• Sonuç bulunamadı

Strong ΛbNB and ΛcND vertices

N/A
N/A
Protected

Academic year: 2021

Share "Strong ΛbNB and ΛcND vertices"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Strong

Λ

b

NB and Λ

c

ND vertices

K. Azizi,1,* Y. Sarac,2,†and H. Sundu3,‡

1Department of Physics, Doğuş University, Acıbadem-Kadıköy, 34722 Istanbul, Turkey 2

Electrical and Electronics Engineering Department, Atilim University, 06836 Ankara, Turkey

3Department of Physics, Kocaeli University, 41380 Izmit, Turkey

(Received 28 October 2014; published 4 December 2014)

We investigate the strong vertices among theΛb, nucleon, and B meson as well as theΛc, nucleon, and D

meson in QCD. In particular, we calculate the strong coupling constants gΛbNB and gΛcND for different Dirac structures entering the calculations. In the case of theΛcND vertex, we compare the result with the

only existing prediction obtained at Q2¼ 0.

DOI:10.1103/PhysRevD.90.114011 PACS numbers: 13.30.-a, 11.55.Hx, 13.30.Eg

I. INTRODUCTION

The last decade has witnessed significant experimental progresses on the spectrum and decay products of the hadrons containing heavy quarks. This progress has stimulated theoretical interest on the spectroscopy of these baryons via various methods (for some of them see [1–11] and references therein). For a better under-standing of the heavy flavor physics, it is also necessary to gain deeper insight into the radiative, strong, and weak decays of the baryons containing a heavy quark. For related studies, see[12–28] and references therein.

The strong coupling constants are the main ingredients of the strong interactions of the heavy baryons. To improve our understanding of the strong interactions among the heavy baryons and other hadrons and gain knowledge about the nature and structure of the participating particles, one needs an accurate determination of these coupling constants. In the present paper, we calculate the strong coupling constants gΛbNBand gΛcNDwithin the framework of the QCD sum rule [29] as one of the most powerful and applicable tools in hadron physics. These coupling constants are relevant in the bottom and charmed meson cloud description of the nucleon which may be used to explain exotic events observed by different collaborations. Besides, in order to exactly deter-mine the modifications in the masses, decay constants and other parameters of the B and D mesons in the nuclear medium, we should immediately consider the contributions of the baryonsΛb½candΣb½cin the medium produced by the interactions of B and D mesons with the nucleon, viz.,

B−ðb¯uÞ þ pðuudÞ or nðuddÞ → Λ0bðudbÞ or Σ−bðddbÞ;

D0ðc¯uÞ þ pðuudÞ or nðuddÞ → Λþc; Σþ

cðudcÞ or Σ0cðddcÞ: ð1Þ

Hence, we need to know the exact values of the strong coupling constants gΛbNB, gΛcND, gΣbNB, and gΣcNDentering the Born term in the calculations[30–34]. Note that among these couplings, we have only one approximate prediction for the strong coupling gΛcND in the literature calculated at zero transferred momentum square, taking the Borel masses in the initial and final channels as the same[19]. We shall also refer to a pioneering work [35], which estimates the strong coupling constant gNKΛ. Here we should also stress that our work on the calculation of the strong coupling constants gΣbNB and gΣcND is in progress.

The layout of this paper is as follows. The next section presents the details of the calculations of the strong coupling constants under consideration. In Sec. III, we numerically analyze the sum rules obtained and discuss the results.

II. THE STRONG COUPLING FORM FACTORS The purpose of the present section is to give the details of the calculations of the coupling form factors gΛbNBðq2Þ and

gΛcNDðq2Þ. The values of these form factors at Q2¼ −q2¼

−m2

B½D give the strong coupling constants among the

participating particles. To fulfill this aim, the starting point is the usage of the following three-point correlation function,

Πðp; p0; qÞ ¼ i2Z d4xZ d4ye−ip·xeip0·y

×h0jT ðJNðyÞJB½Dð0Þ¯JΛb½ΛcðxÞÞj0i; ð2Þ whereT denotes the time-ordering operator and q ¼ p − p0 is transferred momentum. The three-point correlation func-tion contains interpolating currents that can be written in terms of the quark field operators as

JΛb½ΛcðxÞ ¼ εabcua

T

ðxÞCγ5dbðxÞb½ccðxÞ;

JNðyÞ ¼ εijkðui

T

ðyÞCγμujðyÞÞγ5γμdkðyÞ;

JB½Dð0Þ ¼ ¯uð0Þγ5b½cð0Þ; ð3Þ

where C is the charge conjugation operator.

*kazizi@dogus.edu.trysoymak@atilim.edu.trhayriye.sundu@kocaeli.edu.tr

(2)

The three-point correlation function is calculated in the following two ways. In the first way, called the hadronic side, one calculates it in terms of the hadronic degrees of freedom. In the second way, called the operator product expansion (OPE) side, it is calculated in terms of quark and gluon degrees of freedom using the operator product expansion in the deep Euclidean region. These two sides are then matched to obtain the QCD sum rules for the coupling form factors. We apply a double

Borel transformation with respect to the variables p2and p02 to both sides to suppress the contributions of the higher states and continuum.

The calculation of the hadronic side of the correlation function requires its saturation with complete sets of appropriate Λb½Λc, B½D, and N hadronic states having

the same quantum numbers as their interpolating currents. This step is followed by performing the four integrals over x and y, which leads to

Πðp; p0; qÞ ¼h0∣JN∣Nðp0Þih0∣JB½D∣B½DðqÞihΛb½ΛcðpÞ∣¯JΛb½Λc∣0i ðp2− m2 Λb½ΛcÞðp 02 − m2 NÞðq2− m2B½DÞ ×hNðp0ÞB½DðqÞ∣Λb½ΛcðpÞi þ    ; ð4Þ

where … represents the contributions coming from the higher states and continuum. The matrix elements in this equation are parametrized as

h0∣JN∣Nðp0Þi ¼ λNuNðp0; s0Þ; hΛbðpÞ∣¯JΛb½Λc∣0i ¼ λΛb½Λc¯uΛb½Λcðp; sÞ; h0∣JB½D∣B½DðqÞi ¼ i m2B½DfB½D muþ mb½c ; hNðp0ÞB½DðqÞ∣Λ b½ΛcðpÞi ¼ gΛbNB½ΛcND¯uNðp 0; s0Þ × iγ5uΛb½Λcðp; sÞ; ð5Þ whereλNandλΛb½Λcare the residues and uNand uΛb½Λcare the spinors for the nucleon andΛb½Λc baryon, respectively.

In the above equations, fB½Dis the leptonic decay constant

of the B½D meson and gΛbNB½ΛcND is the strong coupling form factor amongΛb½Λc, N and B½D particles. The use of Eqs.(5)in Eq.(4)is followed by summing over the spins of the N andΛb½Λc baryons, i.e.,

X s0 uNðp0; s0Þ¯uNðp0; s0Þ ¼ p0þ mN; X s uΛb½Λcðp; sÞ¯uΛb½Λcðp; sÞ ¼ p þ mΛb½Λc: ð6Þ As a result, we have Πðp; p0; qÞ ¼ i2m2B½DfB½D mb½cþ mu × λNλΛb½ΛcgΛbNB½ΛcND ðp2− m2 Λb½ΛcÞðp 02 − m2 NÞðq2− m2B½DÞ ×fðmNmΛb½Λc− m 2 Λb½ΛcÞγ5 þ ðmΛb½Λc− mNÞpγ5þ qpγ5− mΛb½Λcqγ5g þ    : ð7Þ

The final form of the hadronic side of the correlation function is obtained after the application of the double

Borel transformation with respect to the initial and final momenta squared, viz.,

ˆBΠðqÞ ¼ i2m2B½DfB½D mb½cþ mu λNλΛb½ΛcgΛbNB½ΛcND ðq2− m2 B½DÞ e− m2 Λb½Λc M2 e− m2 N M02 ×fðmNmΛb½Λc− m 2 Λb½ΛcÞγ5ðmΛb½Λc− mNÞpγ5 þ qpγ5− mΛb½Λcqγ5g þ    ; ð8Þ where M2 and M02 are Borel mass parameters.

The OPE side of the correlation function is calculated in the deep Euclidean region, where p2→ −∞ and p02 → −∞. To proceed, the explicit expressions of the interpolating currents are inserted into the correlation function in Eq. (2). After contracting out all quark pairs via Wick’s theorem, we get

Πðp; p0; qÞ ¼ i2 Z d4x Z d4ye−ip·xeip0·yε abcεijl ×fγ5γμScjdðy − xÞγ5CSbiuTðy − xÞ × CγμSahu ðyÞγ5Sb½chl ð−xÞ − γ5γμScjdðy − xÞγ5 × CSaiT u ðy − xÞCγμSbhu ðyÞγ5Shlb½cð−xÞg; ð9Þ

where Silb½cðxÞ represents the heavy quark propagator which is given by[36] Silb½cðxÞ ¼ i ð2πÞ4 Z d4ke−ik·x  δil k− mb½c− gsGαβil 4 ×σαβðk þ mb½cÞ þ ðk þ mb½cÞσαβ ðk2− m2 b½cÞ2 þ π2 3  αsGG π  δilmb½c k2þ mb½ck ðk2− m2 b½cÞ4 þ     ; ð10Þ

(3)

and SuðxÞ and SdðxÞ are the light quark propagators given by SijqðxÞ ¼ i x 2π2x4δij− mq 4π2x2δij− h¯qqi 12  1 − imq 4 x  δij − x2 192m20h¯qqi  1 − imq 6 x  δij −igsG ij θη 32π2x2½xσθηþ σθηx þ    : ð11Þ

The substitution of these explicit forms of the heavy and light quark propagators into Eq. (9) is followed by the use of the following Fourier transformations in D¼ 4 dimensions: 1 ½ðy − xÞ2n¼ Z dDt ð2πÞDe−it·ðy−xÞið−1Þnþ12D−2nπD=2 ×ΓðD=2 − nÞ ΓðnÞ  −1 t2 D=2−n ; 1 ½y2n¼ Z dDt0 ð2πÞDe−it 0·y ið−1Þnþ12D−2nπD=2 ×ΓðD=2 − nÞ ΓðnÞ  −1 t02 D=2−n : ð12Þ

Then, the four-x and four-y integrals are performed in the sequel of the replacements xμ→ i∂p

μand yμ→ −i

∂ ∂p0

μ. As a result, these integrals turn into Dirac delta functions which are used to take the four-integrals over k and t0. Finally the Feynman parametrization and

Z d4t ðt 2Þβ ðt2þ LÞα ¼iπ2ð−1Þβ−αΓðβ þ 2ÞΓðα − β − 2Þ Γð2ÞΓðαÞ½−Lα−β−2 ð13Þ

are used to perform the remaining four-integral over t. The correlation function in the OPE side is obtained in terms of different structures as

Πðp; p0; qÞ ¼ Π

1ðq2Þγ5þ Π2ðq2Þpγ5þ Π3ðq2Þqpγ5

þ Π4ðq2Þqγ5; ð14Þ

where each Πiðq2Þ function includes the contributions

coming from both the perturbative and nonperturbative parts and can be written as

Πiðq2Þ ¼ Z ds Z ds0ρ pert i ðs; s0; q2Þ þ ρ nonpert i ðs; s0; q2Þ ðs − p2Þðs0− p02 Þ : ð15Þ The imaginary parts of theΠi functions give the spectral

densities ρiðs; s0; q2Þ appearing in the last equation, viz.

ρiðs; s0; q2Þ ¼1πIm½Πi. As examples, we present only the

explicit forms of the spectral functionsρpert1 ðs; s0; q2Þ and ρnonpert

1 ðs; s0; q2Þ corresponding to the Dirac structure γ5,

which are obtained as

ρpert 1 ðs;s0; q2Þ ¼  − mb½cmus0 2 64π4ðq2− m2 b½cÞΘ½L1 ðs;s0; q2Þ þ Z 1 0 dx Z 1−x 0 dy 1 64π4u3 ×½2m4b½cx2ð1 þ 3x2− y þ 6xy − 4xÞÞ þ mb½c3 xð3mduð2x − 1Þ þ muð3 þ 2x2− 3y −5x − 2xyÞÞ þ 2m2 b½cxðsð12x4þ y2− y − 30x3þ 36x3y− 6x þ 20xy − 13xy2þ 24x2− 55x2yþ 24x2y2Þ

þ q2xyð18x − 24xy þ 7y − 12x2−6Þ þ s0yð12x3þ 7y − 4y2− 27x2þ 36x2yþ 18x − 43xy þ 24xy2− 3ÞÞ

þ 2s2u2xð10x3þ 6x − 15xy þ 2y − 16x2þ 20x2yÞ þ 2q4x2y2ð10x2− 7y − 16x þ 20xy þ 6Þ

þ 2s02

y2u2ð10x2− 3y − 12x þ 20xyÞ − 4q2s0xy2ð10x3þ 9y − 5y2− 24x2þ 30x2yþ 18x −39xy þ 20xy2− 4Þ þ 2suyðq2xð32x2− 40x2y− 20x3− 2y − 13x þ 22xyþ 1Þ

þ s0ð20x4− 48x3þ 60x3y− y þ y2− 8x þ 27xy − 18xy2þ 36x2− 86x2yþ 40x2y2ÞÞ

þ 3mb½cmuuðq2xðx þ 2y −3xy− 1Þ þ suxð3x − 1Þ þ s0uð3xy− x − yÞÞ − mb½cmuðq2xð3x2y−3x2

þ 7y − 4y2þ 6x − 10xy − 3xy2− 3Þ −suxð3x2− y − 6x − 6xyþ 3Þ

−3s0uðx2y− x2þ y −y þ x − 3xy − xy2ÞÞΘ½L

2ðs;s0; q2Þ



; ð16Þ

(4)

and ρnonpert 1 ðs; s0; q2Þ ¼  1 16π2ðm2 b½c− q2Þ ½2mb½cmdmuh¯ddiþ ðmb½cð3m2u− 3mdmu− 2s0Þ þ mdð4m2uþ s − s0Þ þ 2mus0Þh¯uui −  αs G2 π  mb½cmuq2s0 2 192π2ðq2− m2 b½cÞ4 −9mb½cs0ðmdþ muÞ þ 2s0ðq2− 2s þ 5s0Þ 1152π2ðq2− m2 b½cÞ2 − mb½cðmd− 3muÞ 128π2ðq2− m2 b½cÞ − m2 0h¯ddi 3mb½cþ 4md 96π2ðm2 b½c− q2Þ þ m2 0h¯uui 9mb½cþ 3md− 7mu 96π2ðm2 b½c− q2Þ  Θ½L1ðs; s0; q2Þ þ Z 1 0 dx Z 1−x 0 dy  1

8π2u½h¯ddiðmb½c− 2mb½cx− muuþ mdð3x − 1Þðy þ uÞÞ

þ h¯uuiðmb½c− 2mb½cx− 4mdu− 2muðy − 3xy − 3xuÞÞ

þ  αs G2 π  1

96π2u3½3u2ð3x − 1Þðy þ uÞ þ xyð1 − y þ xð3x þ 6y − 4ÞÞ

 Θ½L2ðs; s0; q2Þ; ð17Þ where L1ðs; s0; q2Þ ¼ s0; L2ðs; s0; q2Þ ¼ −m2b½cxþ sx − sx2þ s0y þ q2xy− sxy − s0xy− s0y2; u¼ x þ y − 1; ð18Þ

withΘ½… being the unit-step function.

As we previously mentioned, the QCD sum rules for the strong form factors are obtained by matching the hadronic and OPE sides of the correlation function. As a result, forγ5 structure, we get gΛbNB½ΛcNDðq2Þ ¼ −e m2 Λb½Λc M2 e m2 N M02 ðmb½cþ muÞðq2− m2B½DÞ m2B½DfB½Dλ†Λ b½ΛcλNðmNmΛb½Λc− m 2 Λb½ΛcÞ × Z s 0 ðmb½cþmuþmdÞ2 ds Z s00 ð2muþmdÞ2 ds0e−M2s e− s0 M02 ×½ρpert1 ðs; s0; q2Þ þ ρnonpert1 ðs; s0; q2Þ  ; ð19Þ

where s0and s00are continuum thresholds inΛb½Λc and N

channels, respectively.

III. NUMERICAL RESULTS

This section contains the numerical analysis of the obtained sum rules for the strong coupling form factors including their behavior in terms of Q2¼ −q2. For the analysis, we use the input parameters given in TableI.

The analysis starts by the determination of the working regions for the auxiliary parameters M2, M02, s0 and s00. These parameters, which arise due to the double Borel

transformation and continuum subtraction, are not physical parameters so the strong coupling form factors should be almost independent of these parameters. Being related to the energy of the first excited states in the initial and final channels, the continuum thresholds are not completely arbitrary. The continuum thresholds s0 and s00 are the energy squares which characterize the beginning of the continuum. If we denote the ground states masses in the initial and final channels respectively by m and m0, the quantities pffiffiffiffiffis0− m and pffiffiffiffiffis00− m0 are the energies needed to excite the particles to their first excited states with the same quantum numbers. Theffiffiffiffiffi pffiffiffiffiffis0− m and

s00 p

− m0are well known for the states under consideration [37], where they lie roughly between 0.1 GeV and 0.3 GeV.

TABLE I. Input parameters used in calculations.

Parameters Values mb ð4.18  0.03Þ GeV[37] mc ð1.275  0.025Þ GeV[37] md 4.8þ0.5−0.3 MeV[37] mu 2.3þ0.7−0.5 MeV[37] mB ð5279.26  0.17Þ MeV [37] mD ð1864.84  0.07Þ MeV [37] mN ð938.272046  0.000021Þ MeV [37] mΛb ð5619.5  0.4Þ MeV[37] mΛc ð2286.46  0.14Þ MeV [37]

fB ð248  23exp 25VubÞ MeV[38]

fD ð205.8  8.5  2.5Þ MeV[39] λ2 N 0.0011  0.0005 GeV6[40] λΛb ð3.85  0.56Þ10 −2GeV3 [22] λΛc ð3.34  0.47Þ10 −2GeV3 [22] h¯uuið1 GeVÞ ¼ h¯ddið1 GeVÞ −ð0.24  0.01Þ 3 GeV3[41] hαsG2 π i ð0.012  0.004Þ GeV4 [42] m20ð1 GeVÞ ð0.8  0.2Þ GeV2[42]

(5)

These values lead to the working intervals of the continuum thresholds as 32.7½5.7 GeV2≤ s0≤ 34.5½6.7 GeV2 and 1.08 GeV2≤ s0

0≤ 1.56 GeV2for the strong vertexΛbNB

½ΛcND.

In the determination of the working regions of Borel parameters M2and M02, one considers the pole dominance as well as the convergence of the OPE. In technique language, the upper bounds on these parameters are obtained FIG. 1 (color online). Left: gΛbNBðQ2¼ 0Þ as a function of the Borel mass M2 at average values of continuum thresholds.

Right: gΛbNBðQ2¼ 0Þ as a function of the Borel mass M0

2

at average values of continuum thresholds.

FIG. 3 (color online). Left: gΛbNBðQ2Þ as a function of Q2at average values of the continuum thresholds and Borel mass parameters.

Right: gΛcNDðQ

2Þ as a function of Q2at average values of the continuum thresholds and Borel mass parameters.

FIG. 2 (color online). The same as Fig.1but for gΛcNDðQ2¼ 0Þ.

(6)

by requiring that the pole contribution exceeds the contri-butions of the higher states and continuum; i.e., the condition

R s0 ds R s00 ds 0e−s M2e− s0 M02ρiðs; s0; Q2Þ R sminds R s0minds 0e−s M2e− s0 M02ρ iðs; s0; Q2Þ <1=3 ð20Þ

should be satisfied, where for each structureρiðs;s0; Q2Þ ¼

ρpert

i ðs;s0; Q2Þ þ ρ nonpert

i ðs;s0; Q2Þ, smin¼ðmb½cþmuþmdÞ2

and s0min¼ ð2muþ mdÞ2. The lower bounds on M2and M02

are obtained by demanding that the contribution of the perturbative part exceeds the nonperturbative contributions. These considerations lead to the windows 10½2 GeV2≤ M2≤ 20½6 GeV2 and 1 GeV2≤ M02≤ 3 GeV2 for the Borel mass parameters corresponding to the strong vertex ΛbNB½ΛcND in which our results have weak dependencies

on the Borel mass parameters (see Figs.1–2).

Now, we use the working regions of auxiliary parameters as well as values of other input parameters to find out the dependency of the strong coupling form factors on Q2. Our numerical calculations reveal that the following fit function well describes the strong coupling form factors in terms of Q2, gΛbNB½ΛcNDðQ2Þ ¼ c1exp  −Q2 c2 þ c3; ð21Þ

where the values of the parameters c1, c2, and c3 for different structures are presented in Tables II and III for ΛbNB and ΛcND, respectively. In Fig. 3, we depict the

dependence of the strong coupling form factors on Q2 at average values of the continuum thresholds and Borel mass parameters for both the QCD sum rules and fitting results. From this figure, we see that the QCD sum rules are truncated at some points at negative values of Q2 and the fitting results coincide well with the sum rules predictions up to these points. The values of the strong coupling constants obtained from the fit function at Q2¼ −m2B½Dfor all structures are given in Table IV. The errors appearing in the results are due to the uncertainties of the input

parameters and those coming from the calculations of the working regions for the auxiliary parameters. From Table IV, we see that all structures except thatγ5 lead to very close results. We also depict the average of the coupling constants under consideration, obtained from all the structures used, in TableIV.

At this stage, we compare our result of the coupling constant gΛcNDobtained at Q2¼ 0 with that of Ref.[19]for

the Dirac structure qγ5. At Q2¼ 0, we get the result gΛcND¼ 7.28  2.18 for this structure, which is consistent

with the prediction of [19], i.e., gΛcND¼

ffiffiffiffiffiffi 4π p

ð1.9  0.6Þ ¼ 6.74  2.12 within the errors.

To summarize, we have calculated the strong coupling constants gΛbNBand gΛcND in the framework of the three-point QCD sum rules. Our results can be used in the bottom and charmed meson cloud description of the nucleon, which may be used to explain exotic events observed by different experiments. The obtained results can also be used in analysis of the results of heavy ion collision experiments like ¯PANDA at FAIR. These results may also be used in exact determinations of the modifications in the masses, decay constants, and other parameters of the B and D mesons in nuclear medium.

ACKNOWLEDGMENTS

This work has been supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK) under the Research Project No. 114F018. TABLE II. Parameters appearing in the fit function of the

coupling form factor forΛbNB vertex.

Structure c1 c2ðGeV2Þ c3

γ5 0.69  0.21 22.96  6.66 6.67  2.00

5 0.90  0.27 18.60  5.58 8.28  2.32 qγ5 1.04  0.31 16.40  4.92 9.87  2.67 qpγ5 0.95  0.28 17.10  4.79 8.96  2.69

TABLE III. Parameters appearing in the fit function of the coupling form factor for theΛcND vertex.

Structure c1 c2ðGeV2Þ c3

γ5 −0.08  0.02 −17.74  4.79 0.97  0.29

5 −9.01  2.70 −328.82  98.65 14.81  4.00 qγ5 −20.04  5.81 −1221.76  366.53 27.32  8.20 qpγ5 0.86  0.26 16.63  4.82 4.05  1.22

TABLE IV. Values of the gΛbNBand gΛcNDcoupling constants for different structures.

Structure gΛbNBðQ2¼ −m2BÞ gΛcNDðQ2¼ −m2DÞ γ5 8.97  2.69 0.91  0.27 pγ5 12.31  3.57 5.90  1.77 qγ5 15.57  4.67 7.34  2.20 qpγ5 13.81  4.14 5.11  1.53 Average 12.67  3.76 4.82  1.44

(7)

[1] D. W. Wang and M. Q. Huang, Phys. Rev. D 68, 034019 (2003).

[2] Z. G. Wang,Eur. Phys. J. C 54, 231 (2008).

[3] F. O. Duraes and M. Nielsen,Phys. Lett. B 658, 40 (2007). [4] X. Liu, H. X. Chen, Y. R. Liu, A. Hosaka, and S. L. Zhu,

Phys. Rev. D 77, 014031 (2008).

[5] D. W. Wang, M. Q. Huang, and C. Z. Li,Phys. Rev. D 65, 094036 (2002).

[6] N. Mathur, R. Lewis, and R. M. Woloshyn,Phys. Rev. D 66, 014502 (2002).

[7] D. Ebert, R. N. Faustov, and V. O. Galkin,Phys. Rev. D 72, 034026 (2005).

[8] M. Karliner and H. J. Lipkin, Phys. Lett. B 660, 539 (2008).

[9] M. Karliner, B. Keren-Zur, H. J. Lipkin, and J. L. Rosner,

arXiv:0706.2163.

[10] J. L. Rosner,Phys. Rev. D 75, 013009 (2007).

[11] T. M. Aliev, K. Azizi, and A. Ozpineci,Nucl. Phys. B808, 137 (2009).

[12] B. Julia-Diaz and D. O. Riska, Nucl. Phys. A739, 69 (2004).

[13] S. Scholl and H. Weigel,Nucl. Phys. A735, 163 (2004). [14] A. Faessler, Th. Gutsche, M. Ivanov, J. Körner, V.

Lyubovitskij, D. Nicmorus, and K. Pumsa-ard,Phys. Rev. D 73, 094013 (2006).

[15] B. Patel, A. K. Rai, and P. C. Vinodkumar,J. Phys. G 35, 065001 (2008);J. Phys. Conf. Ser. 110, 122010 (2008). [16] C. S. An, Nucl. Phys. A797, 131 (2007); A801, 82(E)

(2008).

[17] T. M. Aliev, A. Ozpineci, and M. Savci,Phys. Rev. D 65, 096004 (2002).

[18] T. M. Aliev, K. Azizi, and A. Ozpineci,Phys. Rev. D 79, 056005 (2009).

[19] F. S. Navarra and M. Nielsen,Phys. Lett. B 443, 285 (1998). [20] P.-Z. Huang, H.-X. Chen, and S.-L. Zhu,Phys. Rev. D 80,

094007 (2009).

[21] Z.-G. Wang,Eur. Phys. J. A 44, 105 (2010);Phys. Rev. D 81, 036002 (2010).

[22] K. Azizi, M. Bayar, and A. Ozpineci,Phys. Rev. D 79, 056002 (2009).

[23] T. M. Aliev, K. Azizi, and M. Savci,Phys. Lett. B 696, 220 (2011).

[24] H.-Y. Cheng and C.-K. Chua, Phys. Rev. D 75, 014006 (2007).

[25] A. Khodjamirian, Ch. Klein, and Th. Mannel, and Y.-M. Wang,J. High Energy Phys. 09 (2011) 106.

[26] E. Hernandez and J. Nieves, Phys. Rev. D 84, 057902 (2011).

[27] K. Azizi, M. Bayar, Y. Sarac, and H. Sundu,Phys. Rev. D 80, 096007 (2009).

[28] T. Gutsche, M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij, and P. Santorelli,arXiv:1410.6043 (2014).

[29] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov,Nucl. Phys. B147, 385 (1979);B147, 448 (1979).

[30] K. Azizi N. Er, and H. Sundu,Eur. Phys. J. C 74, 3021 (2014).

[31] A. Kumar,Adv. High Energy Phys. 2014, 549726 (2014). [32] Z.-G. Wang and T. Huang, Phys. Rev. C 84, 048201

(2011).

[33] Z.-G. Wang,Int. J. Mod. Phys. A 28, 1350049 (2013). [34] A. Hayashigaki,Phys. Lett. B 487, 96 (2000).

[35] S. Choe, M. K. Cheoun, and S. H. Lee,Phys. Rev. C 53, 1363 (1996).

[36] L. J. Reinders, H. Rubinstein, and S. Yazaki, Phys. Rep. 127, 1 (1985).

[37] K. A. Olive et al. (Particle Data Group),Chin. Phys. C 38, 090001 (2014).

[38] A. Khodjamirian, “B and D Meson Decay Constant in QCD,” in Proceeding of 3rd Belle Analysis School, 22, 2010 (KEK, Tsukuba, Japan, 2010).

[39] B. I. Eisenstein et al. (CLEO Collaboration),Phys. Rev. D 78, 052003 (2008).

[40] K. Azizi and N. Er,Eur. Phys. J. C 74, 2904 (2014). [41] B. L. Ioffe,Prog. Part. Nucl. Phys. 56, 232 (2006). [42] V. M. Belyaev and B. L. Ioffe, Sov. Phys. JETP 57, 716

(1982);Phys. Lett. B 287, 176 (1992).

Şekil

TABLE I. Input parameters used in calculations.
FIG. 3 (color online). Left: g Λ b NB ðQ 2 Þ as a function of Q 2 at average values of the continuum thresholds and Borel mass parameters.
TABLE IV. Values of the g Λ b NB and g Λ c ND coupling constants for different structures.

Referanslar

Benzer Belgeler

Şekil 3.10. : MALDI iyonlaştırma şematik görünümü………... : Kimlik belirleme ve doğrulama aboratuvarı………. Domuz jelatini toplam iyon kromotogramı., B .Sığır

A partial packing view of (I), showing the intermolecular C—H···π and π···π interac- tions as dashed lines. H atoms not involved in hydrogen bonding have been omitted for

General distribution of zooplankton in Turkish coast of the Black Sea and a study on egg production of Acartia clausi Gisbrecht, 1889 (Copepoda=Calanoida). Sinop:

The establishment of geographic alliances—a network of university geography professors, teacher educators, and K-12 teachers—have become one of the most effective practices in

According to the results of DUNCAN test, which was made after the 14 days seedling tests of ISTA, it is approved that a homogeneousness emergence has been provided in onion and

Abstract: This research was carried out to determine the effect of bacterial inoculants using as silage additives on the fermentation, aerobic stability and rumen degradability

germanica üzerinde yap ı lacak olan biyolojik mücadele amaçl ı çal ış malarda di ğ er 2 türe göre tercih..

çiçaidenme döneminde su gerilim' uygulanan grupta ise her üç tuzluluk düzeyindeki kök kuru madde miktarlarinda istatistiksel olarak P&lt;0.05 düzeyinde önemli farkl ı l ı