• Sonuç bulunamadı

Some ostrowski's type inequalities for functions whose second derivatives are s-convex in the second sense

N/A
N/A
Protected

Academic year: 2021

Share "Some ostrowski's type inequalities for functions whose second derivatives are s-convex in the second sense"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Vol. XLVII No 1 2014

Erhan Set, Mehmet Zeki Sarikaya, M. Emin Ozdemir

SOME OSTROWSKI’S TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES

ARE s-CONVEX IN THE SECOND SENSE

Abstract. Some new inequalities of the Ostrowski type for twice differentiable mappings whose derivatives in absolute value are s-convex in the second sense are given.

1. Introduction

In 1938, Ostrowski proved the following integral inequality [12]:

Theorem 1. Let I Ď R, f : I Ñ R be a differentiable mapping on pa, bq whose derivative f1 : pa, bq Ñ R is bounded on pa, bq, i.e., }f1}

8 “

sup tPpa,bq

|f1ptq| ă 8. Then, the inequality holds: ˇ ˇ ˇ ˇf pxq ´ 1 b ´ a żb a f ptqdt ˇ ˇ ˇ ˇ ≤ « 1 4` `x ´ a`b 2 ˘2 pb ´ aq2 ff pb ´ aq››f1 › › 8,

for all x P ra, bs . The constant 14 is sharp in the sense that it cannot be replaced by a smaller one.

For some applications of Ostrowski’s inequality see ([1]–[4]) and for recent results and generalizations concerning Ostrowski’s inequality see ([1]–[8]).

The class of s-convexity in the second sense is defined in the following way [9, 11]: a function f : r0, 8q Ñ R is said to be s-convex in the second sense if

f ptx ` p1 ´ tqyq ≤ tsf pxq ` p1 ´ tqsf pyq,

for all x, y P r0, 8q, t P r0, 1s and some fixed s P p0, 1s. This class is usually denoted by Ks2.

In [10], Dragomir and Fitzpatrick proved the Hadamard inequality for s-convex functions in the second sense:

2010 Mathematics Subject Classification: 26A15, 26D07, 26D15, 26D10.

Key words and phrases: Ostrowski’s inequality, convex function, s-convex function.

DOI: 10.2478/dema-2014-0003

c

(2)

Theorem 2. Suppose that f : r0, 8q Ñ r0, 8q is an s-convex function in the second sense, where s P p0, 1q, and let a, b P r0, 8q, a ă b. If f P L1pra, bsq then the following inequalities hold:

(1.1) 2s´1fˆ a ` b 2 ˙ ≤ 1 b ´ a b ż a f pxqdx ≤ f paq ` f pbq s ` 1 .

The constant k “ s`11 is the best possible in the second inequality in (1.1).

In [3], Cerone et al. proved the following inequalities of Ostrowski type and Hadamard type, respectively.

Theorem 3. Let f : ra, bs Ñ R be a twice differentiable mapping on pa, bq and f2 : pa, bq Ñ R is bounded, i.e. }f2

}8 “ sup tPpa,bq

|f2ptq| ă 8. Then we have the inequality:

(1.2) ˇ ˇ ˇ ˇf pxq ´ 1 b ´ a żb a f ptqdt ´ ˆ x ´a ` b 2 ˙ f1pxq ˇ ˇ ˇ ˇ ≤ « 1 24pb ´ aq 2 ` 1 2 ˆ x ´a ` b 2 ˙2ff › ›f2 › › 8 ≤ pb ´ aq2 6 › ›f2 › › 8, for all x P ra, bs.

Corollary 1. Under the above assumptions, we have the mid-point in-equality: (1.3) ˇ ˇ ˇ ˇf p a ` b 2 q ´ 1 b ´ a żb a f pxqdx ˇ ˇ ˇ ˇ ≤ pb ´ aq 2 24 › ›f2 › › 8.

In this article, we establish new Ostrowski’s type inequalities for s-convex functions in the second sense.

2. Main results

In order to establish our main results we need the following lemma. Lemma 1. Let I Ď R, f : I Ñ R be a twice differentiable function on I˝ with f2

P L1ra, bs where a, b P I with a ă b. Then

(2.1) 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1pxq “ px ´ aq 3 2pb ´ aq ż1 0 t2f2 ptx ` p1 ´ tqaqdt `pb ´ xq 3 2pb ´ aq ż1 0 t2f2 ptx ` p1 ´ tqbqdt, for each x P ra, bs.

(3)

Proof. By integration by parts, we have the following identity (2.2) ż1 0 t2f2ptx ` p1 ´ tqaqdt “ t 2 px ´ aqf 1 ptx ` p1 ´ tqaq ˇ ˇ ˇ ˇ 1 0 ´ 2 x ´ a ż1 0 tf1 ptx ` p1 ´ tqaqdt “ f 1 pxq px ´ aq´ 2 x ´ a « t px ´ aqf ptx ` p1 ´ tqaq ˇ ˇ ˇ ˇ 1 0 ´ 1 x ´ a ż1 0 f ptx ` p1 ´ tqaqdt  “ f 1 pxq px ´ aq´ 2f pxq px ´ aq2` 2 px ´ aq2 ż1 0 f ptx ` p1 ´ tqaqdt.

By using the change of the variable u “ tx ` p1 ´ tqa for t P r0, 1s and multiplying the both sides of (2.2) by px´aq2pb´aq3, we obtain

(2.3) px ´ aq 3 2pb ´ aq ż1 0 t2f2ptx ` p1 ´ tqaqdt “ px ´ aq 2f1 pxq 2pb ´ aq ´ px ´ aqf pxq b ´ a ` 1 b ´ a żx a f puqdu. Similarly, we observe that

(2.4) pb ´ xq 3 2pb ´ aq ż1 0 t2f2ptx ` p1 ´ tqbqdt “ ´pb ´ xq 2f1 pxq 2pb ´ aq ´ pb ´ xqf pxq b ´ a ` 1 b ´ a żb x f puqdu. Thus, adding (2.3) and (2.4) we get the required identity (2.1).

The following result may be stated:

Theorem 4. Let I Ă r0, 8q, f : I Ñ R be a twice differentiable function on I˝ such that f2

P L1ra, bs where a, b P I with a ă b. If |f2| is s-convex in the second sense on ra, bs for some fixed s P p0, 1s, then the following inequality holds: (2.5) ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1pxq ˇ ˇ ˇ ˇ ≤ 1 2pb ´ aq "„ |f2pxq| s ` 3 ` 2 |f2 paq| ps ` 1qps ` 2qps ` 3q  px ´ aq3 ` „ |f2pxq| s ` 3 ` 2 |f2pbq| ps ` 1qps ` 2qps ` 3q  pb ´ xq3 * , for each x P ra, bs.

(4)

Proof. By Lemma 1 and by s-convex of |f2 |, we have ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1 pxq ˇ ˇ ˇ ˇ ≤ px ´ aq 3 2pb ´ aq ż1 0 t2ˇˇf2ptx ` p1 ´ tqaq ˇ ˇdt ` pb ´ xq 3 2pb ´ aq ż1 0 t2ˇˇf2ptx ` p1 ´ tqbq ˇ ˇdt ≤ px ´ aq 3 2pb ´ aq ż1 0 t2“tsˇˇf2pxq ˇ ˇ` p1 ´ tqs ˇ ˇf2paq ˇ ˇ‰ dt ` pb ´ xq 3 2pb ´ aq ż1 0 t2“tsˇˇf2pxq ˇ ˇ` p1 ´ tqs ˇ ˇf2pbq ˇ ˇ‰ dt “ px ´ aq 3 2pb ´ aq ż1 0 `ts`2ˇ ˇf2pxq ˇ ˇ` t2p1 ´ tqs ˇ ˇf2paq ˇ ˇ˘ dt ` pb ´ xq 3 2pb ´ aq ż1 0 `ts`2ˇ ˇf2pxq ˇ ˇ` t2p1 ´ tqs ˇ ˇf2pbq ˇ ˇ˘ dt “ px ´ aq 3 2pb ´ aq „ |f2pxq| s ` 3 ` 2 |f2 paq| ps ` 1qps ` 2qps ` 3q  ` pb ´ xq 3 2pb ´ aq „ |f2pxq| s ` 3 ` 2 |f2 pbq| ps ` 1qps ` 2qps ` 3q  “ 1 2pb ´ aq "„ |f2pxq| s ` 3 ` 2 |f2 paq| ps ` 1qps ` 2qps ` 3q  px ´ aq3 ` „ |f2pxq| s ` 3 ` 2 |f2 pbq| ps ` 1qps ` 2qps ` 3q  pb ´ xq3 * , where we have used the fact that

ż1 0 ts`2dt “ 1 s ` 3 and ż1 0 t2p1 ´ tqsdt “ 2 ps ` 1qps ` 2qps ` 3q. This completes the proof.

Corollary 2. If we put M “ sup xPra,bs

|f2| in Theorem 4, then we get

(2.6) ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1pxq ˇ ˇ ˇ ˇ ≤ 3M ˆ s2` 3s ` 4 ps ` 1qps ` 2qps ` 3q ˙« 1 24pb ´ aq 2 `1 2 ˆ x ´ a ` b 2 ˙2ff ≤ Mpb ´ aq 2 2 ˆ s2` 3s ` 4 ps ` 1qps ` 2qps ` 3q ˙ .

(5)

Here, simple computation shows that px ´ aq3` pb ´ xq3 “ pb ´ aq « pb ´ aq2 4 ` 3 ˆ x ´a ` b 2 ˙2ff .

Remark 1. If in Corollary 2 we choose s “ 1, then we recapture the inequality (1.2) for functions f with convex |f2

| .

Corollary 3. If in Corollary 2 we choose x “ a`b2 , then we get the mid-point inequality ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pa ` b 2 q ˇ ˇ ˇ ˇ ≤ Mpb ´ aq 2 2 ˆ s2` 3s ` 4 ps ` 1qps ` 2qps ` 3q ˙ .

Theorem 5. Let I Ă r0, 8q, f : I Ñ R be a twice differentiable function on I˝ such that f2

P L1ra, bs where a, b P I with a ă b. If |f2|q is s-convex in the second sense on ra, bs, for some fixed s P p0, 1s, p, q ą 1 and 1p ` 1q “ 1, then the following inequality holds:

(2.7) ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1 pxq ˇ ˇ ˇ ˇ ≤ px ´ aq 3 2pb ´ aq ˆ 1 2p ` 1 ˙1 pˆ|f2pxq|q` |f2paq|q s ` 1 ˙1q `pb ´ xq 3 2pb ´ aq ˆ 1 2p ` 1 ˙1 pˆ|f2pxq|q` |f2pbq|q s ` 1 ˙1 q , for each x P ra, bs.

Proof. Suppose that p ą 1. From Lemma 1 and by the Hölder inequality, we have ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1pxq ˇ ˇ ˇ ˇ ≤ px ´ aq 3 2pb ´ aq ż1 0 t2ˇˇf2ptx ` p1 ´ tqaq ˇ ˇdt ` pb ´ xq3 2pb ´ aq ż1 0 t2ˇˇf2ptx ` p1 ´ tqbq ˇ ˇdt ≤ px ´ aq 3 2pb ´ aq ˆż1 0 t2pdt ˙1pˆż1 0 ˇ ˇf2ptx ` p1 ´ tqaq ˇ ˇ q dt ˙1q `pb ´ xq 3 2pb ´ aq ˆż1 0 t2pdt ˙1pˆż1 0 ˇ ˇf2ptx ` p1 ´ tqbq ˇ ˇ q dt ˙1q .

(6)

Since |f2

|q is s-convex in the second sense, we have ż1 0 ˇ ˇf2ptx ` p1´qaq ˇ ˇ q dt ≤ ż1 0 “tsˇ ˇf2pxq ˇ ˇ q ` p1 ´ tqsˇˇf2paq ˇ ˇ q‰ dt “ |f 2 pxq|q` |f2paq|q s ` 1 and ż1 0 ˇ ˇf2ptx ` p1 ´ tqbq ˇ ˇ q dt ≤ ż1 0 “tsˇ ˇf2pxq ˇ ˇ q ` p1 ´ tqsˇˇf2pbq ˇ ˇ q‰ dt “ |f 2pxq|q` |f2pbq|q s ` 1 . Therefore, we have ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1pxq ˇ ˇ ˇ ˇ ≤ px ´ aq 3 2pb ´ aq ˆ 1 2p ` 1 ˙1 pˆ|f2pxq|q` |f2paq|q s ` 1 ˙1 q `pb ´ xq 3 2pb ´ aq ˆ 1 2p ` 1 ˙1 pˆ|f2pxq|q` |f2pbq|q s ` 1 ˙1q , where 1p `1q “ 1, which is required.

Corollary 4. Under the above assumptions, we have the following in-equality: (2.8) ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1 pxq ˇ ˇ ˇ ˇ ≤ 3M p2p ` 1q 1 p ˆ 2 s ` 1 ˙1 q « pb ´ aq2 24 ` 1 2 ˆ x ´a ` b 2 ˙2ff . This follows by Theorem 5 with M “ sup

xPra,bs |f2| .

Corollary 5. With the assumptions in Corollary 4, one has the mid-point inequality: ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ fˆ a ` b 2 ˙ˇ ˇ ˇ ˇ ≤ pb ´ aq 2 8 p2p ` 1q1p ˆ 2 s ` 1 ˙1 q M. This follows by Corollary 4, choosing x “ a`b2 .

(7)

Corollary 6. With the assumptions in Corollary 4, one has the following perturbed trapezoid like inequality:

ˇ ˇ ˇ ˇ żb a f puqdu ´ pb ´ aq 2 rf paq ` f pbqs ` pb ´ aq2 4 `f 1 pbq ´ f1paq˘ ˇ ˇ ˇ ˇ ≤ pb ´ aq 3 2 p2p ` 1qp1 ˆ 2 s ` 1 ˙1 q M.

This follows using Corollary 4 with x “ a, x “ b, adding the results and using the triangle inequality for the modulus.

Theorem 6. Let I Ă r0, 8q, f : I Ñ R be a twice differentiable function on I˝ such that f2 P L

1ra, bs where a, b P I with a ă b. If |f2|q is s-convex in the second sense on ra, bs, for some fixed s P p0, 1s and q ≥ 1, then the following inequality holds:

(2.9) ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1 pxq ˇ ˇ ˇ ˇ ≤ px ´ aq 3 2pb ´ aq ˆ 1 3 ˙1´1 q ˆ|f2pxq|q s ` 3 ` 2 |f2 paq|q ps ` 1q ps ` 2q ps ` 3q ˙1q ` pb ´ xq 3 2pb ´ aq ˆ 1 3 ˙1´1q ˆ |f2pxq|q s ` 3 ` 2 |f2pbq|q ps ` 1q ps ` 2q ps ` 3q ˙1 q , for each x P ra, bs.

Proof. Suppose that q ≥ 1. From Lemma 1 and by the well known power mean inequality, we have

ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1pxq ˇ ˇ ˇ ˇ ≤ px ´ aq 3 2pb ´ aq ż1 0 t2ˇˇf2ptx ` p1 ´ tqaq ˇ ˇdt ` pb ´ xq3 2pb ´ aq ż1 0 t2ˇˇf2ptx ` p1 ´ tqbq ˇ ˇdt ≤ px ´ aq 3 2pb ´ aq ˆż1 0 t2dt ˙1´1qˆż1 0 t2ˇˇf2ptx ` p1 ´ tqaq ˇ ˇ q dt ˙1q `pb ´ xq 3 2pb ´ aq ˆż1 0 t2dt ˙1´1q ˆż1 0 t2ˇˇf2ptx ` p1 ´ tqbq ˇ ˇ q dt ˙1q .

(8)

Since |f2

|q is s-convex in the second sense, we have ż1 0 t2ˇˇf2ptx ` p1 ´ tqaq ˇ ˇqdt ≤ ż1 0 “ts`2ˇ ˇf2pxq ˇ ˇq` t2p1 ´ tqs ˇ ˇf2paq ˇ ˇq‰ dt “ |f 2pxq|q s ` 3 ` 2 |f2paq|q ps ` 1q ps ` 2q ps ` 3q and ż1 0 t2ˇˇf2ptx ` p1 ´ tqbq ˇ ˇ q dt ≤ ż1 0 “ts`2ˇ ˇf2pxq ˇ ˇ q ` t2p1 ´ tqsˇˇf2pbq ˇ ˇ q‰ dt “ |f 2 pxq|q s ` 3 ` 2 |f2 pbq|q ps ` 1q ps ` 2q ps ` 3q. Therefore, we have ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1pxq ˇ ˇ ˇ ˇ ≤ px ´ aq 3 2pb ´ aq ˆ 1 3 ˙1´1 qˆ|f2pxq|q s ` 3 ` 2 |f2 paq|q ps ` 1q ps ` 2q ps ` 3q ˙1 q `pb ´ xq 3 2pb ´ aq ˆ 1 3 ˙1´1q ˆ |f2pxq|q s ` 3 ` 2 |f2pbq|q ps ` 1q ps ` 2q ps ` 3q ˙1 q . Corollary 7. Under the above assumptions we have the following inequal-ity ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1pxq ˇ ˇ ˇ ˇ ≤ M ˜ 3`s2` 3s ` 4˘ ps ` 1qps ` 2qps ` 3q ¸1 q « pb ´ aq2 24 ` 1 2 ˆ x ´a ` b 2 ˙2ff . This follows by Theorem 6 with M “ sup

xPra,bs |f2| .

Corollary 8. With the assuptions in Corollary 7, one has the mid-point inequality: ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ fˆ a ` b 2 ˙ˇ ˇ ˇ ˇ ≤ M ˜ 3`s2` 3s ` 4˘ ps ` 1qps ` 2qps ` 3q ¸1 q pb ´ aq2 24 . This follows by Corollary 7, choosing x “ a`b2 .

(9)

Remark 2. If in Corollary 8 we choose s “ 1 and q “ 1, then we have the following inequality: ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ fˆ a ` b 2 ˙ˇ ˇ ˇ ˇ ≤ Mpb ´ aq 2 24 , which is the inequality (1.3) for functions f with convex |f2| .

Corollary 9. With the assumptions in Corollary 7, one has the following perturbed trapezoid like inequality:

ˇ ˇ ˇ ˇ żb a f puqdu ´ pb ´ aq 2 rf paq ` f pbqs ` pb ´ aq2 4 `f 1 pbq ´ f1paq˘ ˇ ˇ ˇ ˇ ≤ pb ´ aq 3 6 ˜ 3`s2` 3s ` 4˘ ps ` 1qps ` 2qps ` 3q ¸1 q M.

This follows by using Corollary 7 with x “ a, x “ b, adding the results and using the triangle inequality for the modulus.

Remark 3. All of the above inequalities hold for functions f with convex |f2|. Simply choose s “ 1 in each of those results to get desired formulas.

The following result holds in the s-concave case.

Theorem 7. Let I Ă r0, 8q, f : I Ñ R be a twice differentiable function on I˝ such that f2 P L

1ra, bs where a, b P I with a ă b. If |f2|q is s-concave in the second sense on ra, bs, for some fixed s P p0, 1s, p, q ą 1 and 1p`1q “ 1, then the following inequality holds:

(2.10) ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1pxq ˇ ˇ ˇ ˇ ≤ 2 ps´1q{q p2p ` 1q1{ppb ´ aq ¨ ˚ ˚ ˝ px ´ aq3 ˇ ˇ ˇ ˇ f2 px ` a 2 q ˇ ˇ ˇ ˇ` pb ´ xq 3 ˇ ˇ ˇ ˇ f2 pb ` x 2 q ˇ ˇ ˇ ˇ 2 ˛ ‹ ‹ ‚ ,

for each x P ra, bs.

Proof. Suppose that q ą 1. From Lemma 1 and by the Hölder inequality, we have

(10)

ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1pxq ˇ ˇ ˇ ˇ ≤ px ´ aq 3 2pb ´ aq ż1 0 t2ˇˇf2ptx ` p1 ´ tqaq ˇ ˇdt ` pb ´ xq3 2pb ´ aq ż1 0 t2ˇˇf2ptx ` p1 ´ tqbq ˇ ˇdt ≤ px ´ aq 3 2pb ´ aq ˆż1 0 t2pdt ˙1pˆż1 0 ˇ ˇf2ptx ` p1 ´ tqaq ˇ ˇ q dt ˙1q `pb ´ xq 3 2pb ´ aq ˆż1 0 t2pdt ˙1pˆż1 0 ˇ ˇf2ptx ` p1 ´ tqbq ˇ ˇ q dt ˙1q .

Since |f2|q is s-concave in the second sense, using (1.1) we obtain (2.11) ż1 0 ˇ ˇf2ptx ` p1 ´ tqaq ˇ ˇ q dt ≤ 2s´1 ˇ ˇ ˇ ˇ f2px ` a 2 q ˇ ˇ ˇ ˇ q and (2.12) ż1 0 ˇ ˇf2ptx ` p1 ´ tqbq ˇ ˇ q dt ≤ 2s´1 ˇ ˇ ˇ ˇ f2 pb ` x 2 q ˇ ˇ ˇ ˇ q . A combination of (2.11) and (2.12) gives

ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ f pxq ` ˆ x ´a ` b 2 ˙ f1 pxq ˇ ˇ ˇ ˇ ≤ 2 ps´1q{q p2p ` 1q1{ppb ´ aq ¨ ˚ ˚ ˝ px ´ aq3 ˇ ˇ ˇ ˇf 2 px ` a 2 q ˇ ˇ ˇ ˇ` pb ´ xq 3 ˇ ˇ ˇ ˇf 2 pb ` x 2 q ˇ ˇ ˇ ˇ 2 ˛ ‹ ‹ ‚ .

This completes the proof.

Corollary 10. If in (2.10), we choose x “ a`b2 , then we have (2.13) ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ fˆ a ` b 2 ˙ˇ ˇ ˇ ˇ ≤ 2 ps´1q{q pb ´ aq2 16 p2p ` 1q1{p „ˇ ˇ ˇ ˇ f2 p3a ` b 4 q ˇ ˇ ˇ ˇ` ˇ ˇ ˇ ˇ f2 pa ` 3b 4 q ˇ ˇ ˇ ˇ  . For instance, if s “ 1, then we have

ˇ ˇ ˇ ˇ 1 b ´ a żb a f puqdu ´ fˆ a ` b 2 ˙ˇ ˇ ˇ ˇ ≤ pb ´ aq 2 16 p2p ` 1q1{p „ˇ ˇ ˇ ˇ f2 p3a ` b 4 q ˇ ˇ ˇ ˇ` ˇ ˇ ˇ ˇ f2 pa ` 3b 4 q ˇ ˇ ˇ ˇ  .

(11)

References

[1] M. Alomari, M. Darus, Some Ostrowski’s type inequalities for convex functions with applications, RGMIA 13(1) (2010), Article 3. [ONLINE: http://ajmaa.org/RGMIA/ v13n1.php]

[2] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski’s inequalities for functions whose derivatives are s-convex in the second sense, RGMIA 12 (2009), Supp., No. 15. [3] P. Cerone, S. S. Dragomir J. Roumeliotis, An inequality of Ostrowski type for mappings

whose second derivatives are bounded and applications, RGMIA Res. Rep. Coll. 1(1) (1998), Article 4.

[4] S. S. Dragomir, S. Wang, Applications of Ostrowski’s inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett. 11 (1998), 105–109.

[5] M. Z. Sarıkaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comeni-anae 79(1) (2010), 129–134.

[6] E. Set, M. E. Özdemir, M. Z. Sarıkaya, New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications, Facta Unv. Ser. Math. Inform. 27(1) (2012), 67–82.

[7] M. E. Özdemir, H. Kavurmaci, E. Set, Ostrowski’s type inequalities for pα, mq-convex functions, Kyungpook Math. J. 50 (2010), 371–378.

[8] M. Z. Sarıkaya, E. Set, M. E. Özdemir, On the integral inequalities for mappings whose second dervatives are convex and applications, Stud. Univ. Babeş–Bolyai Math., in press.

[9] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Publ. Inst. Math. 23 (1978), 13–20. [10] S. S. Dragomir, S. Fitzpatrick, The Hadamard’s inequality for s-convex functions in

the second sense, Demonstratio Math. 32(4) (1999), 687–696.

[11] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100–111.

[12] A. Ostrowski,Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Helv. 10 (1938), 226–227.

E. Set

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS ORDU UNIVERSITY

ORDU, TURKEY

E-mail: erhanset@yahoo.com

M. Z. Sarikaya DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS DÜZCE UNIVERSITY DÜZCE, TURKEY E-mail: sarikayamz@gmail.com M. E. Ozdemir ATATÜRK UNIVERSITY K.K. EDUCATION FACULTY DEPARTMENT OF MATHEMATICS 25240, CAMPUS, ERZURUM, TURKEY E-mail: emos@atauni.edu.tr

Referanslar

Benzer Belgeler

türlerinin bulunduğu su örneklerindeki klor miktarlarına bakıldığında sadece iki örneğin klor miktarı 0.3ppm’den yüksek (0.4 ppm) çıkmıştır. Klor miktarı

Orman endüstrisinin bir alt sektörü olan levha endüstrisinin Düzce ili oransal talep trendinin kaplama ve parke alt sektörlerine benzer, kereste alt sektörünün

Comparison of the con- trol group with the GTx-applied 48-hour, 25 mg/kg RH-applied 48-hour, 50 mg/kg RH-applied 24- and 48-hour, 75 mg/kg RH-applied 24- and 48-hour groups has shown

ECoG recordings from the experiments were analyzed using the PowerLab Chart v.7.2.1 software package (ADInstruments Pty Ltd, Castle Hill, NSW, Australia).

Analysis of variance (ANOVA) results of total color change (ΔE*) values of samples applied with acetic acid, ammonia, hydrogen peroxide and sodium silicate at different

In diabetic aorta, the relaxation response to acetyl- choline (Ach) was found to be significantly decreased compared with control subjects, and resveratrol treatment reversed this;

The Effects of Densification and Heat Post-Treatment on Hardness and Morphological Properties of Wood Materials Mehmet Budakçı,a,* Hüseyin Pelit,a Abdullah Sönmez,b and Mustafa

The mini- open carpal tunnel release surgery, which can be performed proximal or distal to the distal wrist crease, is a preferable method, however, the reliability of mini