• Sonuç bulunamadı

Collagen-chitosan scaffold modified with Au and Ag nanoparticles: synthesis and structure

N/A
N/A
Protected

Academic year: 2021

Share "Collagen-chitosan scaffold modified with Au and Ag nanoparticles: synthesis and structure"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Collagen-chitosan

scaffold

modified

with

Au

and

Ag

nanoparticles:

Synthesis

and

structure

M.S.

Rubina

a

,

E.E.

Kamitov

a

,

Ya.

V.

Zubavichus

b

,

G.S.

Peters

b

,

A.V.

Naumkin

a

,

S.

Suzer

c

,

A.Yu.

Vasil’kov

a,∗

aA.N.NesmeyanovInstituteofOrganoelementCompounds,RussianAcademyofSciences,Moscow,119991RussianFederation bNationalResearchcenter«KurchatovInstitute»,Moscow,123182RussianFederation

cDepartmentofChemistry,BilkentUniversity,Ankara,06800Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received7May2015 Receivedinrevisedform 28December2015 Accepted13January2016 Availableonline14January2016

Keywords: Collagen-chitosanscaffolds Metal-vaporsynthesis Nanoparticles XPS XRD SAXS XANES/EXAFS

a

b

s

t

r

a

c

t

Nowadays,thedermalbiomimeticscaffoldsarewidelyusedinregenerativemedicine.Collagen-chitosan

scaffoldoneofthesematerialspossessesantibacterialactivity,goodcompatibilitywithlivingtissuesand

hasbeenalreadyusedasawound-healingmaterial.Inthisarticle,collagen-chitosanscaffoldsmodified

withAgandAunanoparticleshavebeensynthesizedusingnovelmethod-themetal-vaporsynthesis.

ThenanocompositematerialsarecharacterizedbyXPS,TEM,SEMandsynchrotronradiation-basedX-ray

techniques.AccordingtoXRDdata,themeansizeofthenanoparticles(NPs)is10.5nmand20.2nmin

Au-Collagen-Chitosan(Au-CollCh)andAg-Collagen-Chitosan(Ag-CollCh)scaffolds,respectivelyinfair

agreementwiththeTEMdata.SAXSanalysisofthecompositesrevealsanasymmetricsizedistribution

peakedat10nmforAu-CollChand25nmforAg-CollChindicativeofparticle’saggregation.According

toSEMdata,themetal-carryingscaffoldshavelayeredstructureandthenanoparticlesarerather

uni-formlydistributedonthesurfacematerial.XPSdataindicatethatthemetallicnanoparticlesareintheir

unoxidized/neutralstatesanddominantlystabilizedwithinthechitosan-richdomains.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Naturallyoccurringpolymersarewidelyappliedinmedicine duetotheirpronouncedbiocompatibility,availability of renew-ablesources,easiness ofchemical modification,etc.[1].Among them,chitosan is ofspecial importance,which isessentiallyan N-deacetylatedchitinderivative,alinearpolymercomposedof D-glucosamineandN-acetylglucosamineresidues.Chitosanisknown topromoteskinregeneration,woundsandburnshealing. Further-more,itmanifestshemostaticandimmunomodulatoryproperties [2–4],aswellasantibacterialandantifungalactivity[5,6].Chitosan isabiocompatiblepolymerandpossessesahighsorption capac-ity.Apartfrompristinechitosan,chitosan-basedhybridmaterials, especiallyoneswithcollagen[7],cellulose[8],polyethyleneglycol [9],polyvinylpyrrolidone[10],gelatin[11],polyvinylalcohol[12], etc.,arepromisingmaterialsforbiomedicalapplications[13].

Collagenisastructuralproteinactivelyusedinmedicine[14]. Availabilityofhydroxylicgroupsandaminoacidresiduesonits sur-facemakesitpossibletoadjustitssurfacechargetoeithernegative

∗ Correspondingauthor.Tel.:+74991359380.

E-mailaddress:alexandervasilkov@yandex.ru(A.Yu.Vasil’kov).

or positive values by changing pH[15].Collagen fibrils (cross-linkedornot,nativeordenaturated)stronglyaffectmorphology andphysiologyofcells[16].Collagenisnearlyasbiodegradable andbiocompatibleaschitosan,thatiswhyitiswidelyusedin tis-sueengineeringaswoundandburndressingandsponges.Collagen andchitosandonotoccurinnaturetogether,butspecific proper-tiesofbothpolymerscanbeutilizedtodesignahybridmaterial withuniquestructuralandmechanicalproperties[17].

Numerousexamples of similarmaterialsused for thetissue engineering, drugdelivery matrices, bandage dressing, etc.,are availablein literature[18,19].Incorporation ofnoble metalNPs withantibacterialactivityfurtherextendsapprovedfieldsof appli-cationsofcollagen-chitosanscaffolds.Themajorityofmethodsfor theincorporationofmetalNPsinpolymermatricesrequires chem-icalreductionofmetalsaltsimpregnatedintothepolymermatrix (e.g.,borohydrideorcitrate methods)[20,21].These techniques aretypicallymulti-stepandusepotentiallybiologicallyhazardous orenvironmentally unfriendlyreactants,stabilizers, orreducing agents[22],whichpreventorstronglylimittheuseoftheresultant compositesinmedicine[23].

Metal-vapor synthesis (MVS) is an efficient route to pro-ducebiologicallyactivemetalnanoparticlesand thecomposites derivedfromthemwithbiocompatiblematerialsforbiomedical http://dx.doi.org/10.1016/j.apsusc.2016.01.107

(2)

applications[24,25].Thetechniquehasbeensuccessfullyapplied tomodifycommonmedicalmaterials,includingsurgicalsuture anddressingmaterialsorimplants,withmetalnanoparticles pos-sessingantibacterialandantifungalproperty[26,27].Incontrastto themajorityofmethodsforpreparationofnanoparticles,theMVS methodisfullyenvironmentallysafeandcaneasilybeintegrated intodiversetechnologicalcycles.TheMVSmethodaffordscolloidal suspensions of NPsin commonmedical solvents, which makes anyfurtherpurificationunnecessary[28].Thetargetcomposites arepreparedviathemodificationofabiopolymerwithorganosols containingmetalnanoparticlesfollowedbysolventremoval.

Here, we report for the first time on the synthesis of metal-bearinghybridsystems based ontheintrinsicallyporous collagen-chitosanscaffolds.Thestructureandchemicalstatesof metalsinthecompositenanomaterialsareaddressedbymodern physicochemicaltechniques.

2. Experimental 2.1. Materials

Collagen-chitosanscaffold, denoted as CollCh,was prepared accordingtothemethoddescribed elsewhere[29].Et3N(Sigma Aldrich,purity≥99.5%)andi-PrOH(Fluka,purity99.8%)wereused asorganicsolvents.Allotherreactantsusedfortheexperiments wereofanalyticalgrade.Priortouseinthesynthesis,allsolvents weredried,distilledinanatmosphereofpurifiedAranddegassed byseveralconsecutivepump-freeze-thawcyclesat10−1Pa and RTfor1h.Theresultantcollagen-chitosanscaffoldwasdegassed invacuo.

2.2. Metal-vaporsynthesisofhybridmaterials

Theoriginal metal-vapor synthesis (MVS)method wasused in this work to produce metal-modified composites based on thecollagen-chitosanscaffold.The (MVS)methodis efficientin preparationofhighlyreactivemetalnanoparticlesandtheir incor-poration into various matrices to induce practically important magnetic[30],antibacterial[26],catalytic[31]andtribological[32] properties.

NanocompositesfilledwithgoldandsilverNPswereprepared byimpregnationofthemetal-containingorganosolsfromMVSinto thecollagen-chitosanscaffoldasdescribedelsewhere[26].Metals wereevaporated at a basepressure of 10−2Pa by a resistively heatedevaporatorintheformofeithertungstenrodorsmall tan-talumvesselforAu(99.99%)orAg(99.99%),respectively.Specially preconditionedorganicsolventsEt3Nandi-PrOHwereusedto sta-bilize,respectively,AuandAgnanoparticlesassols.Metalvapor wascondensed simultaneouslywiththesolventvaporonto liq-uidnitrogen-cooledwallsofaglassreactorwithavolumeof5L.A typicalsolvent-to-metalmolarratiointhesynthesiswas300:1. Afterthesynthesis,theco-condensate washeatedtothe melt-ingpoint andtheresultantorganosolwasimpregnatedintothe collagen-chitosanscaffoldplacedinaSchlenkflaskundervacuum. Theexcessiveamountoftheorganosolwasremovedandthetarget productwasdriedinvacuumat60◦C.

2.3. Characterizationmethods

2.3.1. Synchrotronradiation-basedtechniques

X-raystructuralstudiesofthecompositesbasedon collagen-chitosanscaffoldsmodifiedwithAuandAgnanoparticles,including suchtechniquesaspowderX-raydiffraction,small-angleX-ray scattering,andX-rayabsorptionspectroscopyXANES/EXAFSwere performedat theKurchatov synchrotronradiation source(NRC “KurchatovInstitute”,Moscow).

X-rayabsorptionspectraandpowderdiffractionpatternswere measuredattheStructuralMaterialsSciencebeamline [33]. Au L3-edgeXANES/EXAFSforthegold-containingsampleAu-CollCh aswellasfortheAufoilreferenceweremeasuredinthe trans-missionmodeusingionchambersfilledwithappropriateN2-Ar mixtures.ForsimilarAg-containingcomposites,thesilver concen-trationappearedinsufficientfortransmissionmeasurementsand thusthespectraweremeasuredintheX-rayfluorescenceyield modeusingaSiavalanchephotodiode.SpectrafortheAgfoil refer-enceweremeasuredinthetransmissionmode.Experimentaldata processingandanalysiswereperformedusingtheIFEFFITsoftware package[34].

PowderX-raydiffractionpatternsforthesamesampleswere measuredin thetransmission (Debye-Sherrer)modeusing Fuji FilmImagingplatesasa2Ddetector.Diffractionmeasurements wereperformedatanX-raywavelength=0.06889nm.Themean nanoparticlesizewasestimatedbyprofileanalysisassumingthe Pseudo-Voightlineshapeofthediffractionpeakswith instrumen-talfunctionresponsiblefortheGaussianpartofbroadeningand Lorentzian-typesample-drivenphysicalbroadening.

Additionally, small-angle X-rayscattering curves were mea-suredforthepristineandAg-,Au-filledcollagen-chitosanscaffold to refine the diffraction data on NP sizing. The measurements wereperformedattheDICSIbeamlineofthesamesynchrotron sourceanda2DMAR165CCDdetectorwasused.The sample-to-detectordistancewas2400mmandtheX-raywavelengthwasset to=0.162nm.Toimprovesamplingandsignal-to-noise statis-tics,severaldatasetsatdifferentspotsonasampleweremeasured and averaged.The sizedistributionof Agand Au nanoparticles wasretrievedfromthecorrespondingSAXS“Ag-CollCh-CollCh” and“Au-CollCh-CollCh”differencecurves,respectively.The indi-rectFouriertransformationapproachasimplementedintheGNOM code under assumption of a polydisperse distribution of non-interactinghardspheres[35]hasbeenused.

2.3.2. X-rayphotoelectronspectroscopy(XPS)

X-rayphotoelectronspectrawereacquiredwithanAxisUltra DLD(Kratos,UK)spectrometerusingAlK␣radiationatan operat-ingpowerof150WoftheX-raytube.Surveyandhigh-resolution spectraofappropriatecorelevelswererecordedatpassenergiesof 160eVand40eVandwithscanningstepsof1eVand0.1eV, respec-tively.Sampleareaof300␮m×700␮mcontributedtothespectra. Thesamplesweremountedonasampleholderwithatwo-sided adhesivetape,andthespectrawerecollectedatroomtemperature. ThebasepressureintheanalyticalUHVchamberofthe spectrom-eterduringmeasurementsdidnotexceed10−8Torr.Thebinding energyscaleofthespectrometerwascalibratedtoprovidethe fol-lowing valuesfor referencesamples(i.e., metalsurfacesfreshly cleanedbyionsputtered):Au4f7/2–83.96eV,Cu2p3/2–932.62eV, Ag3d5/2–368.21eV.Theelectrostaticchargingeffectswere com-pensatedbyusinganelectronneutralizer.For eachsample,the spectrawererecalibratedagainsttheadventitiouscarbonsignalat 285.0eV.Backgroundwithinelasticlosseswassubtractedfromthe high-resolutionspectraaccordingtotheShirleyprescription.The AgMNNAugerspectrawerecorrectedusingalinearbackground. Thesurfacechemicalcompositionwascalculatedusingstandard elementsensitivityfactorscodedinthespectrometercontrol soft-warecorrectedforthetransferfunctionoftheinstrument. 2.3.3. TEM

Micrographsofthesamplesweremadeusingatransmission electronmicroscopeLEO912ABOMEGA,Zeiss(Germany). 2.3.4. SEM

SEManalysiswasperformedwithascanningelectron micro-scopeTescanMiraLMU(CzechRepublic).Thesampleswerefixed

(3)

Fig.1.XRDpatternsforthenanocompositesstudiedAu-CollCh,Ag-CollCh,and pristineCollCh(=0.06889nm).

onaconductivetapeandexaminedunderhighvacuumwiththe Everhart-Thornleystandardsecondaryelectrondetector.

3. Resultsanddiscussion

Theexperimental X-raydiffraction patternsof the collagen-chitosanscaffoldsmodified bygoldandsilvernanoparticlesare showninFig.1.Thecollagen-chitosanscaffoldappearstobe amor-phoussothatalldiffractionpeakspresentintherespectivepatterns canbeattributedtofccatomicpackingoftheAgandAu nanoparti-cles[PDF#040783and#040784,respectively].Thecrystallitesizes estimatedfromthelinebroadeninganalysisassumingthat micros-trainsmakenegligiblecontributionyield10.5nmand20.2nmfor Au-CollChandAg-CollCh,respectively,thenominalaccuracyofthe estimateis10–15%. 0.1 0.1 1 10 100 1000 10000 0 25 50 75 100 Sc at terin g Intens it y, a. u. q, nm-1 Volume fra ct ion , a. u . d, nm

Fig.2.ExperimentalSAXScurvesforAu-CollCh(filledsquares),Ag-CollCh(open circles),andpristineCollCh(line).Theinsetshowsvolumedistributionofmetal nanoparticlediametersreconstructedfromthedifferencecurves.

Forthecomposites,anindependentestimateforthe nanopar-ticlessizewasobtainedfromtheSAXSdata.Thecorresponding experimentaldataareshowninFig.2.

The experimental curve for the metal-containing composite (correctedfortheincidentintensityandthesampleX-ray absorp-tion) is characterizedby a higher scattering intensity than the pristineCollChscaffoldovertheentirerangeofscatteringwave vectorsmeasured, which makes it possibleto reliably separate thecontributionofthescatteringby thenanoparticlesvia sim-plenumericalsubtractionprocedure.Ananalysisofthedifference curveusingtheindirectFouriertransformationwiththeTikhonov’s regularizationunderassumptionofnone-interactinghardspheres yieldsarathernarrowandslightlyasymmetricsizedistribution peakedat10nmforAu-CollChandmuchbroaderasymmetric dis-tributioncurvewithamaximumat25nmextendinguptosizes

(4)

Fig.4.SEMmicrographsofthecross-sectionoftheAu-CollCh(a,b)andAg-CollCh(c,d)composites.

of 120–150nm for Ag-CollCh. Apparently, this means that the nanoparticlesareagglomeratedintoaggregatesfromfewtoseveral thousandindividualnanoparticleswithinthecomposite.

Fig.3showsmicrographs,SAEDpatternsofmetalnanoparticles andsizedistributionhistogramfortheAu-CollChandAg-CollCh. AccordingtoTEM,theparticlesarespherical,polydisperseandhave fairlyuniformdistributioninthescaffold.Theaveragesizeofthe AuandAgparticlesis4.6nmand6.6nm,respectively.Itis demon-stratedinFig.3(candg)thatAg-CollChcompositehavethebroader particlesizedistributionthanAu-CollChone.

The presence of larger Ag nanoparticles with size of about 60–70nminthematerialshowninFig.3(eandf)canbeexplained byaggregationofsmallernanoparticlesduringthemodificationof polymermatrixwithorganosol,aswellassurfacediversityofthe pristinescaffold.

Fig.4showstheinternalcross-sectionalmicrostructureofthe Ag-CollChandAu-CollChcomposites. Collagen-chitosanscaffold hasalayeredstructure,consistingoflamellasandmicrocavaties formedbypolymernetworkoffibrils(Fig.4a–c).

Theaveragediameterofmicrocavitiesisabout40–80microns andthethicknessofthefibrilscaffoldis2–5microns.Itisexhibited thattheaggregates,withsizesfromafewtensofnanometersto severalmicrons,haveslightlyuniformdistributionsonthesurfaces ofthefibrilsandlamellas(Fig.4bandd).

Supplementaryinformation ontheelectronic stateandlocal environmentofAuandAgatomsinthecompositeswasobtainedby X-rayabsorptionspectroscopyXANES/EXAFS.AuL3-andAgK-edge XANESspectraforthemetal-modifiedCollCh-basedcompositesare comparedwithreferencespectraofmetalfoilsinFig.5.

ThesimilarshapeandenergypositionofEXAFSspectralfeatures indicatethatthechemicalstateofthemetalatomsinthe compos-itesissimilartothatintheirbulkmetals,whichmeansthatthe fractionofsurfaceatomsstronglyinteractingwiththematrixis ratherlow.

FortheXANESspectrumoftheAg-CollChcomposite,anincrease intheperiodofoscillationsisapparent,whichcorrespondstoan Ag-Agbondlengthcontractionwithrespecttothebulkmetal.This findingisfurthersupportedbyaquantitativeanalysisoftheEXAFS

(5)

Fig.6.FTsofEXAFSspectraforcollagen-chitosanscaffoldsmodifiedwithAu(left)andAg(right):experimental(line)andbest-fittheoretical(opencircles)curves.Thelocal environmentparameterscorrespondingtothefitsaresummarizedinTable1.

Fig.7. SurveyXPSspectraofAu-CollCh(a)andAg-CollCh(b)composites;high-resolutionAu4f,Ag3d,AgMNNandN1score-levelspectraofAu-CollCh(c),Ag-CollCh(d, e)and(f1,f2),respectively.

(6)

Table1

Parametersofthelocalenvironmentofthemetalatomsinthechitosan-based com-positesaccordingtoEXAFS:interatomicdistances(R),coordinationnumbers(n), andDebye-Wallerfactors(2).

Sample Path n R[Å] 22]

Au(foil) Au-Au 12.0 2.85 0.0079

Au-CollCh Au-Au 11.9 2.84 0.0095

Ag(foil) Ag-Ag 12.0 2.88 0.0095

Ag-CollCh Ag-Ag 9.7 2.85 0.0119

data.FourierTransforms(FTs)ofEXAFSspectraforthe

compos-itesunderstudyareshowninFig.6.Theyareessentiallysimilar

tothoseofthereferencemetalfoils.Best-fitcoordinationnumbers andinteratomicdistancesforthefirstmetal-metalcoordination spheresarelistedinTable1.

Thecompositesarecharacterizedbysomewhatdecreased coor-dination numbers when compared with the data the for bulk metals,whichisverycommonfornanometer-sizedmetal parti-cles.Theminimummetal-metalcoordinationnumberisobserved fortheAg-CollChcompositedespiteitsratherlargercrystallitesize asestimatedfromdiffractiondata.Furthermore,theAg–Ag inter-atomicdistancederivedfromtheEXAFSforthatcompositeisby 0.03 ˚AshorterthanthatforAgfoil.Thebondlengthcontractionis quitetypicalofsmallmetalnanoparticles.Butinthecaseof sil-ver,bondlengthelongationissometimesobservedduetopartial oxidationandsuboxideformation[36].Nevertheless,aprominent changein thecoordinationnumberand bondlengthforthe Ag-CollChdespitenominallylargesizefromdiffractionmayindicatea distortedlocalstructureofsilvernanoparticleswithfrequentpoint defects.

Inordertoevaluatethesurfaceconcentrationsand chemical statesofmetalatomsinthecomposites(withinalayerof5–8nm), X-rayphotoelectronspectroscopywasapplied(Fig.7).Survey spec-tra of Au-CollCh (Fig. 7a) and Ag-CollCh (Fig. 7b) reveal peaks attributabletoelementsofthenominalchemicalcomposition,i.e., C,O,N,Au/Ag,aswellasadmixtureelementsSiandF. Quantifi-cationdatabasedonatomicsensitivityfactorsarepresented in Table2.AsitcanbejudgedfromC/NandC/Oatomicratios,the incorporationofmetals intothepristine collagen-chitosan scaf-foldsgivesrisetosomeenrichmentofthecompositesurfaceswith carbonspecies(seeTable2).Partly,thiscanbeduetoco-sorption oftheorganicsolventusedinthesynthesis.Theabsenceof dra-maticchangesinelementconcentrationsratherconfirmsthatthe CollChscaffoldsdonotdegradeuponmodificationwithnoblemetal nanoparticles.

TheAu4fbindingenergyobservedforthecomposite(Fig.7c)is characteristicoftheAu0state.Aminuteshiftby0.05eVtoahigher energywithrespecttofoilandpronouncedasymmetryofthepeak shapeareduetothesizeeffects[37,38]andthustheyalsoconfirm thepresenceofnm-sizedgoldnanoparticlestherein.

High-resolutionAg3dcore-levelsandMNNAugerlinesforthe Ag-containingcompositeareshowninFig.7dande.The experi-mentalvaluesfortheAg3dbindingenergy,AgMNNAugerkinetic energy,andthecorrespondingAugerparameterallconfirm[39,40] theAg0stateofsilveratomsinthecomposite.TheN1sspectrain metal-containingcompositesandpristinescaffoldsare character-izedbydifferentbindingenergiesandfull-widthsathalf-maxima

Table2

SurfacechemicalcompositionsofthecompositesfromXPSdata.

Sample Relativeconcentration,at.%

C N O Au Ag C/N C/O O/N

CollCh 74.2 8.5 17.3 – – 8.7 4.3 2.0

Au-CollCh 74.0 7.8 15.8 2.4 – 9.5 4.7 2.0

Ag-CollCh 75.2 8.1 15.8 – 1.0 9.3 4.8 2.0

(Fig.7f),whichcanbeexplainedbyanalterationofbalancebetween thecollagenandchitosanN-functionalgroupsuponthe modifica-tion.TypicalN1score-levelbindingenergiesinchitosan(C-NH2) andcollagen(C(O)N)are399.67eV[41]and399.77–399.96[42], respectively.

4. Conclusions

Thenovelmethodforthesynthesisofhybridmaterialsbasedon thecollagen-chitosanscaffoldmodifiedwithAgandAu nanopar-ticles is reported. XRD and SAXS data show that the Au- and Ag-bearingcompositesarecharacterizedbymeanparticlesizeof 10nmand25nm,respectively.Itisrevealedthatnanoparticlesin thebulkofmaterialshaveaslightlyuniformdistributionwiththe meansizeis4.6nmand6.6nmforAuandAg,respectively.Onthe surfaceitwasobservedthelargeraggregates,withsizesfromafew tensofnanometerstoseveralmicrons,consistingofsmaller parti-cles.Thewholestructureoftheobtainednanocompositesissimilar. However,theAg-CollChcompositehasmuchbroaderasymmetric sizedistributionthanAu-CollCh.

AccordingtoXPS,metalatoms areintheunoxidized/neutral statesandpreferablystabilizedinthechitosanmatrix.Similarly, XANES/EXAFSdataindicatethechemicalstateandlocalstructure ofmetalatomsinthecompositesissimilartothatofbulkmetals apartfromasmalldecreaseinmetal-metalcoordinationnumber inbothcomposites,andmetal-metalbond-lengthcontractionin Ag-CollCh.

Wesuggestthatcollagen-chitosanscaffold,containingAuand Agnanoparticles,canbepromising antibacterialwound-healing materialformedicine.

Acknowledgements

ThisworkwaspartiallysupportedbytheRussianFoundation forBasicResearch(grantsnos.14-03-01074and15-53-61030). References

[1]A.Aravamudhan,D.M.Ramos,A.A.Nada,S.G.Kumbar,Naturalpolymers: polysaccharidesandtheirderivativesforbiomedicalapplications,in:S. Kumbar,C.Laurencin,M.Deng(Eds.),NaturalandSyntheticBiomedical Polymers,firsted.,Elsevier,USA,2014,pp.67–89.

[2]R.Jayakumar,M.Prabahran,P.T.SudheeshKumar,S.V.Nair,H.Tamura, Biomaterialsbasedonchitinandchitosaninwounddressingapplications, Biotechnol.Adv.29(2011)322–337.

[3]S.-Y.Ong,J.Wu,S.M.Moochhala,M.-H.Tan,J.Lu,Developmentofa chitosan-basedwounddressingwithimprovedhemostaticandantimicrobial properties,Biomaterials29(2008)4323–4332.

[4]A.Pattani,V.B.Patravale,L.Panicker,P.D.Potdar,Immunologicaleffectsand membraneinteractionsofchitosannanoparticles,Mol.Pharm.6(2009) 345–352.

[5]I.Younes,S.Sellimi,M.Rinaudo,K.Jellouli,M.Nasri,Influenceofacetylation degreeandmolecularweightofhomogeneouschitosansonantibacterialand antifungalactivities,Int.J.FoodMicrobiol.185(2014)57–63.

[6]J.Xu,X.Zhao,X.Han,Y.Du,Antifungalacivityogoligochitosanagainst Phytophtoracapsiciandotherplantpathogenicfungiinvitro,Pest.Biochem. Physiol.87(2007)220–228.

[7]J.-P.Chen,G.-Y.Chang,J.-K.Chen,Electrospuncollagen/chitosannanofibrous membraneaswounddressing,Coll.Surf.A:Physicochem.Eng.Asp.313–314 (2008)183–188.

[8]M.I.NiyasAhamed,S.Sankar,P.MohammedKashif,S.K.HayathBasha,T.P. Sastry,Evaluationofbiomaterialcontainingregeneratedcelluloseand chitosanincorporatedwithsilvernanoparticles,Int.J.Biol.Macromol.72 (2015)680–686.

[9]C.Prego,D.Torres,E.Fernandez-Megia,R.Novoa-Carballal,E.Qui ˜noá,M.J. Alonso,Chitosan–PEGnanocapsulesasnewcarriersfororalpeptidedelivery: effectofchitosanpegylationdegree,J.ControlledRelease111(2006)299–308.

[10]T.C¸aykara,A.Alaslan,M.S.Ero˘glu,O.Güven,Surfaceenergeticsof

poly(N-vinyl-2-pyrrolidone)/chitosanblendfilms,Appl.Surf.Sci.252(2006) 7430–7435.

[11]C.-M.Deng,L.-Z.He,M.Zhao,D.Yang,Y.Liu,Biologicalpropertiesofthe chitosan-gelatinspongewounddressing,Carbohydr.Polym.69(2007) 583–589.

(7)

[12]E.Salehi,S.S.Madaeni,Influenceofpoly(ethyleneglycol)aspore-generator onmorphologyandperformanceofchitosan/poly(vinylalcohol)membrane adsorbents,Appl.Surf.Sci.288(2014)537–541.

[13]M.Rinaudo,ChitinandChitosan:propertiesandapplications,Prog.Polym. Sci.31(2006)603–632.

[14]M.Chvapil,R.L.Kronenthal,W.V.WinkleJr.,Medicalandsurgicalapplications ofcollagen,Int.Rev.ConnectiveTissueRes.6(1973)1–61.

[15]T.Nezu,F.M.Winnik,Interactionofwater-solublecollagenwithpoly(acrylic acid),Biomaterials21(2000)415–419.

[16]K.Yoshizato,A.Makino,K.Nagayoshi,Regulationofmorphologyand physiologyofepithelialcellsbycollagenfibrils,Biomed.Res.9(1988) 33–45.

[17]T.Garg,O.Singh,S.Arora,R.S.R.Murthy,Scaffold.Anovelcarrierforcelland drugdelivery,Crit.Rev.Therap.DrugCarrierSyst.29(2012)1–63.

[18]X.H.Wang,D.P.Li,W.J.Wang,Q.L.Feng,F.Z.Cui,Y.X.Xu,X.H.Song,M.vander Werf,Crosslinkedcollagen/chitosanmatrixforartificiallivers,Biomaterials 24(2003)3213–3220.

[19]L.Ma,C.Gao,Z.Mao,J.Zhou,J.Shen,X.Hu,C.Han,Collagen/chitosanporous scaffoldswithimprovedbiostabilityforskintissueengineering,Biomaterials 24(2003)4833–4841.

[20]L.-PingDing,Y.Fang,Aninvestigationofthesurface-enhancedRaman scattering(SERS)effectfromlaserirradiationofAgnanoparticlespreparedby trisodiumcitratereductionmethod,Appl.Surf.Sci.253(2007)4450–4455.

[21]W.Zhanga,X.Qiao,Q.Chen,Y.Cai,H.Chen,Theinfluenceofsynthesis conditionandagingprocessofsilvernanocrystalsontheformationofsilver nanorods,Appl.Surf.Sci.258(2012)5909–5913.

[22]D.Wei,W.Sun,W.Qian,Y.Ye,X.Mac,Thesynthesisofchitosan-basedsilver nanoparticlesandtheirantibacterialactivity,Carbohydr.Res.344(2009) 2375–2382.

[23]Y.-K.Twu,Y.-W.Chen,C.-M.Shih,Preparationofsilvernanoparticlesusing chitosansuspensions,PowderTechnol.185(2008)251–257.

[24]L.N.Nikitin,Yu.A.Vasil’kov,M.Banchero,L.Manna,A.V.Naumkin,V.L. Podshibikhin,S.S.Abramchuk,M.I.Buzin,A.A.Korlyukov,A.R.Khokhlov, Compositematerialsformedicalpurposesbasedonpolyvinylpyrrolidone modifiedwithketoprofenandsilvernanoparticles,Russ.J.Phys.Chem.A85 (2011)1190–1195.

[25]O.A.Belyakova,A.V.Shulenina,Ya.V.Zubavichus,A.A.Veligzhanin,A.V. Naumkin,Yu.A.Vasil’kov,Diagnosticsofgold-containingsurgical-dressing materialswithX-rayandsynchrotronradiation,J.Surf.Invest.X-ray SynchrotronNeutronTech.7(2013)509–514.

[26]G.Cárdenaz,J.DíazVisurraga,M.F.Meléndrez,C.Cruzat,A.GarcíaCancino, ColloidalCunanoparticles/chitosancompositefilmobtainedbymicrowave heatingforfoodpackageapplications,Pollym.Bull.62(2009)511–514.

[27]S.I.Stoeva,A.B.Smetana,C.M.Sorensen,K.J.Klabunde,Gram-scalesynthesis ofaqueousgoldcolloidsstabilizedbyvariousligands,J.ColloidInterfaceSci. 309(2007)94–98.

[28]C.Zhu,D.Fan,X.Ma,W.Xue,Y.Yu,Y.Luo,B.Liu,L.Chen,Effectsofchitosan onpropertiesofnovelhuman-likecollagen/chitosanhybridvascularscaffold, J.BioactiveCompatiblePolym.76(2009)560–576.

[29]PatentRU2108114.

[30]I.P.Suzdalev,Yu.V.Maksimov,Yu.A.Vasil’kov,A.V.Naumkin,V.L.

Podshibikhin,I.O.Volkov,ElectronicandmagneticpropertiesofAu-Fecluster nanocompositespreparedbyasequentialsolvatedmetalatomdispersion process,Nanotechnol.Russia3(2008)72–78.

[31]Yu.A.Vasil’kov,A.V.Naumkin,I.O.Volkov,V.L.Podshibikhin,G.V.Lisichkin, A.R.Khokhlov,XPS/TEMcharacterisationofPt–Au/Ccathodeelectrocatalysts preparedbymetalvapoursynthesis,Surf.InterfaceAnal.42(2010)559–563.

[32]A.P.Krasnov,V.N.Aderikha,O.V.Afonicheva,V.A.Mit’,N.N.Tikhonov,Yu.A. Vasil’kov,E.E.Said-Galiev,A.V.Naumkin,Yu.A.Nikolaev,Categorization systemofnanofillerstopolymercomposites,J.Frict.Wear31(2010)68–80.

[33]A.A.Chernyshev,A.A.Veligzhanin,Y.V.Zubavichus,Structuralmaterials scienceend-stationatthekurchatovsynchrotronradiationsource:recent instrumentationupgradesandexperimentalresults,Nucl.Instrum.Methods Phys.Res.A603(2009)95–98.

[34]B.Ravel,M.Newville,ATHENA,ARTEMIS,HEPHAESTUS:dataanalysisfor X-rayabsorptionspectroscopyusingIFEFFIT,J.Synchrotr.Rad.12(2005) 537–541.

[35]D.I.Svergun,Determinationoftheregularizationparameterin

indirect-transformmethodsusingperceptualcriteria,J.Appl.Crystallogr.25 (1992)495–503.

[36]A.I.Frenkel,A.Yevick,C.Cooper,R.Vasic,Modelingthestructureand compositionofnanoparticlesbyextendedX-rayabsorptionfine-structure spectroscopy,Annu.Rev.Anal.Chem.4(2011)23–39.

[37]C.R.Henry,Surfacestudiesofsupportedmodelcatalysts,Surf.Sci.Rep.31 (1998)235–325.

[38]F.Karadas,G.Ertas,E.Ozkaraoglu,S.Suzer,X-rayinducedproductionofgold nanoparticlesonSiO2/SisystemandinPMMA,Langmuir21(2005)437–442.

[39]R.Romand,M.Roubin,J.P.Deloume,ESCAstudiesofsomecopperandsilver selenides,J.ElectronSpectrosc.Relat.Phenom.13(1978)229–242.

[40]G.B.Hoflund,J.F.Weaver,W.S.Epling,AgFoilbyXPS,Surf.Sci.Spectra3 (1994)151–156.

[41]N.Li,R.Bai,C.Liu,Enhancedandselectiveadsorptionofmercuryionson chitosanbeadsgraftedwithpolyacrylamideviasurface-initiatedatom transferradicalpolymerization,Langmuir21(2005)11780–11787.

[42]G.Beamson,D.Briggs,HighResolutionXPSofOrganicPolymers:TheScienta ESCA300Database,Wiley,Chichester,1992.

Şekil

Fig. 1. XRD patterns for the nanocomposites studied Au-CollCh, Ag-CollCh, and pristine CollCh ( = 0.06889 nm).
Fig. 4. SEM micrographs of the cross-section of the Au-CollCh (a, b) and Ag-CollCh (c, d) composites.
Fig. 6. FTs of EXAFS spectra for collagen-chitosan scaffolds modified with Au (left) and Ag (right): experimental (line) and best-fit theoretical (open circles) curves

Referanslar

Benzer Belgeler

Our group focuses on the development of functional supra- molecular and nanostructured materials that can be used in di- verse areas including but not limited to theragnostic,

[r]

Whereas the rate of the photochemical reduction is not affected, as evidenced by the decrease in the intensity of the 320 nm band in time, the intensity of the SPR band around 530

This paper examines the role of inflation risk in a production economy with variable velocity of money. In this economy, money is neutral and is superneutral with respect to

We investigated the expressional status of shootin1 during neuronal differentiation of PC12 cells using western blot- ting, and found that the isoform-2, which was originally

Children in low-income preschool classrooms who heard new vocab- ulary words presented in books and reinforced through play sessions learned these words over the course of a

Furthermore, given the more gradual and persistent the volatility reaction to macroeconomic news, we test the time- variance in news effects by analyzing the conditional variance

state contsol have not been able to stop the rcle of Islam in Turkistr society and politics' Actually, while during the early years of tle Republic, religion was