTi2p3/2binding

energyareobservedforthetitaniaincorporatedsilicas.The

chem-icalshifts,withrespecttothepureTiO2value,rangefrom1.6eVin

theHMSseriesto0.5eVfortheSBA-15series.Twocontributions

mayberesponsibleforsuchsignificantshift,a“finalstate”andan

“initialstateeffect”.Astotheformereffect,itgenerallyaccountsfor

theTi2p3/2chemicalshiftwhenmovingfromPd/TixSitoPd/TiO2

[36]. It originatesfrom theextraatomic relaxationenergy [37]

whichisrelatedtothepolarizabilityoftheoxidecarrier.Theless

mobiletheelectronsare,asinSiO2,thesmalleristherelaxation

energyandthereforethelargeristhemeasuredbindingenergyof

thephotoelectrons.Thiseffect,relatedtotheelectricalpropertyof

thematerial,wouldproduceanalogousshiftinthetwotypesof

mesoporoussilicasupportedsamples,thereforeitcouldaccount

forpartofthetotalshift.Thesecondeffect,socalled“initialstate”

effect,discussedalreadyforaseriesofTiO2-graftedSiO2[35,38]and

responsibleforalargeshiftbetweenthetwoseriesofsamples,may

Table4

XPSbindingenergiesandXPS-derivedatomicratiosofthefreshcatalysts.

Sample Pd3d5/2(eV) Ti2p3/2(eV) O1sa(eV) Ti/Sib Pd/(Ti+Si)

Pd/HMS 337.4 533.6 0.02 Pd/Ti5HMS 337.3 460.5 533.4(97%) 0.02 (0.04) 0.02 530.6(3%) Pd/Ti10HMS 337.4 460.3 533.4(94%) 0.04 (0.08) 0.02 530.9(6%) Pd/SBA 337.2 533.4 0.02 Pd/Ti5SBA-15 337.0 459.3 533.5(90%) 0.06(0.04) 0.02 530.6(10%) Pd/Ti10SBA-15 337.0 459.4 533.5(85%) 0.08 (0.08) 0.02 530.8(15%)

aThevaluesinparenthesesrepresenttheatomicpercentagesoftheoxygenchemicalcomponents. bThevaluesinparenthesesrepresentthenominalatomicratios.

(6)

Fig.6. O1sphotoelectronspectraofPdcatalystssupportedon10wt%TiO2doped

mesoporoussilicas.

reflecttheoccurrenceintheTi(IV)-dopedsamplesofanintimate

associationofTiO2andSiO2,producingTi–O–SibondswhereTi4+

occupiestetrahedralcoordinationsitessimilartoSiinSiO2 [39].

Sincetitaniumismoreelectropositivethansilicon,theincreaseof

thepositivechargeonthetitaniumcenterofaTi–O–Sibondas

com-paredtoTi–O–Ti,woulddetermineanincreaseoftheTi2pbinding

energy.ThelargershiftobservedintheHMSderivedsamplesisin

accordwiththeXRDresults,suggestingabettertitaniadispersion

inthesesamplesascomparedtotheSBA-15samples.TheO1score

levelspectraofthemixedoxidesupportedcatalystsareshownin

Fig.6andthecorrespondingbindingenergiesarelistedinTable4.

TheO1sspectrawerefittedwithtwocomponents,ahighbinding

energyoneat≈533.5eV±0.1eVassignedtoSiO2andalow

bind-ingenergyfeatureat530.7eV±0.2eVclosertothevaluereported

forTiO2[39].Itisworthnoticingthattherelativeintensityofthe

lowenergypeakwithrespecttothehighenergypeakis

signifi-cantlyhigherinthePdTi10SBA-15ascomparedtothePdTi10HMS.

Thisdifferencereflectslargersurfaceamountofoxygen

interact-ingwithtitaniumandthereforelargeramountofsegregatedTiO2

atthesurfaceofthePdTi10SBA-15sample.AsshowninTable4,the

experimentalTi/Siatomicratioincreaseswithincreasingloadings

ofTiO2,asexpectedfromthenominalratiosgiveninparentheses.

Itisworthnoticingthelargervaluesofthisratioobtainedforthe

titaniadopedSBA-15samplesascomparedtothecorresponding

titaniadopedHMSsamples.Inaccordwiththeoxygenresults,this

againindicatesapreferentialsurfacesegregationoftitaniuminthe

SBA-15supportedcatalysts.ThePd/(Ti+Si)atomicratioslistedin

Table4arethesameforallsamplesand,aspredictablebecause

oftheadoptedimpregnationprocedure,theyarelargerthanthe

theoreticalvalueof∼0.006.

3.1.6. FT-IR

InFig.7theFT-IRspectraintheOHstretchingregionofthe

activatedHMSandSBA-15samplesarecomparedwiththespectra

of Pd-free and Pd-loaded 10% titania-doped mesoporous

com-posites.ThespectraofHMS andSBA-15exhibitasharpbandat

3744cm−1,assigned toisolated Si–OHspecies[40]. Thedoping

ofHMSwith10wt%TiO2 resultsina shiftoftheOHstretching

vibrationtowardlowerwavenumbersandappearanceofadistinct

shoulderatapproximately3690cm−1.Thedepositionofpalladium

causesdisappearanceoftheabsorptionsat3734and3690cm−1

and regeneration of thesignal at 3744cm−1. This leads tothe

conclusionthattheformertwobandscanbeascribedtotitanol

groupsthatserveasanchoringsitesofthepalladiumspecies.The

Fig.7.FT-IRspectraofthesamplesintheOHstretchingregion.

Pd-freeand Pd-loadedTi10SBA-15 sample spectradisplay very

strongabsorptionintheOHstretchingregionandtheintensities

ofthecorrespondingbandsareoff-scale.Thisindicatesthatthe

OHgroupsinducedbythemodificationofSBA-15withtitaniaare

Fig.8. (a)FT-IRspectrainthe1700–1400cm−1 regionoftheTi10HMSsample

recordedafteradsorptionofpyat25◦Candsubsequentdesorptionatvarious

tem-peratures.(L,Lewisacidity;B,Brønstedacidity;andH,hydrogenbondedpy)(b) FT-IRspectrainthe1700–1400cm−1regionofTi10SBA-15samplerecordedafter adsorptionofpyat25◦Candsubsequentdesorptionatvarioustemperatures.(L,

(7)

Fig.9.(a)FT-IRspectrainthe1700–1400cm−1regionofthePd/Ti10HMSsample

recordedafteradsorptionofpyat25◦Candsubsequentdesorptionatvarious tem-peratures.(L,Lewisacidity;B,Brønstedacidity;andH,hydrogenbondedpy)(b) FT-IRspectrainthe1700–1400cm−1regionofthePd/Ti10SBA-15samplerecorded

afteradsorptionofpyat25◦Candsubsequentdesorptionatvarioustemperatures.

(L,Lewisacidity;B,Brønstedacidity;andH,hydrogenbondedpy.)

associatedwiththeTiO2 phase whichis inagreementwiththe

XRDandXPSresultsshowinganatasecrystallitesatthesurfaceof

SBA-15.Theshoulderat∼3715cm−1,visibleinthespectraofboth

Ti-containingsupportsisassignedtoterminalTi–OHgroups[41].

Thebroadbandat∼3560cm−1inthespectraofTi10SBA-15and

Pd/Ti10SBA-15samplesisattributedtoH-bondedsilanol/titanol

groups[40].ThisabsorptionisabsentinthespectraofTi10HMS

andPd/Ti10HMSsamples.Thediscrepancyisprobablyrelatedto

somestructuraldifferencesbetweenthetwomesoporoussilicas.

In ordertodiscriminate theBrønstedand theLewis acidity,

theadsorptionofpyridine(py)hasbeenstudiedovertheTi-free

andTi-containingsupports,andforthePdcatalysts.Thespectra

obtaineduponroom-temperatureadsorptionofthebasefollowed

byevacuationatvarioustemperaturesareshowninFigs.8and9for

theTi-dopedsupportsandforthePdcatalystsrespectively.Allthe

spectraincludingthoseoftheTi-freesupports(notshowninhere)

exhibitedbandsat1598and1446cm−1duetonon-acidicsilanols

andcorrespondingtopymoleculesweaklyperturbedbyH-bonding

withthesurfaceOH-groups[29,42–44].Inaddition,aweak

absorp-tionat1626cm−1frompyridiniumiononacidicBrønstedsiteswas

observedalsoinbothTi-freesupports[28,42–44].However,the

protonatedbasewasweaklyboundand disappearedduringthe

evacuationat100◦C.ThedopingoftheHMSandSBA-15supports

bytitaniacaused significantchangesin thespectraofadsorbed

py.AsshowninFig.8,thebandsat1603and1462cm−1present

onlyintheTi-dopedsamplesareattributedtothe␯8aand␯19b

ringvibrations,respectively,ofpymoleculescoordinatedtostrong

Lewisacidsites,whilethebandat1584cm−1revealsthepresence

ofweakLewisacidsites[28,42–44].Byevacuationatdifferent

tem-peratures,theintensitiesofthebandsofpycoordinatedtoLewis

acidsites decreasesconsiderably. Smallamount of coordinated

pyremainsafterdegassingat250◦Candpressureof∼10−3mbar.

Thisindicatesthatthesamplesarecharacterizedbyamoderate

Lewisacidity.ThespectraoftheTi10HMStakenbetween50and

250◦C(Fig.8a)containasplitbroadbandwithmaximaat1648

and1628cm−1whichisattributedtothe␯8aand␯8bvibrations

of protonatedpy indicatingthe presenceof Brønstedacidsites

[28,42–44].Itshouldbenotedthatthebandataround1540cm−1

thatcorrespondstothe␯19bvibrationofpyadsorbedonBrønsted

acidsitesisnotobserved.Thereasonforthiscouldbethelow

con-centrationofsurfacehydroxylswithacidicprotons.However,the

absorptionsat1648and1628cm−1areclearlyvisibleinallofthe

spectratakeninthe50–200◦Ctemperaturerangewhichconfirm

thepresenceofcertainamountofweakBrønsted acidityin the

Ti10HMSsample.Pyridiniumionvibrationsat1646and1628cm−1

arenotobservedintheTi10SBA-15sample(Fig.8b)indicatingthe

absenceofBrønstedacidity.Thereforeforthismaterial,theband

at1476cm−1 (whichcanbeassignedtopycoordinatedtoboth

BrønstedandLewisacidsites)isrelatedonlytoLewisacidsites.

Severalmodelshavebeenproposedtoexplaintheappearanceof

acidsitesinamixedoxide.Themostacceptedoneisthemodel

byTanabeassumingthattheextrachargegeneratedbyintimately

mixingtwooxidesproducesacidicsitesofBrønstedorLewis

char-acterdependingonthesignofthischarge[45,46].Negativecharge,

balanced by association withprotons, generatesBrønsted sites

whereaspositivechargegeneratesLewissites.Applyingthismodel

tothecaseofthemixedtitaniaandsilicaoxideintheexcessofsilica,

followingtherulesofthemodel,thechargeexcessatthetitanium

cationwouldbenegative,thereforeproducingBrønstedacidsites.

Theeffectivenessofthemodelimpliesarelationshipbetweenthe

molecularhomogeneityandtheacidsitedensity.Then,the

pres-enceofBrønstedacidsitesontheHMSsamplesmayreflectabetter

Si/Tistructuralhomogeneity.Theresultwouldbeinaccordwith

theabsenceofanatasephaseintheXRDpatternsandalsowiththe

largerTi2pchemicalshiftandthelowerintensityofthelowenergy

O1scomponentobservedintheXPspectraoftheHMSsamples.

ThespectraofpyridineadsorbedonthePdpromotedsamples

aregiveninFig.9.ThecomparisonwiththespectraofFig.8

indi-catesthattheincorporationofpalladiumintothesupportslowers

theamountofLewisacidsites,especially inthePd/Ti10SBA-15

sample. Moreover,theabsorptionbandin the1675–1620cm−1

rangeofthespectrumofthePd/Ti10HMScatalyst(Fig.9a),assigned

topyridinecoordinatedtoBrønstedacidsites,becomesbroaderand

strongerthanthatofthesupport.Thissuggeststhatthepromotion

ofTi10HMSwithPdgeneratesadditionalBrønstedacidityandas

aresult,thetotalsurfaceacidityofthePd-containingTi10HMSis

higherthanthatofthePd-freesample.

In order to get preliminarymechanistic information on the

oxidation of methane and look for the formation of

interme-diate species, in situ FT-IR experiments were performed. The

spectra of the palladium catalysts, during 15min of exposure

to a gas mixture containing 15mbar CH4 and 85mbar O2 at

the various temperatures, were collected. The spectra for the

Pd/Ti10HMS andPd/Ti10SBA-15are shown inFig.10.The

pos-itiveabsorptioninthe3690–2700cm−1 rangeindicatesthatthe

amountofH-bondedhydroxylshasincreasedasaresultofwater

formation. The bands at 1635–1627 and 1534–1545cm−1 are

attributedtoadsorbedcarbonatespeciesmostlikelycoordinated

toTisites[15,43]whicharetheintermediatesforproducingCO2.

Inspiteoftheclosesimilaritybetweenthespectraofthetwo

sam-ples,itisworthnoticingthelargerintensityofthepeaksrelated

(8)

Fig.10.FT-IRspectrarecordedduringtheexposureofthePd/10Ti-HMSandPd/10Ti-SBA-15catalyststoamixtureof15mbarCH4+85mbarO2atvarioustemperatures.

spectrumofPd/Ti10HMSsampleascomparedtothesamepeaks

inthespectrum of Pd/Ti10SBA-15sample.No otheradsorption

speciesrelatedtotheactivatedmethaneweredetected.The

pres-enceofadsorbedformatespecies(HCOO−),withtypicalbandsat

3000–2700cm−1(C–Handcombinationsoffundamental

frequen-cies)and at1600–1550cm−1 (as C–O),as intermediatesofthe

reaction,couldnotbeexcluded[15,47].Thegasphasespectra(not

shownhere) indicatedformation ofCO2 withpeak observedat

2350cm−1.

3.2. CatalyticactivitywithSO2-freeandSO2-containingreactant

mixtures

Inordertocomparethecatalyticperformanceofthecatalysts,

T50values(correspondingtotemperaturesof50%CH4conversion)

offirstandsecondrunsperformedsequentiallyusingdifferent

con-ditionsarelistedinTable5alongwiththeArrheniusparameters.

Firstcyclesonthefreshsampleswereperformedwithpure

reac-tantmixtureandwithSO2containingmixture.Then,inorderto

checkforthermal instabilityand for possibleresidual

contami-nanteffects,secondrunswereperformedonsamplesagedupon

exposuretothepurereactantmixturefor16hat600◦C.Likewise,

aimingtorecoverthecatalystactivityafterthefirstruninthe

pres-enceofthepoisoningSO2,asecondcyclewasperformedusingSO2

–freereagents.

ByinspectionofTable5,judging fromthevalues oftheT50,

thefreshPd/HMSappearsslightlymoreactiveascomparedtothe

Pd/SBA-15.Quiteinterestingthelongexposuretothereactantsat

600◦C,withsomeexceptions,determinesanoveralldecreaseof

theT50valueswhichcouldbeattributedtotheremovalofsome

residualorganicprecursors.Asexpectedandinaccordwith

pre-viousresultsobtainedwithpalladiumsupportedonamorphous

titaniamodifiedsilica[19],thepresenceof10ppmofSO2 inthe

reactantmixturedeactivatesthecatalystsbycausingasubstantial

increaseoftheT50withrespecttothecycleswithoutSO2.Within

thesedataitisworthnotingthedifferentbehaviorofthecatalysts

supportedonsilicaHMSandsilicaSBA-15.Theeffectofthesupport

modificationbytitaniaappearstobestronglyrelatedtothetype

ofthesupport.InthecaseofSBA-15,anincreaseoftitanium

con-centrationimprovestheactivity(lowerT50).Onthecontrary,inthe

caseoftheHMScatalyststheadditionoftitaniuminthesupportis

detrimentalsinceitproducesanincreaseoftheT50.Onepossible

explanationforthesurprisingbehavioroftheHMScatalystcould

bethestrongsupportaciditywhichhindersthepreferential

reac-tionoftheSOxwiththesupport,beneficialforthepalladiumactive

sites.ConsideringthesecondcycleaftertheSO2exposure,the

activ-ityimprovesinallthesamples,asalreadyreportedforpalladium

catalystssupportedonhighsurfaceareasilica[18,19].Theeffect

oftitaniaonthecatalyticperformanceisshowninFigs.11and12,

whereselectedplotsofmethaneconversionasafunctionof

tem-peraturearegivenrespectivelyfortheHMSandtheSBA-15series

ofsupportedPdcatalysts.Thecurvesrefertoafirstcyclewiththe

SO2inthereactantmixtureandtothesubsequentcyclewiththe

SO2freereactantmixture.

Inordertogetinformationontheactivesitevariation,dueto

theoxideTiO2and/ortotheSO2poisoning,theapparentactivation

energiesweredeterminedforthedifferentcatalyticruns.

Neglect-ingtheeffectofsmallamountsofwaterformedintheprocess,the

integralequationofafirstorderreactionwithrespecttomethane

andpseudo-zeroorderwithrespecttooxygenwasusedforthe

calculationof thereaction rateconstants k [18,48].Then, from

Fig.11.MethaneconversionasafunctionoftemperatureoverHMSandTi(IV) promotedHMSPdcatalystsfordifferentcyclesindifferentconditions.

(9)

Table5

ValuesofT50(◦C)andArrheniusparametersa,activationenergy(Eact)andpreexponentialfactorA(s−1)ofthecatalysts,forthedifferentreactioncycles.

Sample 1stcycle 2ndcycleafter16hat600◦C 1stcyclewithSO2 2ndcycle

T50(◦C) Eact(kJ/mol) lnA T50(◦C) Eact(kJ/mol) lnA T50(◦C) Eact(kJ/mol) lnA T50(◦C) Eact(kJ/mol) lnA

Pd/SBA-15 341 77 17 346 71 16 405 125 25 395 85 18

Pd/Ti5SBA-15 302 78 19 308 73 17 383 90 19 325 77 18

Pd/Ti10SBA-15 304 76 20 282 67 21 334 79 18 292 75 18

PdHMS 322 79 18 289 76 18 382 120 24 359 81 18

Pd/Ti5HMS 344 97 21 334 69 16 407 85 18 375 72 16

PdTi10HMSb n.a. n.a. 422 81 16 383 73 14

aE

actandAarecalculatedfromtheArrheniusplotinthetemperaturerange250–350◦C. bn.a.indicatesthatthetestsforthissamplewerenotperformed.

theArrheniusplotofln(k)versus1/T,inthetemperaturerangeof

250–350◦Ccorrespondingtoconversionsrangingbetween10%and

80%,theactivationenergiesEactandthepre-exponentialfactorsA

oftheArrheniusequation,k=Aexp(−Eact/RT),werecalculatedand

listedalsoinTable5.Withsomeexceptions,thevaluesofthe

activa-tionenergiesarebetween70and85kJ/mol,whichareclosetothose

reportedpreviouslyforsimilarcatalystsforthesametemperature

range[19].Acarefulinspectionofthetablegivesinterestinghints

aboutthestructuralchangesuponthechemicalreactions.Although

mostofthevariationsarewithintheexperimentalerror(±10%),

somesystematicchangesareenvisagedwhichcanberelatedto

structuralmodificationduetothereaction.Afterathermal

treat-mentat600◦Cfor16h,alowervalueoftheactivationenergyis

observed,correspondinginsomecasestoanenhancementofthe

activity(lowerT50).Asreportedbefore,thepresenceofSO2inthe

reactantmixturecausesanincreaseoftheactivationenergy,quite

remarkableinthesampleswithoutTiO2inthesupport[18].Then,

forallthesamples,thesubsequentcycleaftertheSO2exposureis

characterizedbyloweractivationenergyandbyapartialrecovery

oftheactivity.Theactivityiscompletelyregainedinthecaseofthe

TipromotedSBAsupportedcatalysts,butonlypartiallyrecovered

inthepureSBA-15,HMSandTi-dopedHMSsupportedcatalysts.

Theincreaseoftheactivationenergyduringtheruninthe

pres-enceofSO2confirmedtheearlierideathatsulfurdeactivationwas

relatedtotheformationofacompositespeciesofloweractivity,

likePdO–SO3,quitelabileandeasilydecomposingattemperature

≥450◦C[18,19].

3.3. Stability,deactivationandstructuralchangesof

Pd/Ti10SBA-15

Themostinterestingsample,thePdTi10SBA-15exhibitingthe

lowestT50duringthecyclewithSO2andduringthesecondcycles,

Fig.12.MethaneconversionasafunctionoftemperatureoverSBA-15andTi(IV) promotedSBA-15Pdcatalystsfordifferentcyclesindifferentconditions.

Fig.13.CH4conversionasafunctionoftemperatureoverPd/Ti10SBA-15for

differ-entcyclesindifferentconditions.

wasselectedforaseriesofconsecutivecyclesinordertotestits

stability, deactivationand activityrecovery.Particularly, aftera

firstcyclewiththeSO2 containingreagentsand asecondcycle

withSO2-freereagents,thesampleunderwentanovernight

treat-mentinflowing10vol.ppmofSO2inHeat350◦Cataflowrateof

50ml/min.Afterthistreatmentthreemorecycleswiththepure

reagentswere performed.Alltherelated conversioncurvesare

given in Fig.13including alsothetwo curves (I cycleSO2 and

IIcycle)givenalreadyinFig.2.Thecorrespondingvalues ofT50

and Arrheniusparametersare listedinTable6. Forthesake of

claritysomeofthevaluesareduplicatedfromTable5.A

remark-ableincreaseoftheT50isobservedafterthenighttreatmentwith

SO2.Atthesametime,anincreaseoftheactivationenergyupto

114kJ/molisobtained.Inthefollowing4thand5thcycles,the

activ-ityiscompletelyrecovered.Itisremarkablethatthefinalvalues

oftheactivationenergies(95–94kJ/mol),althoughdecreasedwith

respecttothevalueobtainedaftertheseveredeactivation,donot

reachthelowestvalueof67kJ/molobtainedforthesecondcycle.

Thesignificantdifference,wellabovetheexperimentalerror,could

reflectsomestructuralchangesoftheactivesiteand,aslongasthe

Table6

ValuesofT50 (◦C)andArrheniusparametersa,activationenergy(Eact)and

pre-exponentialfactorA(s−1)ofthePd/Ti10SBA-15catalystforthedifferentreaction

cycles.

Reactioncycle T50(◦C)Eact(kJ/mol)lnA

1stcycle 304 76 20

2ndcycleafter16hexposuretothereactionmixtureat600◦282C 67 21

1stCycleSO2 334 79 18

2ndcycleSO2-free 292 75 18

3rdcycleafterovernightSO2treat. 375 114 23

4thcycle 287 95 22

5thcycle 286 94 22

aE

act andAarecalculatedfromtheArrheniusplotinthetemperaturerange 250–350◦C.

(10)

Table7

XRDderivedPdOandTiO2particlediametersandXPPd3d5/2bindingenergyandTi/SiandPd/(Ti+Si)atomicratiosinspentcatalysts.

Sample dPdO(nm) dTiO2(nm) Pd3d5/2(eV) Ti/Si Pd/(Ti+Si)

PdTi10SBA-15after5thcycleincludingSO2nighttreat. 18 7 337.0 0.08 0.005

PdTi10SBA-15after4daysreactionat600◦C 16 8 337.3 0.07 0.005

finalactivityisconcerned,iswellcompensatedbyanincreaseof

thepre-exponentialfactor.Onthesamesamplebutona

differ-entbatchastabilitytestwasperformedbyrunningacatalytictest

afterexposingthesampletothepurereagentmixturefor4days

at600◦C.Asrevealedbytheconversioncurve(notgiveninhere),

matchingexactlythecurveofthesecondcycle,(Table6secondrow

data)nochangeinthecatalyticperformanceoccurred.

Inordertocheckforstructuralmodification,thetwoaged

sam-pleswereanalysedbySAXS,XRDandXPStechniques.According

totheSAXSpatterns(notshownhere) theSBA-15mesoporous

structureoftheagedcatalystswasmaintained.TheXRDpatterns

ofthefreshsampleandthecorrespondingpatternsofthe

sam-pleafter5cyclesincludingtheSO2overnighttreatment(referto

Table6)andthesampleafterthelongrunof4daysat600◦Care

comparedinFig.14.ThepatternscontaintheTiO2anatasepeaks

andthePdOrelatedpeaks.ThecalculatedTiO2andPdOparticles

sizearegiveninTable7.ItisworthnoticingthatwhereastheTiO2

particlesmaintainthesamesize,thePdOparticlesizedrastically

increasesafterthelongrunwiththepurereagentmixturesand

alsoafterfivecyclesincludingtheovernightexposuretotheSO2at

350◦C.TheincreaseofthePdOparticlesizeuponsimilarsequence

ofreactioncycleswasalsoobservedrecentlywithapalladium

cat-alystsupportedonamorphousTi10SiO2[20].Itshouldbepointed

outthattheXRDtechniqueidentifiesthelargerparticles,whereas

smallparticlesizes,belowthelimitof3nm,arenotdetected.Then,

inordertoultimatelyconfirmthedecreaseofpalladium

disper-sion,XPSanalysesofthesamples,afterseveralcyclesincluding

theovernightSO2exposureandafterthestabilitytests,were

per-formed.TheXPSresultsofthespentsamplesarelistedinTable7.

Ascomparedtothecorrespondingvaluesofthefreshsample,as

giveninTable4,nosignificantchangesinthepalladiumbinding

energyand intheTi/Siatomic ratioareobserved.Howeverthe

smallervaluesofthePd/(Ti+Si)atomicratiosascomparedtothe

freshsampleareinaccordwiththeenlargementofthePdO

par-ticlesizerevealedbytheXRD.Itisworthnoticingthatinspiteof

thisseriouspalladiumsinteringthecatalyticactivityofthe

cata-lystwasmaintained.Arecentstudyonpalladiumsupportedon

silicaSBA-15,modifiedbyceriaandbyzirconia,reportedaloss

ofactivity, upon a severedeactivation test, for catalysts

show-Fig.14.XRDpatternsofPdTi10SBA-15catalystasfresh,after5thcycleincluding overnightSO2treatmentat350◦Candafterfourdaysofcatalyticreactionat600◦C

(longrun).

inggoodPdOparticlestability[13].Theconclusionofthework

wasthatthelossofcatalystactivityduringreactionwasnot

nec-essarilyrelated tothesinteringof theactivesitesbutratherto

thevariationoftheoxygenstoragecapacityandoxygenmobility

strictlyrelatedtothesupportproperties.It isacceptedthat

Pd-catalysedcombustionofmethaneoccursthrougharedoxorMars

vanKrevelenmechanism[17,49].Accordingly,duringthisreaction

PdOislocallyreducedtoPdbymethane,producingH2OandCO2,

andthenPdisreoxidisedbyoxygen.Althoughtheactivespecies

isconsideredPdO,itiswidelyrecognizedthatmetallicPdplays

theimportantrole in decomposingandactivatingthemethane

molecule[3,15,50].Therefore,theefficiencyoftheallprocessis

relatedtotheredoxpropertiesofthecatalystandtotheoxygen

mobility[17].Inthepresentcase,themaintenanceofthe

activ-ity,inspiteofthesignificantpalladiumoxidesintering,couldbe

attributedtothegoodinteractionbetweensurfacetitaniaand

sil-ica.Such interaction,asreportedin previouspapers,favorsthe

formationof Ti–O–Silinkageswithanincrease oftheoxidizing

potentialoftheTi(IV)cations[38,51].Theincreaseofthispotential

wouldenhancetheoxygenmobilityattheinterfacebetweenthe

Ti–O–Siunitsandthepalladiumparticles[38,49].Onthisaccount,

thestabilityofthePd/Ti10SBA-15catalyst,observedafteralong

lasting reactionat 600◦C and afterseveralcyclesincludingthe

overnightSO2 exposure,islikelyrelatedtotheoxygenmobility

whichallowsthereoxidationofthePdtoPdO.Inthepresenceof

asupportmetal—interaction,theincreaseofthePdOparticlesize

afterthelongreactionisnotdetrimental.Indeed,aninverseparticle

sizestructuresensitivityofthepalladiumcatalysedmethane

com-bustionwasclaimed,relatedtothehighstabilityofthesmallPdO

particlesinteractingwiththesupportandnotbeingeasilyreduced

[13,50].

4. Conclusion

Theeffectoftheadditionoftitaniatodifferentmesoporoussilica

oxidesonthemethaneoxidationactivityofsupportedpalladium

wasfoundtodependonthetypeofmesostructuredmaterial.The

additionof10wt%ofTiO2tothesilicaSBA-15,improvedthe

cat-alyticperformanceofthesupportedpalladiumcatalysts,intermsof

betteractivityandbettersulfurtoleranceascomparedtopalladium

overpureSBA-15support.Thisresultconfirmedthepositiveeffect

playedbytitania,actingasSO2scavenger,onPdcatalystssupported

onamorphoussilica[19].Oppositebehaviorwasobservedwiththe

HMSsamples.InthiscaseadditionofTiO2producedpoorer

cata-lystsintermsofloweractivityandlowerSO2tolerance.According

tothestructuralandmorphologicalanalyses,thetwoseriesof

cat-alystshadsimilarpalladiumdispersionandsimilarsurfaceareabut

differentTiO2distribution.InthecaseoftheHMS,Ti(IV)ionswere

homogeneouslydistributedintothesilicaframework,whereasa

mixtureofframeworkTi(IV)andsurfacesegregatedTiO2anatase

particleswaspresentintheSBA-15.Duetothemoreuniform

dis-tributionofTi(IV)intothesilicamatrix,asubstantialincreaseof

thetotalacidity,inparticularoftheBrønstedtype,developedin

theTixHMSsupportascomparedtotheSBA-15.Moreover,through

theinsituFT-IR,moreadsorbedwaterandcarbonatespecieswere

observedonthePd/Ti10HMSascomparedtothePd/Ti10SBA-15.

Onthebasesoftheseevidences,theformationofastrongeracidity

andthepresenceofBrønstedsiteswereresponsibleforthe

(11)

HMSsupportedPdcatalysts.Indeed,thestrongerwateradsorption

overtheacidicsupportwouldinhibitthecatalyticmethane

oxida-tionfavoringformationofthelessactivePd(OH)2andalsoblocking

theactive sites through surface diffusion.The large amountof

adsorbedcarbonatespecies,detectedinthePd/Ti10HMScatalyst

bytheinsituFTIRanalysesat350◦C,couldhavealsocontributed

to the deactivation of the catalysts. Furthermore, the creation

ofthestrongeracidity,byhinderingthepreferentialreactionof

theSOx withthesupport,nullified thescavenger action ofthe

titania.

Acknowledgements

This research hasbeen performed in theframework of the

D36/003/06COSTprogramandaNATOgrantESP.CLG.No.984160.

References

[1]P.Gelin,M.Primet,Appl.Catal.B39(2002)1–37.

[2]F.Arosio,S.Colussi,G.Groppi,A.Trovarelli,Catal.Today117(2006)569–576. [3]T.V.Choudhary,S.Banerjee,V.R.Choudary,Appl.Catal.A234(2002)1–23. [4] R.Burch,M.J.Hayes,J.Mol.Catal.A100(1995)13–33.

[5]Y.-x.Pan,C.-j.Liu,P.Shi,Appl.Surf.Sci.254(2008)5587–5593.

[6]L.F.Liotta,G.DiCarlo,G.Pantaleo,A.M.Venezia,G.Deganello,Appl.Catal.B66 (2006)217–227.

[7] N.Bahlawane,Appl.Catal.B67(2006)168–176. [8]Z.Gao,R.Wang,Appl.Catal.B98(2010)147–153.

[9]E.Tzimpilis,N.Moschoudis,M.Stoukides,P.Bekiaroglou,Appl.Catal.B87 (2009)9–17.

[10] Z.Jiang,Z. Hao,J. Su,T.Xiao,P.P.Edwards, Chem.Commun. 22(2009) 3225–3227.

[11]J.K.Lambert,M.S.Kazi,R.Farrauto,J.Appl.Catal.14(1997)211–223. [12]H.Yoshida,T.Nakajima,Y.Yazawa,T.Hattori,Appl.Catal.B71(2007)70–79. [13] F.Yin,S.Ji,P.Wu,F.Zhao,C.Li,J.Catal.257(2008)108–116.

[14] K.Persson,K.Jansson,S.G.Järas,J.Catal.245(2007)401–414.

[15]M.Schmal,M.M.V.M.Souza,V.V.Alegre,M.A.PereiradaSilva,D.V.Cesar,C.A.C. Perez,Catal.Today118(2006)392–401.

[16] N.M.Kinnumen,M.Suvanto,M.A.Moreno,A.Savimaki,K.Kallinen,T.-J.J. Kin-nunen,T.A.Pakkanen,Appl.Catal.A370(2009)78–87.

[17]K.Fujimoto,F.H.Ribeiro,M.A.Borja,E.Iglesia,J.Catal.179(1998)431–442. [18]A.M.Venezia,R.Murania,G.Pantaleo,G.Deganello,J.Catal.251(2007)94–102. [19] A.M.Venezia,G.DiCarlo,G.Pantaleo,L.F.Liotta,G.Melaet,N.Kruse,Appl.Catal.

B88(2009)430–437.

[20]G.DiCarlo,G.Melaet,N.Kruse,L.F.Liotta,G.Pantaleo,A.M.Venezia,Chem. Commun.46(2010)6317–6319.

[21]N.Marin-Astorga,G.Pecchi,T.J.Pinnavaia,G.Alvez-Manoli,P.Reyes,J.Mol. Catal.A247(2006)145–152.

[22]P.T.Tanev,M.Chibwe,T.J.Pinnavaia,Nature368(1994)321–323.

[23]D.Zhao,J.Feng,Q.Huo,N.Melosh,G.H.Fredrickson,B.F.Chmelka,G.D.Stucky, Science279(1998)548–552.

[24]S.J.Gregg,K.S.Sing,Adsorption,SurfaceAreaandPorosity,seconded.,Academic Press,SanDiego,1982.

[25] JCPDSPowderDiffractionFileInt.CentreforDiffractionData,Swarthmore, 1989,FileNo.42-1467.

[26] H.P.Klug,X-rayDiffractionProcedureforPolycrystallineandAmorphous Mate-rials,Wiley,NewYork,1954.

[27] V.LaParola,B.Dragoi,A.Ungureanu,E.Dumitriu,A.M.Venezia,Appl.Catal.A 386(2010)43–50.

[28] A.Tuel,Micropor.Mesopor.Mater.27(1999)151–169.

[29]W.Zhang,M.Fröla,J.Wang,P.T.Tanev,J.Wong,T.J.Pinnavaia,J.Am.Chem.Soc. 118(1996)9164–9171.

[30]T.A.Zepeda,Appl.Catal.A347(2008)148–161.

[31] N.N.Trukhan,V.N.Romanikov,A.N.Shmakov,M.P.Vanina,E.A.Paukshtis,V.I. Bukhtiyarov,V.V.Kriventsov,I.Yu.Danilov,O.A.Kholdeeva,Micropor.Mesopor. Mater.59(2003)73–84.

[32] W.Li,S.J.Huang,S.B.Liu,M.O.Coppens,Langmuir21(2005)2078–2085. [33]Z.Luan,E.M.Maes,P.A.W.VanderHeide,D.Zhao,R.S.Czernuszewics,L.Kevan,

Chem.Mater.11(1999)3680–3686. [34]Y.Bi,G.Lu,Appl.Catal.B41(2003)279–286.

[35]E.Santacesaria,M.Cozzolino,M.DiSerio,A.M.Venezia,R.Tesser,Appl.Catal. A270(2004)177–192.

[36]G.Lassaletta,A.Fernandez,J.P.Espinòs,A.R.Gonzalez-Elipe,J.Phys.Chem.99 (1995)1484–1490.

[37]C.D.Wagner,FaradayDiscuss.Chem.Soc.60(1975)291–300.

[38]A.M.Venezia,F.L.Liotta,G.Pantaleo,A.Beck,a.Horvath,O.Geszti,A.Kocsonya, L.Guczi,Appl.Catal.A310(2006)114–121.

[39] R.Castillo,B.Koch,P.Ruiz,B.Delmon,J.Catal.161(1996)524–529. [40]N.N.Trukhan,A.A.Panchenko,E.Roduner,M.S.Mel’gunov,O.A.Kholdeeva,J.

Mrowiec-Biało ´n,A.B.Jarz ˛ebski,Langmuir21(2005)10545–10554.

[41]M.I.Zaki,M.A.Hasan,F.A.Al-Sagheer,L.Pasupulety,ColloidsSurf.A190(2001) 261–274.

[42]M.Hunger,U.Schenk,M.Breuninger,R.Gläser,J.Weitkamp,Micropor. Meso-por.Mater.27(1999)261–271.

[43]G.Busca,Catal.Today41(1998)191–206.

[44] R.S.Araujo,D.A.S.Maia, D.C.S.Azevedo, C.L.CavalcanteJr.,E. Rodrıguez-Castellon,A.Jimenez-Lopez,Appl.Surf.Sci.255(2009)6205–6209. [45]K.Tanabe,T.Sumiyoshi,K.Shibita,T.Kiyoura,J.Kitagawa,Bull.Chem.Soc.Jpn.

47(5)(1974)1064.

[46] J.B.Miller,E.I.Ko,Catal.Today35(1997)269–292. [47] G.Busca,V.Lorenzelli,Mater.Chem.7(1982)89–126.

[48]L.J.Hoyos,H.Praliad,M.Primet,Appl.Catal.A98(1993)125–138.

[49]C.A.Muller,M.Maciejewski,R.A. Koeppel,A.Baiker,J. Catal.166 (1997) 36–43.

[50] S.C.Su,J.N.Carstens,A.T.Bell,J.Catal.176(1998)125–135. [51]X.Gao,I.E.Wachs,Catal.Today51(1999)233–254.

Şekil

Fig. 1. Nitrogen adsorption–desorption isotherms of pure and Ti(IV) doped HMS and SBA-15 supports.
Fig. 3. TPD-NH 3 patterns in the range 50–500 ◦ C of the mesoporous supports.
Fig. 4. XRD patterns of SBA-15 and HMS supported palladium catalysts with and without Ti(IV)
Fig. 7. FT-IR spectra of the samples in the OH stretching region.
+5

Referanslar

Benzer Belgeler

A new array signal processing technique, called as CAF-DF, is proposed for the estimation of multipath channel parameters in- cluding the path amplitude, delay, Doppler shift

As predicted, pride tracked the valuation of foreign audiences when the valuations of foreign and local audiences were correlated, but it failed to track foreign audiences for

The proposed automatic video based wildfire detection algorithm is based on four sub-algorithms: (i) slow moving video object detection, (ii) smoke-colored region detection,

The methods can be broadly categorized as follows: • Change (including Motion) Detection (Chen, 2004): In most flame detection algorithms, a pre-processing step exists, focusing

Türkiye’deki durumun değerlendirilmesine yönelik olarak ise teknik donanım ve ağ bağlantıları açısından bölgeler, iller ve hatta aynı ildeki semtler arasında hem nicel hem

Excitation of the GMR, which gives our device our asym- metric absorption/reflection functionality, with transparency functionality that stems from the fact that the Si grating,

So, the first assertion of the lemma is a consequence of a well known fact of conformal mapping theory... After this work was

Kırım Hanlığı (1442-1783) zamanından beri Kırım Tatarlarının millî sembolü olarak kullanılan Tarak Tamgalı Gökbayrak’ın, Kırım Tatar ninnilerinde de yer al- ması da