• Sonuç bulunamadı

Non-Gaussian Elliptic-flow Fluctuations in PbPb Collisions at √sNN=5.02 TeV

N/A
N/A
Protected

Academic year: 2021

Share "Non-Gaussian Elliptic-flow Fluctuations in PbPb Collisions at √sNN=5.02 TeV"

Copied!
23
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Non-Gaussian

elliptic-flow

fluctuations

in

PbPb

collisions

at

s

NN

=

5

.

02

TeV

.The CMS Collaboration CERN,Switzerland a r t i c l e i n f o a b s t ra c t Articlehistory: Received 15 November 2017

Received in revised form 18 November 2018 Accepted 23 November 2018

Available online 2 January 2019 Editor: M. Doser

Keywords:

Event-by-event elliptic flow Non-Gaussian flow fluctuations Unfolding

Event-by-eventfluctuationsintheelliptic-flow coefficientv2 arestudiedinPbPbcollisionsat√sNN=

5.02 TeV usingtheCMSdetectorattheCERNLHC.Elliptic-flowprobabilitydistributionsp(v2)forcharged

particleswithtransversemomentum0.3<pT<3.0 GeV/c andpseudorapidity|η|<1.0 aredetermined

fordifferentcollisioncentralityclasses.Themomentsofthep(v2)distributionsareusedtocalculatethe

v2 coefficientsbasedoncumulantorders2,4,6,and8.Arankorderingofthehigher-ordercumulant

results and nonzero standardized skewness values obtainedfor the p(v2) distributions indicate

non-Gaussian initial-statefluctuations.Bessel–Gaussian andelliptic powerfits tothe flowdistributionsare studiedtocharacterizetheinitial-statespatialanisotropy.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Ultrarelativisticheavy ioncollisions atboth theBNL Relativis-tic Heavy Ion Collider (RHIC) and the CERN Large Hadron Col-lider (LHC) create a hot and dense state of matter that consists ofstronglyinteracting quarksandgluons, the“quark–gluon plas-ma”(QGP)[1–7].Measurementsofazimuthal particlecorrelations resulting from these collisions reveal properties of the QGP, but alsoofthe initial state ofa heavy-ioncollision. Inparticular, the overall shape and fluctuations in the initial-state transverse en-ergy density transformed by the hydrodynamic evolution of the medium intoanisotropies inthe final-statemomentum spacefor theemittedparticles[8–10],asreflectedintheazimuthal charged-particle density. The early RHIC measurements of the azimuthal correlationsshowedthat theQGPcould bedescribed wellby hy-drodynamicmodels[11],withashearviscositytoentropydensity ratio(η/s)that isofthe orderofthe lowestpossible value fora quantumfluid[12,13].

Theazimuthalcharged-particledensitycanbecharacterizedby aFourierexpansion,with

dNch dφ ∝1+2 ∞  n=1 vncos[n(φ− n)]. (1)

Here,thenth-orderflowvectorforagiveneventisvn≡ (vncosn, vnsinn),where n is the angle ofthe intrinsicnth-order flow

 E-mailaddress:cms-publication-committee-chair@cern.ch.

symmetry plane, as determined by the geometry of the partici-pantnucleons. Theexperimentally accessible“eventplane”angle, obsn ,isbasedonthedirectionofmaximumoutgoingparticle den-sityandis,onaverage,inthesamedirectionasn,butfluctuates aboutn becauseofresolutioneffectsduetofiniteparticle multi-plicities.

By calculating the flow coefficients over a large number of events,theunderlyingprobabilitydistributionfunctionsof individ-ualFouriercoefficientscanbedetermined.Whilethemeanvalues ofthe vn distributions canbe relatedto theoverall shapeofthe interactionregion,thehigherordermomentscanbeusedto con-strain the origin and the nature of the initial-state fluctuations andhelp disentangletheinitial-stateeffectsfromthe subsequent evolution of themedium [14,15]. Here, an event-by-event analy-sis is performedwhere it is possibleto reduce the sensitivity of the results to nonflow correlations [16] and to clearly establish higher-ordermomentsofthen=2 (elliptic)distributionfunction. The mean ofthis distribution,v2, islargely determined by the

lenticularshapeofthecollisionoverlapregion.

Whilethefinal-stateparticledistributionischaracterizedbythe 

vncoefficients,theinitial-statespatialanisotropycanbe character-ized bya harmonicexpansion interms ofeccentricityvectorsεn [17–20].Fora givenimpact parameter,fluctuationsinthe initial-state transverseenergydensitylead toevent-by-eventdifferences in the orientation and magnitudeof the εn vectorswith respect totheexperimentallyinaccessible“reactionplane,”definedbythe collisionimpactparameterandbeamdirections.Thepresenceofa nonzeroviscositywilldegradethecorrespondencebetween

initial-https://doi.org/10.1016/j.physletb.2018.11.063

0370-2693/©2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

(2)

andfinal-stateanisotropies [11,21]. Still, an almost linear depen-denceis expected forthe lowest order n=2 [22–26] and n=3 [9,18] harmonics,with vn=kn εn [19].Here, vn≡ |vn|, εn≡ | εn|, andkn is the flow response coefficient. The probability distribu-tionfunctionsofthe magnitudesofthe εn vectors, p(εn), canbe relatedtothecorresponding p(vn)distributionassuming a linear response,accordingto:

p(vn)= dεn dvn p(εn)= 1 kn p  vn kn  , (2)

where the kn term is expected to depend on the hydrodynamic evolutionofthemedium[27,28].

Theelliptic-flow p(v2)distribution canbe characterized using

the experimentally determined multiparticle cumulant flow har-monics v2{m} [29,30], where m is the cumulant order.

Alterna-tively, the distribution can be determined directly, as shown by theATLASCollaboration[16] andasdonehere,byremoving finite-multiplicityresolutioneffectsinthemeasured p(vobs

2 )distribution

throughan unfoldingtechnique. The cumulantharmonicsare ex-pressedintermsofthemomentsofthe p(v2)distribution[31,32]:

v2{2}2≡E(v22), v2{4}4≡ −E(v24)+2E(v22)2, v2{6}6≡  E(v62)−9E(vn4)E(v22)+12E(v22)3  /4, v2{8}8≡−(E(v82)−16E(v62)E(v22)−18E(v42)2 +144E(v42)E(v22)2−144E(v22)4)/33, (3) whereE(vk 2)≡  vk

2p(v2)dv2.The unitlessstandardized skewness

ofaprobabilitydistributionisameasureoftheasymmetry about its mean.Forthe caseofellipticflow, thestandardized skewness withrespecttothereactionplanecanbeestimatedusingthe cu-mulantflowharmonicsasinRef. [33]:

γ1exp≡ −6√2v2{4}2 v2{4} −v2{6}

v2{2}2v2{4}23/2

. (4)

Hydrodynamiccalculationsfindthisestimatetobeingood agree-ment with the actual skewness except for the most peripheral events[33].

The standardized skewness estimate vanishes for fluctuations that arise from an isotropic Gaussian transverse initial-state en-ergy densityprofile. In thiscase, the p(v2) distribution is found

by taking an integral over the azimuthal dependence of the two-dimensional Gaussian function [31,34]. The resultant, one-dimensional distributionhas a Bessel–Gaussian shape, wherethe evencumulantcoefficientsv2{m}withm≥4 aredegenerate[31].

The observation for PbPb collisions that v2{4}≈v2{6}≈ v2{8}

[35–37], wherethe approximate equalities are within a few per-cent,suggeststhatthe v2 fluctuationscanbewelldescribed bya

two-dimensionalGaussianfunction[31].

Still,non-Gaussianfluctuationsare expectedintheinitial-state energydensity[33],whichshouldleadtodifferencesinthehigher order cumulantcoefficients. Such differenceshave been reported by theATLAS Collaboration[16] ina similarmeasurement of pe-ripheralPbPbcollisionstothatreportedhere.Theprecisionofthe LHCmeasurements allows forthesedifferencestobe explored in detail,givinganewmethodtoinvestigatetheinitial-state behav-ior.Theellipticpowerfunctionhasbeensuggestedtodescribethe asymmetric behaviorof the p(εn) distributions [14,15,38], noting that the Bessel–Gaussian distribution reproduces neither Glauber

Monte Carlo nor IP-Glasma results other than for very central events[14].Thisfunctionisbasedontheassumptionthatthe ini-tialenergydensityprofileofthe collisionisa superpositionofN point-like,independentsources.Intermsoftheharmonic-flow co-efficientsandassumingalinearresponse,

p(vn)= 2αvn πk2 n (1−ε02)α+1/2 π  0 (1−v2 n/k2n)α−1dφ (1−ε0vncosφ/kn)2α+1 , (5)

where ε0 is approximatelyequal to the meaneccentricityin the reaction plane and α, which is approximately proportional to N, describes the size of the eccentricity fluctuations. The ellip-tic power distributionreduces to aGaussian, Bessel–Gaussian, or power distribution form withthe appropriate choice of parame-ters[39] andhastheadvantageofnaturallyincorporatingtheunit constraintoneccentricity,where| n|<1.

In this Letter, the p(v2) distributions for charged particles in

the pseudorapidityrange |η|<1.0 andwithtransverse momenta 0.3<pT<3.0 GeV/c are presentedforPbPbcollisions at√sNN=

5.02 TeV collected withthe CMSdetectoratthe LHC.The results are shown in bins of centrality, defined as fractions of the to-tal inelastic hadroniccross section, where 0% corresponds to the eventswiththegreatesthadronicactivityintheforwarddirection (|η|>3.0). The elliptic-flow harmonicvalues fordifferent cumu-lant orders are determined based on the moments of the p(v2)

distributions, with these results used to estimate the standard-izedskewness oftheflowdistribution.EllipticpowerandBessel– Gaussianfitstotheflowdistributionsarepresentedtogainfurther insightintotheinitial-stateanditsfluctuations.

2. TheCMSdetector

The central feature of the CMS apparatus is a superconduct-ing solenoid of6 m internal diameter, providing a magneticfield of 3.8 T. Withinthe solenoidvolume are asilicon pixeland strip tracker,aleadtungstatecrystalelectromagneticcalorimeter,anda brass andscintillatorhadroncalorimeter,eachcomposedofa bar-relandtwoendcapsections.Muonsaredetectedingas-ionization chambers embedded in the steel flux-return yoke outside the solenoid.

Thebarrelandendcapdetectorsprovidecoverageintherange |η|<3.0, with Hadron Forward calorimeters (HF) extending the pseudorapidity coverage to 3.0<|η|<5.2. The HF detectors are used both to selectevents forthe analysisandto determine the collisioncentrality.TheHFcalorimetersareazimuthallysubdivided into20◦ modularwedgesandfurthersegmentedtoform0.175× 10◦ ( η× φ) towers.The silicon trackermeasures charged par-ticles within the range|η|<2.5. It consistsof1440silicon pixel and 15 148 silicon strip detector modules. At midrapidity, there are 3 pixel detector layers and 10 strip detector layers. At the outer edge of the tracker acceptance, there are 2 pixel detector layers and 12 strip detector layers. For nonisolated particles of 1<pT<10 GeV/c and|η|<1.4,thetrackresolutionsaretypically

1.5%inpTand25–90(45–150) μminthetransverse(longitudinal)

distance ofclosest approach[40].A more detaileddescription of theCMSdetector,togetherwithadefinitionofthecoordinate sys-tem used andthe relevant kinematic variables, can be found in Ref. [41].

3. Eventandtrackselection

This analysisisbased on aPbPb minimum biasdata setwith √

sNN=5.02 TeV and corresponding to an integrated luminosity

of26 μb−1,collected in2015. Theminimum-biastrigger used re-quires coincident signals in the HF calorimeters atboth ends of

(3)

theCMSdetectorwithenergydepositsaboveapredefinedenergy threshold of approximately 1 GeV and the presence of both col-lidingbunchesattheinteractionpointasdetermined usingbeam pickuptimingmonitors.Byrequiringcollidingbunches,eventsdue tonoise(e.g.,cosmicraysandbeambackgrounds)arelargely sup-pressed. Events are further selected offline by requiring at least threetowers with an energyabove 3 GeV in each ofthe two HF calorimeters.The primary vertexfor each eventis chosen asthe reconstructedvertexwiththelargestnumberofassociatedtracks. Primaryverticesarerequiredtohaveatleasttwoassociatedtracks andtobelocatedwithin15 (0.2) cmofthenominalcollisionpoint alongthelongitudinal(transverse)direction.Tosuppress contam-ination from events with multiple collisions in the same bunch crossing (pileup), the procedure outlined in Ref. [6] is followed. Here,compatibility scores basedon the numberof pixelclusters withwidthscompatible withparticles originatingfromeach pri-maryvertexaredeterminedandeventswithprimaryverticeswith compatibilityscoresbelowa predefinedthresholdare rejectedas pileup.Afterapplyingtheselectioncriteria,theaveragenumberof collisions per bunch crossing is less than ≈0.001 for the events usedinthisanalysis,withapileupfraction<0.05%.

Track reconstruction [40,42] is performedin two iterations to easethecomputationalloadforhigh-multiplicitycentralPbPb col-lisions.The firstiteration reconstructs tracksfromsignals(“hits”) inthesiliconpixelandstripdetectorscompatiblewithatrajectory of pT>0.9 GeV/c. These tracks are requiredto have consistency

withoriginatingfromtheprimaryvertex,havingalongitudinal as-sociationsignificance(dz/σdz) anda distance ofclosest approach

significance(d0/σd0) eachlessthan 3.Inaddition,the pT

resolu-tion[40,42] foreachtrack, σpT/pT,isrequiredtobelessthan10%

andtracks are required to have at least11 out of the 14 possi-ble hitsalong their trajectory in the pixel and strip trackers. To reducethenumberofmisidentifiedtracks,whichcanoccurwhen thehitpatternisconsistentwithmorethanonepossibletrack so-lution,the chi-squaredper degreeoffreedom, χ2/dof,associated

with fitting the track trajectory through the different pixel and striplayersmustbe lessthan0.15timesthetotalnumberof lay-erswithhitsalongthetrajectoryofthetrack.Theseconditeration reconstructstrackscompatiblewithatrajectoryof pT>0.2 GeV/c

usingsolely thepixel detector.These tracksare required tohave longitudinal association significance dz/σdz<8 and a fit χ

2/dof

valuelessthan12timesthenumberoflayerswithhitsalongthe trajectory of the track. In the final analysis, first iteration tracks with pT>1.0 GeV/c are used together with pixel-detector-only

tracks with pT<2.4 GeV/c after removing duplicates. Track

re-construction for the merged iterations has a combined geomet-ric acceptance and efficiency exceeding 60% for pT≈1.0 GeV/c

and |η|<1.0. When the track pT is below 1 GeV/c, the

accep-tanceandefficiencysteadilydrops,reachingapproximately40%at pT≈0.3 GeV/c.

4. Analysistechnique

Analysesofflowharmonicsusingmultiparticlecumulantswere initially introduced as a way to minimize nonflow effects [30]. These analyses have been based on either the generating func-tion formalism [30] or, more recently, through direct calculation [43]. The unfolding procedure employed here, as introduced by theATLAS collaboration[16],isexpectedtogivesimilarresultsto amultiparticlecumulantanalysis, butwithreducedsensitivityto multiplicityfluctuationsandnonfloweffects[44].

Theevent-by-eventv2 coefficientsandphasesinEq. (1) canbe

estimatedwith

vobs2,x= |v2obs|cos(2obs2 )= cos(2φ) =

iwicos(2φi)

iwi

, vobs2,y= |v2obs|sin(2obs2 )= sin(2φ) =

iw isin(2φi) iwi , |vobs2 | =  vobs2,x 2 +vobs2,y 2 , (6)

where φi is the azimuthal angle of the track, obs2 is the event planeangleforthe2ndharmonic,theangularbracketsdenotean efficiencyweighted averageover all particles in a givenrange of phase space for an event, and wi=1/εi is the inverse of the tracking efficiency εi(pT,η) of the ith track. The analysis does

not require the explicit calculation of the event plane angle for eachevent.Intheabsenceofparticlecorrelationsunrelatedtothe hydrodynamic flow behavior (“nonflow”), the observed event-by-event flow vectors of Eq. (6) will approach the true underlying flow vectors as the particle multiplicity becomes large. In addi-tiontothe efficiencyweighting, astandardrecentering procedure [45], where the eventaverage x- and y-components of the flow vector are required to equal zero, is applied to further suppress acceptancebiases.

Eventsaresortedintodifferentcentralityclasses,asdetermined bythetransverseenergydepositedintheHFcalorimeters[6],and themagnitudesoftheestimatedflowvectorsareusedtoconstruct the “observed” p(vobs2 ) distributions foreach class.Finite particle multiplicitiesresultinastatisticalfluctuationofthe vobs2 estimate foragiveneventaboutthetrueunderlyingv2valuebyaresponse

function p(vobs2 |v2).This,inturn,resultsina p(vobs2 ) distribution

that isbroaderthantheunderlying p(v2) behavior.The observed

distribution can be expressed asa convolution of the underlying flowbehaviorandtheresponsefunction

p(vobs2 )=p(v2obs|v2)p(v2). (7)

A data-based technique, first introduced by the ATLAS Collabo-ration [16], was used to build the response function in Eq. (7). This technique divides thefull event sample into two symmetric subevents (a andb)basedon pseudorapidity.Giventhat v2(η) is

symmetric about η=0 on average for the symmetric PbPb sys-tem, the physical flow signal cancels in the distribution of flow vector differences from each subevent p(van− vbn). The resulting distributioncontainsresidualeffectsfrommultiplicity-related fluc-tuationsandnonfloweffects[44] andprovidesabasisforbuilding theresponsefunction.Theabilityoftheanalysisprocedureto sup-press nonflow effects was studied by introducing a v2 signal on

topof hijing 1.383 [46] simulatedevents,whichcontainnonflow. TheEbyEanalysisisfoundtorecoverthe“truth”towithin0.1%.

To unfold the effects of multiplicity-related fluctuations, the D’Agostini iterative method with early stopping (regularization) [47–49] was used to obtain a maximum likelihood estimate of the underlying p(v2) behavior. The analysis was done usingthe

RooUnfold[50] packageofthe root dataanalysisframework[51]. Theunfoldingprocedurebecomesincreasinglysensitiveto statisti-calfluctuationswhenthenumberofiterationsisallowedtorunto large values,resulting inunphysical oscillations inthe low event count tails of the unfolded distribution. The regularization crite-rion usedto suppress theseoscillations is to apply the response functiontoeachunfoldingiteration(“refolding”)andcomparethe resulting distribution tothe observed one. Iterationsare stopped whenthe χ2/dof betweentherefoldedandobserveddistribution

isapproximatelyequaltoone.Afterthisfinalunfoldingiterationis reached, theresultingdistribution istruncatedabovev2+4σv2

to further suppress any residual artifacts in the tails that result from the unfolding procedure. Representative final unfolded dis-tributions are shown in Fig. 1. In addition, p(vobs

(4)

Fig. 1. Representative final unfolded p(v2)distributions (closed black circles) in three centrality bins (15–20%, 30–35%, and 55–60%) obtained using D’Agostini iteration

unfolding. Respective observed p(vobs2 )distributions (open black squares) are shown to illustrate the statistical resolution present in each centrality bin prior to unfolding.

Systematic uncertainties from the unfolding procedure are presented as shaded bands. Distributions are fitted with Bessel–Gaussian (dashed blue lines) and elliptic power (solid red lines) functions to infer information on the underlying p(ε2)distributions. The vertical blue arrows indicate the v2+4σv2cutoff discussed in the text. are plotted for each centrality to illustrate the statistical

resolu-tioneffectspresentpriortounfolding.ThefitsshowninFig.1are discussedinSection6.

5. Systematicuncertainties

A numberof potential sources of systematicuncertainties for the v2{m}valuesextractedfromtheunfolded p(v2)distributions

wereconsidered. Thesystematicuncertainties thatarise fromthe vertex z position were investigated by splitting the default ver-tex rangeinto two windows of |zvtx|<3.0 cm and3.0<|zvtx|<

15.0 cm andcomparing the resultsfrom the two ranges.The re-sultinguncertainties rangefrom5% forcentralevents,decreasing to0.5%formid-centralevents.Toestimatethebiasfrom misiden-tifiedtracks,thetrackqualitycriteriadescribedinSection3were varied. Two scenarios were considered, with one increasing and theotherdecreasingtheprobabilityofmisidentifyingatrack.The results of these two scenarios were compared to the values ob-tained in the default analysis. The resulting uncertainties range from2% for central events to 1% formid-central events.To esti-matethesystematicuncertaintyinthechoiceofresponsefunction, theunfolding procedurewas repeatedusing ananalytic response function obtainedfrom a Gaussian fit tothe data-driven statisti-cal resolutiondistribution[16].The resultinguncertainties are3% forcentraleventsanddecreaseto1%formid-centralevents.Other sources of potential systematicbias were explored and found to be negligible. To assess the potential bias from residual pileup events,thethresholdfordeterminingpileupeventswas raisedto decrease the probability of including events with multiple colli-sions in theanalysis. The bias fromunfolding regularization was studiedbymodifyingthe χ2/dof goodness-of-fitregularization

cri-teriaandcomparingthecaseswhentherefolding χ2/dof cutoffis

2.0relativetowhenitis1.0.Totestthepotentialbiasthatmight resultfromthe 4σ truncationof thefinal unfolded distributions, thetruncationpointwasvariedbetween3.5σ and4.5σ.Toassess theuncertainty onthe choice oftheprior, the unfoldingwas re-peated usingpriorsthat were systematicallytransformed to have 10%largerandsmallermeansthanthedefaultprior.Nosignificant biaswasfoundwiththesevariationsoftheprior.Thetotal system-aticuncertainties were obtainedby addingthecontribution from each source in quadrature. The v2 values calculated for the

dif-ferentcumulantordershavea totalsystematicuncertaintyofthe orderof 5% forcentral collisions, which decreases to 1% in mid-centralcollisions.

Fig. 2. Elliptic-flow cumulant harmonics with values obtained from the moments of

the unfolded p(v2)distributions. Systematic uncertainties are shown as gray bands.

For most centralities, the uncertainties are smaller than the symbol size.

Asallofthesystematicuncertaintiesareexpectedtobe corre-latedbetweenthe differentcumulantorders,withthe samedata usedinthecalculationofeachorder,alloftheabovestudieswere alsoperformedfortheratiosofdifferentordersandforthe skew-ness estimategivenbyEq. (4).Fortheratios,thetotalsystematic uncertaintyisfoundas1%forcentralcollisions,decreasingto0.1% formid-centralcollisions.Thestandardizedskewnessisvery sensi-tivetosmallfluctuationsinthecumulantflowharmonics,resulting in asystematicuncertainty of100%forcentral collisions that re-ducesto20%formid-centralcollisions.

6. Results

The cumulant elliptic-flow harmonics obtained from the mo-mentsoftheunfolded p(v2)distributionsusingEq. (3) areshown

inFig.2forcumulantorders2,4,6,and8.Itwas notpossibleto obtain0–5%centralresultsfor v2{4}andv2{6}becausethe

right-handsideofEq.(3) wasfoundtobenegativeforthesevalues.This behaviormightbeaconsequenceofvolumefluctuations dominat-ing the cumulantbehavior for thesecentral events,as discussed

(5)

Fig. 3. Ratios of higher order cumulant elliptic-flow harmonics with values obtained from the moments of the unfolded p(v2)distributions. Both statistical (lines) and

systematic (gray bands) uncertainties are shown. Hydrodynamic predictions for 2.76 TeV collisions from Ref. [33] are presented as a dark color band and are compared to the measured v2{6}/v2{4}ratio. In addition, higher order cumulant ratios reported by the ATLAS Collaboration for 2.76 TeV collisions [37] with 0.5 <pT<20.0 GeV/c and

|η|<2.5 are compared to the 5.02 TeV measurement. The error bars on the ATLAS measurement represent the quadratic sum of statistical and systematic uncertainties and

points are offset horizontally for clarity.

inRef. [52].The cumulantresultsexhibitthepreviously observed v2{2}>v2{4}≈v2{6}≈v2{8} behavior. Thecentrality-dependent

ratiosfortheelliptic-flowcoefficientsobtainedfordifferent cumu-lant orders are shown in Fig. 3. For most centrality ranges, the ratiosindicatea rankorderingofthe cumulants,withdifferences on the order of a few percent and with v2{4}>v2{6}>v2{8},

thatis qualitativelyinconsistent withapure Gaussian fluctuation modelofflowharmonics.Thedifferencesincreaseasthecollisions become more peripheral. The calculated v2{6}/v2{4} ratio based

onanevent-by-eventhydrodynamiccalculationusingMonteCarlo Glauberinitial conditions[53] andan η/s value of0.08isshown bytheshaded band.Thissimulation isforpions with0.2<pT<

3.0 GeV/c inPbPb collisions at√sNN=2.76 TeV [33]. Alsoshown

are resultsfrom the ATLAS Collaboration [37] forPbPb collisions at2.76 TeV and forcharged particles with0.5<pT<20.0 GeV/c

and|η|<2.5.Thecalculation isconsistentwiththeexperimental resultsfoundatbothbeamenergies.Thesimilaritybetween exper-imentalresultswith2.76and5.02 TeV isconsistentwiththesmall changesin the initial-stateeccentricities expectedbetweenthese energies[54] andtheexpectationthatthecumulantflowharmonic ratiosfollowthoseofthecorrespondingeccentricityratios[33].

Fig. 4 shows the centrality dependence of the standardized skewness γ1exp.Finitevaluesarefoundforthestandardized

skew-ness for collisions with centralities greater than ≈15%. The hy-drodynamicpredictions forthe γ1exp values forPbPbcollisions at 2.76 TeV from Ref. [33] are also shown and found to be consis-tent with the current measurements. Within the hydrodynamic modelandallowingforafiniteskewnessoftheevent-by-eventv2

distribution,thesmallsplittingbetweenthecumulantordersis ex-pectedtofollowtherelationship(v2{6}−v2{8})/(v2{4}−v2{6})=

0.091 [33]. Experimentally, we find a value forthis splitting ra-tioof0.143±0.008(stat)±0.014(syst) for20–25%centralevents, withtheratioincreasingto0.185±0.005(stat)±0.012(syst) asthe centralityincreasesto55–60%.Theobservedvaluesmightsuggest higher order terms in a cumulant expansion of the v2

distribu-tion are required to account for the skewness. This relationship wasrecentlyexaminedbytheALICEcollaborationinRef. [55] us-ingaq-cumulantanalysis,withresultscomparabletothefindings inthispaperwhenconsideringsystematicuncertaintiesanda dif-ferentkinematicrangefortheALICEmeasurement.

BothellipticpowerandBessel–Gaussianparametrizationsused forfitssuchasshowninFig.1assumealinearresponsebetween eccentricityandflow,butonlytheellipticpowerlawallowsfora finiteskewness. Fora Bessel–Gaussian distribution, the skewness isequaltozero.Thisfeatureresultsintheellipticpowerfunction beinginbetter agreementwiththeobserved fluctuationbehavior

Fig. 4. The skewness estimate with respect to the reaction plane determined using

the elliptic-flow harmonic based on different cumulant orders. Both statistical and systematic uncertainties are shown, where statistical uncertainties are smaller than the data points. Hydrodynamic model predictions for 2.76 TeV PbPb collisions from Ref. [33] are shown as a colored band.

than theBessel–Gaussianparametrization, yielding χ2/dof values

onthe orderofunity. Toavoidbin-to-bincorrelationsintroduced by the unfolding procedure, goodness of fit values are obtained byrefoldingthefitteddistributionswiththeresponsematrixand comparingtothemeasureddistribution.Theellipticpower χ2/dof

values vary between0.8 and 1.5 from central to peripheral col-lisions, while theBessel–Gaussian χ2/dof values varybetween 3

and9.Point-by-pointsystematicuncertaintiesontheunfolded dis-tributionsarecorrelatedandarethusnotconsideredinthefits.

Thefitparametersfortheellipticpowerfunctionareshownin Fig. 5forthe differentcentralitybins. As alsofound inRef. [15], thefits donot convergeforcentralcollisions wherethe distribu-tionsbecome veryclosetoaBessel–Gaussianform. Consequently, the parameters are shownfor centralities >15%.The experimen-tal k2 values show only a weak centrality dependence. Viscous

hydrodynamic calculations indicate that deviations from thermal equilibriumshouldleadtoareducedcorrespondencebetweenthe initial-stategeometry andthe flow signal inperipheral collisions [27,28]. This effect is suggestedin Fig. 5 by the decrease in the k2 valuewithincreasingcentrality,althoughthesystematic

(6)

uncer-Fig. 5. Centrality dependence of the parameters extracted from elliptic power function fits to the unfolded p(v2)distributions. Both statistical (error bars) and systematic

(shaded boxes) uncertainties are shown. The solid line represents a theoretical calculation [15] using viscous hydrodynamics with Glauber initial conditions and an η/s value of 0.19 to determine the response coefficient k2. Glauber (blue shaded band) and IP-Glasma (red shaded band) model calculations from Ref. [15] are shown for the αand

ε0parameters. The systematic uncertainties account for the highly correlated parameters of the elliptic power function fit and for the bin-to-bin correlations in the unfolded

distributions introduced by the unfolding procedure.

tainties are too large for this to be a definitive observation. The calculateddecreaseis greaterthan observed,although withinthe systematicuncertainties ofthemeasurement.The eccentricity pa-rameterofthepowerlawfit, ε0,isfoundtofirstincrease,andthen leveloffwithincreasingcentrality.Thelevelingoccursfor central-ities >40%, which is also where the v2 valuesstart to level off

and then decrease. The α parameter, which reflects the number ofsources inthepower-lawfit,isfoundtosteadilydecreasewith increasingcentrality,asexpected.

Theoreticalpredictionsat2.76 TeV fromRef. [15] arecompared to the current analysis in Fig. 5. A viscous hydrodynamic calcu-lation with Glauber initial conditions and an η/s value of 0.19 isin agreement withtheexperimental k2 values. Thiscoefficient

isexpected tohave onlya weak dependenceon theinitial state, withits centralitydependence largely determined by the viscos-ity of the medium [15]. Predictions obtained using Glauber and IP-Glasma [56,57] initial conditions, where the IP-Glasma model includesgluonsaturationeffects,are shownforthe ε0 and α pa-rameters. These latter two calculations qualitatively capture the observedbehaviorforthe α-parameter,butasignificantdifference isfound incomparingthe theoretical ε0 valueswithexperiment. Thisdifferencemightreflectanonlinearresponseterm,whichwill alter the magnitude of the flow response coefficient and conse-quentlythe ε0 and αparameters,assuggestedinRef. [15].

7. Summary

Insummary,anon-Gaussianbehaviorisobservedinthe event-by-event fluctuations of the elliptic flow v2 coefficients in PbPb

collisions recorded by the CMSdetectorat √sNN=5.02 TeV. The

probability distributions p(v2) for 5%-centrality bins between5%

and 60% centrality are found by unfolding statistical resolution effectsfrommeasured flow distributions.The v2 coefficients

cor-responding to different cumulant orders are calculated fromthe moments ofthe unfolded p(v2)distributions. Arank ordering of v2{4}>v2{6}>v2{8},withdifferencesontheorderofafew

per-cent, is observed for noncentral events with centralities greater than≈15%. Thestandardizedskewnessofeach p(v2)distribution

is calculatedusing the cumulant results.In cases wherethere is adifferenceinthecumulantvalues,thestandardizedskewnessis found to be negative withan increasing magnitude as collisions becomelesscentral.Bessel–Gaussian andellipticpower functions are fitted to the unfolded p(v2) distributions. The two

distribu-tions are similar for central collisions, though the elliptic power functionprovidesabetterdescriptionfornoncentralcollisions.

Based on the elliptic power function fits, the centrality de-pendence oftheflow responsecoefficient, whichrelatesthefinal state geometry to the initial state energydensity distribution, is found tobe consistentwithmodelcalculations.However, the ob-served eccentricities aresmallerthan predictionsbased oneither theGlauber modelortheIP-Glasmamodelinitialconditionswith an assumed linear flow response. This difference might indicate the needforanonlinearresponse term.The currentresults illus-tratethatLHCexperimentsnowhavetheprecisiontoexplorethe detailsoftheinitial-statefluctuations.

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technical andadministrativestaffs atCERNand atother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentersand personneloftheWorldwideLHCComputingGridfordeliveringso effectively thecomputinginfrastructure essentialto our analyses. Finally, we acknowledge the enduring support for the construc-tion andoperationofthe LHCandtheCMSdetectorprovided by thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIEN-CIAS(Colombia);MSESandCSF(Croatia);RPF(Cyprus);SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Fin-land,MEC,andHIP(Finland);CEAandCNRS/IN2P3(France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hun-gary);DAEandDST(India);IPM(Iran);SFI(Ireland);INFN (Italy); MSIPandNRF (RepublicofKorea);LAS(Lithuania);MOE andUM (Malaysia); BUAP,CINVESTAV, CONACYT, LNS,SEP, andUASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT(Portugal);JINR(Dubna);MON,ROSATOM,RAS,RFBR andRAEP(Russia);MESTD (Serbia); SEIDI,CPAN,PCTIandFEDER (Spain);SwissFundingAgencies(Switzerland);MST(Taipei); ThEP-Center, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey);NASU andSFFR (Ukraine);STFC(United Kingdom);DOE andNSF(USA).

Individuals have received support from the Marie-Curie pro-gramandtheEuropeanResearchCouncilandHorizon2020Grant, contract No. 675440 (European Union);the Leventis Foundation; the A.P. Sloan Foundation; the Alexandervon Humboldt Founda-tion; the Belgian Federal Science Policy Office; the Fonds pour la Formationà laRecherche dansl’Industrie etdansl’Agriculture

(7)

(FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Sci-ence and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union,Regional DevelopmentFund, theMobilityPlus programof theMinistryofScienceandHigherEducation,theNationalScience Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861,Sonata-bis2012/07/E/ST2/01406;theNationalPriorities Re-search Program by Qatar National Research Fund; the Programa SeveroOchoa del Principado de Asturias; the Thalis andAristeia programscofinancedbyEU-ESFandtheGreekNSRF;the Rachada-pisekSompotFundforPostdoctoralFellowship,Chulalongkorn Uni-versity and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contractC-1845;andtheWestonHavensFoundation(USA).

References

[1] I. Arsene, et al., BRAHMS, Quark–gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys. A 757 (2005) 1, https://doi.org/10.1016/j.nuclphysa.2005.02.130, arXiv:nucl -ex /0410020. [2] K. Adcox, et al., PHENIX, Formation of dense partonic matter in

rela-tivistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX Collaboration, Nucl. Phys. A 757 (2005) 184, https://doi.org/10.1016/ j.nuclphysa.2005.03.086, arXiv:nucl -ex /0410003.

[3] B.B. Back, et al., PHOBOS, The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28, https://doi.org/10.1016/j.nuclphysa.2005.03.084, arXiv: nucl -ex /0410022.

[4] J. Adams, et al., STAR, Experimental and theoretical challenges in the search for the quark–gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102, https://doi.org/10. 1016/j.nuclphysa.2005.03.085, arXiv:nucl -ex /0501009.

[5] ATLAS Collaboration, Observation of a centrality-dependent dijet asymmetry in lead–lead collisions at √sNN=2.76 TeV with the ATLAS detector at the

LHC, Phys. Rev. Lett. 105 (2010) 252303, https://doi.org/10.1103/PhysRevLett. 105.252303, arXiv:1011.6182.

[6] CMS Collaboration, Observation and studies of jet quenching in PbPb collisions at √sNN=2.76 TeV, Phys. Rev. C 84 (2011) 024906, https://doi.org/10.1103/

PhysRevC.84.024906, arXiv:1102 .1957.

[7] ALICE Collaboration, Suppression of charged particle production at large trans-verse momentum in central Pb-Pb collisions at √sN N=2.76 TeV, Phys. Lett. B

696 (2011) 30, https://doi.org/10.1016/j.physletb.2010.12.020, arXiv:1012 .1004. [8] J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev.

D 46 (1992) 229, https://doi.org/10.1103/PhysRevD.46.229.

[9] B. Alver, G. Roland, Collision-geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81 (2010) 054905, https://doi.org/10. 1103/PhysRevC.81.054905, arXiv:1003 .0194, Erratum: https://doi.org/10.1103/ PhysRevC.82.039903.

[10] H. Grönqvist, J.-P. Blaizot, J.-Y. Ollitrault, Non-Gaussian eccentricity fluctuations, Phys. Rev. C 94 (2016) 034905, https://doi.org/10.1103/PhysRevC.94.034905, arXiv:1604 .07230.

[11] U. Heinz, C. Shen, H. Song, The viscosity of quark–gluon plasma at RHIC and the LHC, AIP Conf. Proc. 1441 (2012) 766, https://doi.org/10.1063/1.3700674, arXiv:1108 .5323.

[12] G. Policastro, D.T. Son, A.O. Starinets, Shear viscosity of strongly coupled N=4 supersymmetric Yang–Mills plasma, Phys. Rev. Lett. 87 (2001) 081601, https:// doi.org/10.1103/PhysRevLett.87.081601, arXiv:hep -th /0104066.

[13] P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601, https://doi.org/10.1103/PhysRevLett.94.111601, arXiv:hep -th /0405231. [14] L. Yan, J.-Y. Ollitrault, A.M. Poskanzer, Eccentricity distributions in nucleus–

nucleus collisions, Phys. Rev. C 90 (2014) 024903, https://doi.org/10.1103/ PhysRevC.90.024903, arXiv:1405 .6595.

[15] L. Yan, J.-Y. Ollitrault, A.M. Poskanzer, Azimuthal anisotropy distributions in high-energy collisions, Phys. Lett. B 742 (2015) 290, https://doi.org/10.1016/j. physletb.2015.01.039, arXiv:1408 .0921.

[16] ATLAS Collaboration, Measurement of the distributions of event-by-event flow harmonics in lead–lead collisions at √sNN=2.76 TeV with the ATLAS

detec-tor at the LHC, J. High Energy Phys. 11 (2013) 183, https://doi.org/10.1007/ JHEP11(2013)183, arXiv:1305 .2942.

[17] S.A. Voloshin, A.M. Poskanzer, R. Snellings, Collective phenomena in non-central nuclear collisions, in: R. Stock (Ed.), Springer Materials – the Landolt– Börnstein Database, in: Relativistic Heavy Ion Physics, vol. 23, Springer-Verlag, 2010, p. 293, https://doi.org/10.1007/978-3-642-01539-7_10, arXiv:0809 .2949.

[18] D. Teaney, L. Yan, Triangularity and dipole asymmetry in relativistic heavy ion collisions, Phys. Rev. C 83 (2011) 064904, https://doi.org/10.1103/PhysRevC.83. 064904, arXiv:1010 .1876.

[19] Z. Qiu, U.W. Heinz, Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs, Phys. Rev. C 84 (2011) 024911, https://doi.org/10. 1103/PhysRevC.84.024911, arXiv:1104 .0650.

[20] F.G. Gardim, F. Grassi, M. Luzum, J.-Y. Ollitrault, Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions, Phys. Rev. C 85 (2012) 024908, https://doi.org/10.1103/PhysRevC.85.024908, arXiv:1111.6538. [21] H. Song, QGP viscosity at RHIC and the LHC—a 2012 status report, Nucl. Phys.

A 904–905 (2013) 114c, https://doi.org/10.1016/j.nuclphysa.2013.01.052, arXiv: 1210 .5778.

[22] P.F. Kolb, J. Sollfrank, U.W. Heinz, Anisotropic transverse flow and the quark hadron phase transition, Phys. Rev. C 62 (2000) 054909, https://doi.org/10. 1103/PhysRevC.62.054909, arXiv:hep -ph /0006129.

[23] R.S. Bhalerao, J.-P. Blaizot, N. Borghini, J.-Y. Ollitrault, Elliptic flow and incom-plete equilibration at RHIC, Phys. Lett. B 627 (2005) 49, https://doi.org/10.1016/ j.physletb.2005.08.131, arXiv:nucl -th /0508009.

[24] R.S. Bhalerao, J.-Y. Ollitrault, Eccentricity fluctuations and elliptic flow at RHIC, Phys. Lett. B 641 (2006) 260, https://doi.org/10.1016/j.physletb.2006.08.055, arXiv:nucl -th /0607009.

[25] B. Alver, et al., PHOBOS, Importance of correlations and fluctuations on the ini-tial source eccentricity in high-energy nucleus–nucleus collisions, Phys. Rev. C 77 (2008) 014906, https://doi.org/10.1103/PhysRevC.77.014906, arXiv:0711. 3724.

[26] C. Gombeaud, J.-Y. Ollitrault, Effects of flow fluctuations and partial thermaliza-tion on v(4), Phys. Rev. C 81 (2010) 014901, https://doi.org/10.1103/PhysRevC. 81.014901, arXiv:0907.4664.

[27] S.A. Voloshin, A.M. Poskanzer, The physics of the centrality dependence of el-liptic flow, Phys. Lett. B 474 (2000) 27, https://doi.org/10.1016/S0370-2693(00) 00017-4, arXiv:nucl -th /9906075.

[28] H.-J. Drescher, A. Dumitru, C. Gombeaud, J.-Y. Ollitrault, Centrality dependence of elliptic flow, the hydrodynamic limit, and the viscosity of hot QCD, Phys. Rev. C 76 (2007) 024905, https://doi.org/10.1103/PhysRevC.76.024905, arXiv:0704 . 3553.

[29] N. Borghini, P.M. Dinh, J.-Y. Ollitrault, New method for measuring azimuthal distributions in nucleus–nucleus collisions, Phys. Rev. C 63 (2001) 054906, https://doi.org/10.1103/PhysRevC.63.054906, arXiv:nucl -th /0007063.

[30] N. Borghini, P.M. Dinh, J.-Y. Ollitrault, Flow analysis from multiparticle az-imuthal correlations, Phys. Rev. C 64 (2001) 054901, https://doi.org/10.1103/ PhysRevC.64.054901, arXiv:nucl -th /0105040.

[31] S.A. Voloshin, A.M. Poskanzer, A. Tang, G. Wang, Elliptic flow in the Gaussian model of eccentricity fluctuations, Phys. Lett. B 659 (2008) 537, https://doi.org/ 10.1016/j.physletb.2007.11.043, arXiv:0708 .0800.

[32] J. Jia, Event-shape fluctuations and flow correlations in ultra-relativistic heavy-ion collisheavy-ions, J. Phys. G 41 (2014) 124003, https://doi.org/10.1088/0954-3899/ 41/12/124003, arXiv:1407.6057.

[33] G. Giacalone, L. Yan, J. Noronha-Hostler, J.-Y. Ollitrault, Skewness of elliptic flow fluctuations, Phys. Rev. C 95 (2017) 014913, https://doi.org/10.1103/PhysRevC. 95.014913, arXiv:1608 .01823.

[34] S. Voloshin, Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions, Z. Phys. C 70 (1996) 665, https:// doi.org/10.1007/s002880050141, arXiv:hep -ph /9407282.

[35] CMS Collaboration, Evidence for collective multiparticle correlations in p-Pb collisions, Phys. Rev. Lett. 115 (2015) 012301, https://doi.org/10.1103/ PhysRevLett.115.012301, arXiv:1502 .05382.

[36] ALICE Collaboration, Multiparticle azimuthal correlations in p-Pb and Pb–Pb collisions at the CERN large hadron collider, Phys. Rev. C 90 (2014) 054901, https://doi.org/10.1103/PhysRevC.90.054901, arXiv:1406 .2474.

[37] ATLAS Collaboration, Measurement of flow harmonics with multi-particle cu-mulants in Pb+Pb collisions at √sNN=2.76 TeV with the ATLAS detector,

Eur. Phys. J. C 74 (2014) 3157, https://doi.org/10.1140/epjc/s10052-014-3157-z, arXiv:1408 .4342.

[38] L. Yan, J.-Y. Ollitrault, A.M. Poskanzer, Universal parameterization of initial-state fluctuations and its applications to event-by-event anisotropy, Nucl. Phys. A 931 (2014) 1007, https://doi.org/10.1016/j.nuclphysa.2014.09.021, arXiv:1408 . 0709.

[39] L. Yan, J.-Y. Ollitrault, Universal fluctuation-driven eccentricities in proton– proton, proton–nucleus and nucleus–nucleus collisions, Phys. Rev. Lett. 112 (2014) 082301, https://doi.org/10.1103/PhysRevLett.112.082301, arXiv:1312 . 6555.

[40] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9 (2014) P10009, https://doi. org/10.1088/1748-0221/9/10/P10009, arXiv:1405 .6569.

[41] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3 (2008) S08004, https://doi.org/10.1088/1748-0221/3/08/S08004.

[42] CMS Collaboration, Charged-particle nuclear modification factors in PbPb and pPb collisions at √sNN=5.02 TeV, J. High Energy Phys. 04 (2017) 039, https://

(8)

[43] A. Bilandzic, C.H. Christensen, K. Gulbrandsen, A. Hansen, Y. Zhou, Generic framework for anisotropic flow analyses with multiparticle azimuthal cor-relations, Phys. Rev. 89 (2014) 064904, https://doi.org/10.1103/PhysRevC.89. 064904, arXiv:1312 .3572.

[44] J. Jia, S. Mohapatra, Disentangling flow and nonflow correlations via Bayesian unfolding of the event-by-event distributions of harmonic coefficients in ul-trarelativistic heavy-ion collisions, Phys. Rev. C 88 (2013) 014907, https:// doi.org/10.1103/PhysRevC.88.014907, arXiv:1304 .1471.

[45] A.M. Poskanzer, S.A. Voloshin, Methods for analyzing anisotropic flow in rela-tivistic nuclear collisions, Phys. Rev. C 58 (1998) 1671, https://doi.org/10.1103/ PhysRevC.58.1671, arXiv:nucl -ex /9805001.

[46] M. Gyulassy, X.-N. Wang, HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions, Comput. Phys. Commun. 83 (1994) 307, https://doi.org/10.1016/0010-4655(94)90057-4, arXiv:nucl -th /9502021.

[47] G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem, Nucl. Instrum. Meth. A 362 (1995) 487, https://doi.org/10.1016/0168-9002(95) 00274-X.

[48] W.H. Richardson, Bayesian-based iterative method of image restoration, J. Opt. Soc. Am. 62 (1972) 55, https://doi.org/10.1364/JOSA.62.000055.

[49] L.B. Lucy, An iterative technique for the rectification of observed distributions, Astron. J. 79 (1974) 745, https://doi.org/10.1086/111605.

[50] T. Adye, Unfolding algorithms and tests using RooUnfold, in: H. Prosper, L. Lyons (Eds.), PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery

Claims in Search Experiments and Unfolding, CERN, CERN, Geneva, Switzerland, 2011, p. 313, https://doi.org/10.5170/CERN-2011-006.313, arXiv:1105 .1160. [51] R. Brun, F. Rademakers, ROOT—An object oriented data analysis

frame-work, Nucl. Instrum. Methods A 389 (1997) 81, https://doi.org/10.1016/S0168 -9002(97)00048-X.

[52] M. Zhou, J. Jia, Centrality fluctuations in heavy-ion collisions, Phys. Rev. C 98 (2018) 044903, https://doi.org/10.1103/PhysRevC.98.044903, arXiv:1803 .01812. [53] M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Glauber modeling in high

energy nuclear collisions, Annu. Rev. Nucl. Part. Sci. 57 (2007) 205, https:// doi.org/10.1146/annurev.nucl.57.090506.123020, arXiv:nucl -ex /0701025. [54] J. Noronha-Hostler, M. Luzum, J.-Y. Ollitrault, Hydrodynamic predictions for

5.02 TeV Pb–Pb collisions, Phys. Rev. C 93 (2016) 034912, https://doi.org/10. 1103/PhysRevC.93.034912, arXiv:1511.06289.

[55] ALICE Collaboration, Energy dependence and fluctuations of anisotropic flow in Pb–Pb collisions at √sNN=5.02 and 2.76 TeV, J. High Energy Phys. 07 (2018)

103, https://doi.org/10.1007/JHEP07(2018)103.

[56] B. Schenke, P. Tribedy, R. Venugopalan, Event-by-event gluon multiplicity, en-ergy density, and eccentricities in ultrarelativistic heavy-ion collisions, Phys. Rev. C 86 (2012) 034908, https://doi.org/10.1103/PhysRevC.86.034908, arXiv: 1206 .6805.

[57] B. Schenke, P. Tribedy, R. Venugopalan, Gluon field fluctuations in nuclear colli-sions: multiplicity and eccentricity distributions, Nucl. Phys. A 926 (2014) 102, https://doi.org/10.1016/j.nuclphysa.2014.03.001, arXiv:1312 .5588.

TheCMSCollaboration

A.M. Sirunyan,A. Tumasyan YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, F. Ambrogi, E. Asilar,T. Bergauer, J. Brandstetter, E. Brondolin,M. Dragicevic, J. Erö,M. Flechl, M. Friedl,R. Frühwirth1,V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler1, A. König, N. Krammer,

I. Krätschmer,D. Liko, T. Madlener,I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck1, R. Schöfbeck, M. Spanring, D. Spitzbart,W. Waltenberger, J. Wittmann, C.-E. Wulz1, M. Zarucki

InstitutfürHochenergiephysik,Wien,Austria

V. Chekhovsky, V. Mossolov,J. Suarez Gonzalez InstituteforNuclearProblems,Minsk,Belarus

E.A. De Wolf,D. Di Croce, X. Janssen, J. Lauwers,M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

UniversiteitAntwerpen,Antwerpen,Belgium

S. Abu Zeid,F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette,I. Marchesini, S. Moortgat, L. Moreels,Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

D. Beghin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney,G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk,T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov,T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom,R. Yonamine, F. Zenoni, F. Zhang2

UniversitéLibredeBruxelles,Bruxelles,Belgium

A. Cimmino, T. Cornelis,D. Dobur, A. Fagot,M. Gul, I. Khvastunov3,D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke,N. Zaganidis

GhentUniversity,Ghent,Belgium

H. Bakhshiansohi,O. Bondu, S. Brochet,G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois,A. Giammanco, M. Komm, G. Krintiras,V. Lemaitre, A. Magitteri,

(9)

A. Mertens, M. Musich, K. Piotrzkowski,L. Quertenmont,A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

W.L. Aldá Júnior, F.L. Alves,G.A. Alves,L. Brito, M. Correa Martins Junior,C. Hensel, A. Moraes,M.E. Pol, P. Rebello Teles

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato4, E. Coelho, E.M. Da Costa, G.G. Da Silveira5, D. De Jesus Damiao,S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera,L. Mundim,H. Nogima, L.J. Sanchez Rosas,A. Santoro, A. Sznajder,M. Thiel,

E.J. Tonelli Manganote4,F. Torres Da Silva De Araujo, A. Vilela Pereira UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahujaa,C.A. Bernardesa, T.R. Fernandez Perez Tomeia,E.M. Gregoresb,P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa,D. Romero Abadb,J.C. Ruiz Vargasa

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, R. Hadjiiska,P. Iaydjiev, M. Misheva, M. Rodozov,M. Shopova, G. Sultanov InstituteforNuclearResearchandNuclearEnergy,BulgarianAcademyofSciences,Sofia,Bulgaria

A. Dimitrov,L. Litov, B. Pavlov,P. Petkov UniversityofSofia,Sofia,Bulgaria

W. Fang6, X. Gao6,L. Yuan BeihangUniversity,Beijing,China

M. Ahmad, J.G. Bian, G.M. Chen,H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat,H. Liao, Z. Liu, F. Romeo,S.M. Shaheen, A. Spiezia,J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang,S. Zhang, J. Zhao InstituteofHighEnergyPhysics,Beijing,China

Y. Ban, G. Chen, J. Li,Q. Li, S. Liu, Y. Mao,S.J. Qian, D. Wang,Z. Xu StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

C. Avila,A. Cabrera, L.F. Chaparro Sierra, C. Florez,C.F. González Hernández, J.D. Ruiz Alvarez, M.A. Segura Delgado

UniversidaddeLosAndes,Bogota,Colombia

B. Courbon,N. Godinovic, D. Lelas,I. Puljak, P.M. Ribeiro Cipriano, T. Sculac UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic,M. Kovac UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,D. Ferencek, K. Kadija,B. Mesic, A. Starodumov7, T. Susa InstituteRudjerBoskovic,Zagreb,Croatia

M.W. Ather,A. Attikis, G. Mavromanolakis, J. Mousa,C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski UniversityofCyprus,Nicosia,Cyprus

(10)

M. Finger8, M. Finger Jr.8 CharlesUniversity,Prague,CzechRepublic E. Carrera Jarrin

UniversidadSanFranciscodeQuito,Quito,Ecuador

A.A. Abdelalim9,10, Y. Mohammed11, E. Salama12,13

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola, H. Kirschenmann,J. Pekkanen,M. Voutilainen DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Havukainen, J.K. Heikkilä, T. Järvinen,V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini,S. Laurila, S. Lehti, T. Lindén,P. Luukka, H. Siikonen, E. Tuominen, J. Tuominiemi

HelsinkiInstituteofPhysics,Helsinki,Finland T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon, F. Couderc,M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, P. Gras, G. Hamel de Monchenault, P. Jarry,I. Kucher, C. Leloup,E. Locci, M. Machet, J. Malcles,G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin,M. Titov

IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

A. Abdulsalam, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo,S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen,C. Ochando,

G. Ortona,P. Paganini, P. Pigard,R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche

LaboratoireLeprince-Ringuet,Ecolepolytechnique,CNRS/IN2P3,UniversitéParis-Saclay,Palaiseau,France

J.-L. Agram14, J. Andrea, D. Bloch,J.-M. Brom, M. Buttignol,E.C. Chabert, N. Chanon, C. Collard, E. Conte14, X. Coubez, J.-C. Fontaine14,D. Gelé, U. Goerlach,M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

UniversitédeStrasbourg,CNRS,IPHCUMR7178,F-67000Strasbourg,France S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul, R. Chierici,D. Contardo, P. Depasse, H. El Mamouni,J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh,M. Lethuillier, L. Mirabito,

A.L. Pequegnot, S. Perries, A. Popov15,V. Sordini, M. Vander Donckt, S. Viret UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France T. Toriashvili16

GeorgianTechnicalUniversity,Tbilisi,Georgia Z. Tsamalaidze8

(11)

C. Autermann,L. Feld, M.K. Kiesel, K. Klein, M. Lipinski,M. Preuten, C. Schomakers, J. Schulz, V. Zhukov15

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

A. Albert, E. Dietz-Laursonn,D. Duchardt, M. Endres, M. Erdmann,S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer,T. Hebbeker,C. Heidemann, K. Hoepfner, S. Knutzen,M. Merschmeyer, A. Meyer,P. Millet, S. Mukherjee,T. Pook,M. Radziej, H. Reithler, M. Rieger, F. Scheuch,D. Teyssier,S. Thüer

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

G. Flügge,B. Kargoll, T. Kress,A. Künsken, T. Müller, A. Nehrkorn, A. Nowack,C. Pistone, O. Pooth, A. Stahl17

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

M. Aldaya Martin,T. Arndt, C. Asawatangtrakuldee, K. Beernaert,O. Behnke, U. Behrens, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras18,V. Botta, A. Campbell,P. Connor,

C. Contreras-Campana, F. Costanza, C. Diez Pardos,G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo19, J. Garay Garcia, A. Geiser, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff, A. Harb,J. Hauk, M. Hempel20, H. Jung,M. Kasemann, J. Keaveney, C. Kleinwort,I. Korol, D. Krücker, W. Lange,A. Lelek, T. Lenz, J. Leonard,K. Lipka, W. Lohmann20,R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari,D. Pitzl, A. Raspereza,M. Savitskyi,P. Saxena, R. Shevchenko,S. Spannagel, N. Stefaniuk, G.P. Van Onsem,R. Walsh, Y. Wen, K. Wichmann,C. Wissing, O. Zenaiev

DeutschesElektronen-Synchrotron,Hamburg,Germany

R. Aggleton,S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer,E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann,A. Karavdina, R. Klanner, R. Kogler,N. Kovalchuk, S. Kurz, T. Lapsien, D. Marconi,M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo17,T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann,J. Schwandt,J. Sonneveld, H. Stadie,G. Steinbrück, F.M. Stober, M. Stöver,H. Tholen, D. Troendle, E. Usai, A. Vanhoefer, B. Vormwald

UniversityofHamburg,Hamburg,Germany

M. Akbiyik, C. Barth,M. Baselga,S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm,N. Faltermann, B. Freund,R. Friese, M. Giffels,M.A. Harrendorf,F. Hartmann17, S.M. Heindl,U. Husemann, F. Kassel17, S. Kudella, H. Mildner, M.U. Mozer,Th. Müller, M. Plagge, G. Quast, K. Rabbertz,M. Schröder, I. Shvetsov,G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand,M. Weber, T. Weiler, S. Williamson,C. Wöhrmann, R. Wolf

InstitutfürExperimentelleKernphysik,Karlsruhe,Germany

G. Anagnostou,G. Daskalakis, T. Geralis,A. Kyriakis, D. Loukas,I. Topsis-Giotis InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

G. Karathanasis,S. Kesisoglou, A. Panagiotou, N. Saoulidou NationalandKapodistrianUniversityofAthens,Athens,Greece

K. Kousouris

NationalTechnicalUniversityofAthens,Athens,Greece

I. Evangelou,C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios,N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas,F.A. Triantis, D. Tsitsonis

(12)

M. Csanad, N. Filipovic,G. Pasztor, O. Surányi,G.I. Veres21 MTA-ELTELendületCMSParticleandNuclearPhysicsGroup,EötvösLorándUniversity,Budapest,Hungary

G. Bencze,C. Hajdu, D. Horvath22,Á. Hunyadi, F. Sikler,V. Veszpremi WignerResearchCentreforPhysics,Budapest,Hungary

N. Beni, S. Czellar, J. Karancsi23,A. Makovec, J. Molnar,Z. Szillasi InstituteofNuclearResearchATOMKI,Debrecen,Hungary

M. Bartók21,P. Raics, Z.L. Trocsanyi, B. Ujvari InstituteofPhysics,UniversityofDebrecen,Debrecen,Hungary

S. Choudhury, J.R. Komaragiri IndianInstituteofScience(IISc),Bangalore,India

S. Bahinipati24, S. Bhowmik, P. Mal, K. Mandal, A. Nayak25, D.K. Sahoo24, N. Sahoo, S.K. Swain NationalInstituteofScienceEducationandResearch,Bhubaneswar,India

S. Bansal, S.B. Beri,V. Bhatnagar, R. Chawla, N. Dhingra, A.K. Kalsi,A. Kaur, M. Kaur, S. Kaur,R. Kumar, P. Kumari, A. Mehta,J.B. Singh, G. Walia

PanjabUniversity,Chandigarh,India

A. Bhardwaj,S. Chauhan, B.C. Choudhary, R.B. Garg,S. Keshri,A. Kumar, Ashok Kumar, S. Malhotra, M. Naimuddin,K. Ranjan, Aashaq Shah, R. Sharma

UniversityofDelhi,Delhi,India

R. Bhardwaj,R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey,S. Dutt, S. Dutta, S. Ghosh,

N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit,A. Roy, S. Roy Chowdhury, S. Sarkar,M. Sharan, S. Thakur

SahaInstituteofNuclearPhysics,HBNI,Kolkata,India P.K. Behera

IndianInstituteofTechnologyMadras,Madras,India

R. Chudasama, D. Dutta, V. Jha,V. Kumar, A.K. Mohanty17,P.K. Netrakanti,L.M. Pant, P. Shukla,A. Topkar BhabhaAtomicResearchCentre,Mumbai,India

T. Aziz, S. Dugad,B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar TataInstituteofFundamentalResearch-A,Mumbai,India

S. Banerjee, S. Bhattacharya, S. Chatterjee,P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity26, G. Majumder, K. Mazumdar,T. Sarkar26, N. Wickramage27

TataInstituteofFundamentalResearch-B,Mumbai,India

S. Chauhan,S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma IndianInstituteofScienceEducationandResearch(IISER),Pune,India

S. Chenarani28, E. Eskandari Tadavani,S.M. Etesami28,M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi29,F. Rezaei Hosseinabadi, B. Safarzadeh30,M. Zeinali

(13)

M. Felcini,M. Grunewald UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, C. Calabriaa,b, A. Colaleoa, D. Creanzaa,c,L. Cristellaa,b, N. De Filippisa,c,

M. De Palmaa,b, F. Erricoa,b,L. Fiorea,G. Iasellia,c,S. Lezkia,b, G. Maggia,c, M. Maggia,G. Minielloa,b, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b,G. Pugliesea,c,R. Radognaa,A. Ranieria, G. Selvaggia,b, A. Sharmaa, L. Silvestrisa,17,R. Vendittia,P. Verwilligena

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilanaa,b,D. Bonacorsia,b, L. Borgonovia,b,S. Braibant-Giacomellia,b,

R. Campaninia,b,P. Capiluppia,b,A. Castroa,b, F.R. Cavalloa, S.S. Chhibraa, G. Codispotia,b, M. Cuffiania,b, G.M. Dallavallea,F. Fabbria,A. Fanfania,b,D. Fasanellaa,b, P. Giacomellia, C. Grandia, L. Guiduccia,b, S. Marcellinia, G. Masettia,A. Montanaria,F.L. Navarriaa,b,A. Perrottaa,A.M. Rossia,b,T. Rovellia,b, G.P. Sirolia,b,N. Tosia

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

S. Albergoa,b, S. Costaa,b, A. Di Mattiaa,F. Giordanoa,b, R. Potenzaa,b,A. Tricomia,b, C. Tuvea,b

aINFNSezionediCatania,Catania,Italy bUniversitàdiCatania,Catania,Italy

G. Barbaglia,K. Chatterjeea,b,V. Ciullia,b,C. Civininia,R. D’Alessandroa,b, E. Focardia,b, P. Lenzia,b, M. Meschinia, S. Paolettia,L. Russoa,31,G. Sguazzonia,D. Stroma,L. Viliania,b,17

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi,S. Bianco, F. Fabbri, D. Piccolo,F. Primavera17 INFNLaboratoriNazionalidiFrascati,Frascati,Italy

V. Calvellia,b, F. Ferroa, E. Robuttia,S. Tosia,b

aINFNSezionediGenova,Genova,Italy bUniversitàdiGenova,Genova,Italy

A. Benagliaa,A. Beschib,L. Brianzaa,b,F. Brivioa,b,V. Cirioloa,b,17, M.E. Dinardoa,b,S. Fiorendia,b, S. Gennaia,A. Ghezzia,b,P. Govonia,b,M. Malbertia,b,S. Malvezzia,R.A. Manzonia,b,D. Menascea, L. Moronia, M. Paganonia,b,K. Pauwelsa,b, D. Pedrinia,S. Pigazzinia,b,32,S. Ragazzia,b,

T. Tabarelli de Fatisa,b

aINFNSezionediMilano-Bicocca,Milano,Italy bUniversitàdiMilano-Bicocca,Milano,Italy

S. Buontempoa, N. Cavalloa,c,S. Di Guidaa,d,17, F. Fabozzia,c,F. Fiengaa,b, A.O.M. Iorioa,b,W.A. Khana, L. Listaa,S. Meolaa,d,17,P. Paoluccia,17,C. Sciaccaa,b,F. Thyssena

aINFNSezionediNapoli,Napoli,Italy bUniversitàdiNapoli‘FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy

P. Azzia, N. Bacchettaa, L. Benatoa,b,D. Biselloa,b,A. Bolettia,b,R. Carlina,b,

A. Carvalho Antunes De Oliveiraa,b,P. Checchiaa, M. Dall’Ossoa,b,P. De Castro Manzanoa, T. Dorigoa, F. Gasparinia,b, U. Gasparinia,b,A. Gozzelinoa,M. Gulminia,33,S. Lacapraraa, P. Lujan,M. Margonia,b, A.T. Meneguzzoa,b,N. Pozzobona,b,P. Ronchesea,b, R. Rossina,b, E. Torassaa,S. Venturaa, M. Zanettia,b, G. Zumerlea,b

(14)

bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy

A. Braghieria,A. Magnania,P. Montagnaa,b, S.P. Rattia,b,V. Rea, M. Ressegottia,b, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa,b

aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy

L. Alunni Solestizia,b,M. Biasinia,b, G.M. Bileia,C. Cecchia,b, D. Ciangottinia,b,L. Fanòa,b, R. Leonardia,b,

E. Manonia, G. Mantovania,b, V. Mariania,b,M. Menichellia,A. Rossia,b,A. Santocchiaa,b, D. Spigaa

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova,P. Azzurria,17,G. Bagliesia,T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa,G. Fedia, L. Gianninia,c,A. Giassia, M.T. Grippoa,31, F. Ligabuea,c,T. Lomtadzea,

E. Mancaa,c,G. Mandorlia,c,A. Messineoa,b,F. Pallaa, A. Rizzia,b, A. Savoy-Navarroa,34, P. Spagnoloa, R. Tenchinia,G. Tonellia,b, A. Venturia, P.G. Verdinia

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

cScuolaNormaleSuperiorediPisa,Pisa,Italy

L. Baronea,b,F. Cavallaria, M. Cipriania,b,N. Dacia, D. Del Rea,b,17, E. Di Marcoa,b,M. Diemoza, S. Gellia,b,E. Longoa,b,F. Margarolia,b,B. Marzocchia,b, P. Meridiania,G. Organtinia,b, R. Paramattia,b, F. Preiatoa,b,S. Rahatloua,b,C. Rovellia,F. Santanastasioa,b

aINFNSezionediRoma,Rome,Italy bSapienzaUniversitàdiRoma,Rome,Italy

N. Amapanea,b, R. Arcidiaconoa,c,S. Argiroa,b,M. Arneodoa,c,N. Bartosika,R. Bellana,b, C. Biinoa, N. Cartigliaa, F. Cennaa,b,M. Costaa,b, R. Covarellia,b,A. Deganoa,b,N. Demariaa, B. Kiania,b,

C. Mariottia, S. Masellia, E. Migliorea,b,V. Monacoa,b,E. Monteila,b,M. Montenoa, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea,M. Pelliccionia,G.L. Pinna Angionia,b,F. Raveraa,b, A. Romeroa,b,M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b,A. Staianoa, P. Traczyka,b

aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy

cUniversitàdelPiemonteOrientale,Novara,Italy

S. Belfortea,M. Casarsaa, F. Cossuttia, G. Della Riccaa,b,A. Zanettia

aINFNSezionediTrieste,Trieste,Italy bUniversitàdiTrieste,Trieste,Italy

D.H. Kim,G.N. Kim, M.S. Kim,J. Lee, S. Lee,S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen,D.C. Son, Y.C. Yang KyungpookNationalUniversity,Daegu,RepublicofKorea

A. Lee

ChonbukNationalUniversity,Jeonju,RepublicofKorea H. Kim,D.H. Moon, G. Oh

ChonnamNationalUniversity,InstituteforUniverseandElementaryParticles,Kwangju,RepublicofKorea J.A. Brochero Cifuentes, J. Goh,T.J. Kim

HanyangUniversity,Seoul,RepublicofKorea

S. Cho, S. Choi,Y. Go,D. Gyun, S. Ha, B. Hong, Y. Jo,Y. Kim, K. Lee,K.S. Lee, S. Lee,J. Lim,S.K. Park, Y. Roh KoreaUniversity,Seoul,RepublicofKorea

(15)

J. Almond,J. Kim, J.S. Kim, H. Lee,K. Lee, K. Nam,S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo,G.B. Yu

SeoulNationalUniversity,Seoul,RepublicofKorea

H. Kim,J.H. Kim, J.S.H. Lee, I.C. Park UniversityofSeoul,Seoul,RepublicofKorea

Y. Choi,C. Hwang, J. Lee,I. Yu SungkyunkwanUniversity,Suwon,RepublicofKorea

V. Dudenas, A. Juodagalvis,J. Vaitkus VilniusUniversity,Vilnius,Lithuania

I. Ahmed,Z.A. Ibrahim, M.A.B. Md Ali35,F. Mohamad Idris36,W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

M.C. Duran-Osuna, H. Castilla-Valdez,E. De La Cruz-Burelo, G. Ramirez-Sanchez, I. Heredia-De La Cruz37, R.I. Rabadan-Trejo,R. Lopez-Fernandez, J. Mejia Guisao, R. Reyes-Almanza,A. Sanchez-Hernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia UniversidadIberoamericana,MexicoCity,Mexico

J. Eysermans,I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico

A. Morelos Pineda

UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico D. Krofcheck

UniversityofAuckland,Auckland,NewZealand P.H. Butler

UniversityofCanterbury,Christchurch,NewZealand

A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, A. Saddique, M.A. Shah,M. Shoaib, M. Waqas NationalCentreforPhysics,Quaid-I-AzamUniversity,Islamabad,Pakistan

H. Bialkowska,M. Bluj, B. Boimska,T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski

NationalCentreforNuclearResearch,Swierk,Poland

K. Bunkowski, A. Byszuk38,K. Doroba, A. Kalinowski, M. Konecki,J. Krolikowski, M. Misiura, M. Olszewski,A. Pyskir, M. Walczak

InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

P. Bargassa,C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli,B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo,L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas,G. Strong,O. Toldaiev, D. Vadruccio, J. Varela LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,Lisboa,Portugal

Şekil

Fig. 2. Elliptic-flow  cumulant harmonics with values obtained from the moments of
Fig. 4 shows the centrality dependence of the standardized skewness  γ 1 exp . Finite values are found for the standardized
Fig. 5. Centrality  dependence of the parameters extracted from elliptic power function fits to the unfolded  p ( v 2 ) distributions

Referanslar

Benzer Belgeler

In conclusion, our study revealed that OSA and associated hypoxia affect both motor and sensory nerve conduction, revealing that subclinical peripheral neuropathy is related to

Günümüzde sayısız terim ve tanıma sahip olan öğrenme güçlüğü DSM IV’te öğrenme bozukluğu olarak şöyle tanımlanmaktadır: “Öğrenme bozukluğu tanısı

As chaos has properties such as nonlinearity, sensitivity to initial conditions, and fractality, we performed different methods to identify the existence of the chaos in stock

Also, the study supports the idea that circadian rhythm irregularities cause an increase in daily energy expenditure which leads further metabolic syndrome disorder.. Eur Res

Every historical building is a unique research subject with its inestimable cultural value; nevertheless the Florya Ataturk Marine Mansion can serve as a reference for the huge number

KJCX2-YW-N45; 100 Talents Program of CAS; National 1000 Talents Program of China; Institute of Nuclear and Particle Physics, Astronomy and Cosmology (INPAC) and Shanghai Key

Barack Obama ‘tarihi’ olarak nitelenen bu konu mas ndan sonra o güne kadar Ba bakan Recep Tayyip Erdo an taraf ndan kabul edilmeyen DTP Genel Ba kan Ahmet Türk Erdo an’la görü

Buna göre, zorunlu askerlik hizmeti karşısında vicdan i reddin bir insan hakkı olarak nitelendirilip nitelendirilemeyeceğine ılişkin bir değerlendirme yapılırken sadece