• Sonuç bulunamadı

Variable structure extremum problem with constraints for delay discrete inclusions

N/A
N/A
Protected

Academic year: 2021

Share "Variable structure extremum problem with constraints for delay discrete inclusions"

Copied!
14
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

VARIABLE STRUCTURE EXTREMUM PROBLEM WITH

CONSTRAINTS FOR DELAY DISCRETE INCLUSIONS

GECİKMELİ AYRIK İÇERMELER İÇİN KISITLAMALI DEĞİŞKEN YAPILI EKSTREMUM PROBLEMİ

Hijran G. MIRZAYEVA

Baku State University Institute of Applied Mathematics

hijan_2002@rambler.ru

ABSTRACT: The paper considers a variable structure extremum problem with

constraints for delay discrete inclusions. The necessary extremum conditions are obtained for the considered problem.

Keywords: Discrete Inclusion; Necessary Extremum Condition; Subdifferential;

Lipschitz Condition; Tangent Cone; Hypertangent cone

JEL Classifications: C61

ÖZET: Makalede gecikmeli diskret içermeler için kısıtlamalı değişken yapılı

ekstremum problemi araştırılmaktadır. Ele aldığımız problem için gerekli ekstremum koşulları bulunmuştur.

Anahtar Kelimeler: Diskret İçerme; Gerek Ekstremum Koşulu, Altdiferansiyel,

Lipschitz Koşulu, Teğet Koni, Hiperteğet Koni

JEL Sınıflaması: C61

1. Introduction

The extremum problems for discrete inclusions with delay are a generalization of the discrete problems of optimal control with delay. Application of nonsmooth analysis theory is of importance for investigation of such a problem. Since the definition of the subdifferential given by T. Rockafellar and F.Clarke is entirely a generalization of the smooth and convex problems, the application of the theory of nonsmooth analysis in this paper is advisable. As the necessary extremum conditions are formulated more naturally with the help of the subdifferential, the definition of subdifferential is of importance in the theory of extremum problems.

There exist a lot of papers devoted to the qualitative investigation of different problems of optimal control of discrete systems. The control problems of discrete systems, described by the different difference equations are of importance among various optimal control problems. In spite of this fact, there are many unstudied problems in the field of extremum problems for discrete inclusions. Recently, multivalued mappings became the subjectof intensivestudy.Different properties of multivalued mappings and their connection with the theory of optimization were considered in (Aubin, Ekeland, 1984: 510; Borisovich, Gelman, Mishkins, Obukhovskiy, 1986: 103).

Note that main models of mathematical economics are reduced to extremum problems for discrete inclusions.

(2)

If the state of the control system is characterized by a system of more than two equations and an operator connecting the equations of the system (connection operator) exists, then such a control system is called a variable structure system. This work generalizes some of the results, obtained in (Mirzayeva, Sadygov, 2005: 89-94; Mirzayeva, Sadygov, 2006: 106-112). An arbitrary order necessary extremum conditions are obtained for the nonconvex optimal control problem for discrete inclusions with delay in (Mirzayeva, Sadygov, 2006: 106-112). In this paper the extremum problem for delay discrete embedding is reduced to the mathematical programming problem using the method given in ( Boltyanskiy, 1975: 3-55). Further, using Clarke’s theory, necessary extremum conditions are obtained. Differently from the considered works (Mirzayeva, Sadygov, 2005: 89-94; Mirzayeva, Sadygov, 2006: 106-112; Mirzayeva, Sadygov, 2007: 67-72), in the paper the discrete extremum problem with constraints is considered. Note that the extremum problem for delay discrete inclusions, is a particular case of variable structure extremum problem for delay discrete inclusions. The known optimal control problems of a variable structure are obtained from variable structure extremum problems for delay discrete inclusions (Mirzayeva, 2007: 44-50). The optimal control problems of variable structure with discrete time delay are considered in (Mirzayeva, 2007: 44-50). Such problems are considered by many authors. Differently from the known works, in this paper a nonsmooth case is considered and the problem is reduced to the extremum problem for delay discrete inclusions with variable structure. Further, in the paper the necessary extremum condition is obtained for discrete systems with variable structure.

Variable structure extremum problem for delay discrete inclusions without constraints is considered in (Mirzayeva, Sadygov, 2007: 67-72). The necessary extremum conditions are obtained for one discrete systems class in (Mirzayeva, Sadygov, 2007: 67-72 ).

Note that optimal control problems of variable structure arise while investigating some chemical-technological processes, applied problems of economics and physics.

2. The formulation of the problem

Let X , be Banach spaces, Y : 2 2X,

t X at0,1,...,k1, , 2 : 2 Y t Y

btk,k1,...,m1 be the multivalued mappings, where 2V denotes the set of all subsets of

V

. We denote grF

(z,v)ZV:vF(z)

.

Let us consider the delay discrete inclusions with variable structure

, ,..., 2 , 1 , ) ( 1 ,..., 1 , ), , ( 0 , 1 ,..., 1 , ) ( 1 ,..., 1 , 0 ), , ( 1 1 C y k h k h k h k t at x G y m k k t y y b y t at t c x k t x x a x m t t t h t t t t t t t t                             (2.1)

(3)

where c(t)X at t,1,...,1,0, CY,G:XY is mapping, h

m

k, , are fixed natural numbers. As a trajectory (solution) , ({xt}, {yv}) of the discrete inclusion (2.1) we understand the process

, ,..., 1 , , , 1 ,..., 1 ,t k k y v k m

xt   v   for which (2.1) is satisfied.

Suppose that

 

t X R t k i n g k m k h k1, min{ 1,  1}, i , :  , 1,..., , 1,...,  

 

t Y R t k m i n fi , :  ,  1,..., , 1,..., . We denote x(x1,...,xk), y(yk1,...,ym).

Consider the minimization of the function

    k t m k t t t t f y t x g y x F 1 1 0 0 0( , ) ( , ) ( , ) (2.2)

on the trajectories of discrete inclusion (2.1) and with the following constraints

 

 

 

     k t m k t t t t f y t x g y x F 1 1 1 1 1 , , , 0,

 

 

 

     k t m k t t j t j j x y g x t f y t F 1 1 , 0 , , ,

 

 

 

        k t m k t t j t j j x y g x t f y t F 1 1 1 1 1 , , , 0, (2.3)

 

 

 

     k t m k t t n t n n x y g x t f y t F 1 1 . 0 , , ,

We note that as a trajectory of (2.1) we take the pairs ( yx, ), for which (2.1) is satisfied. Denote by M the set of solutions of problem (2.1). To reduce the formulated problem to the mathematical programming problem we use the following notation. We denote smk and define the sets in XkYsas

( 1,..., , 1,..., ) : 1 0( ( ), (0))

, 0 x x y y X Y x a c c M k s m k k     

( 1,..., , 1,..., ) : 2 1( ( 1), 1)

, 1 x x y y X Y x a c x M k s m k k     

( 1,..., , 1,..., ) : 1 ( (0), )

,   x x y yXY xa c x M k k m k s

( 1,..., , 1,..., ) : 2 1( 1, 1)

, 1        x x y yXY xa x x M k k m k s

( 1,..., , 1,..., ) : 1( 1 , 1)

, 1       k k mks kk k k k x x y y X Y x a x x M

(4)

( 1,..., k, k 1,..., m) k s: k 1 k( ( k h), ( k))

, k x x y y X Y y b G x G x M  

( 1,..., , 1,..., ) : 2 1( ( 1 ), 1)

, 1        k k mks kk k h k k x x y y X Y y b G x y M

( 1,..., k, k 1,..., m) k s: k h 1 k h( ( k), k h)

, h k x x y y X Y y b G x y M          

( 1,..., , 1,..., ) : 2 1( 1, 1)

, 1          hk k mks k hk h k k h k x x y y X Y y b y y M

( 1,..., , 1,..., ) : 1( 1 , 1)

, 1       k k mks mm m h m m x x y y X Y y b y y M

(x1,...,x , y 1,...,y ) X Y :y C

. Mmk k mks m

It is clear that the formulated problem will be reduced to the minimization of the function )F0(x,y on the set

m t t M M 0 

 with the constraints

 

, 0, ,

 

, 0,

1 x yF x y

F j Fj1

 

x,y 0,,Fn

 

x,y 0.

3. The solution of the problem

Let Z be a Banach space, E be a nonempty subset of Z . Clarke’s subdifferential of the function  at the point z is denoted as 0 (z0) .

Suppose z0E. The set TE(z0)

zZ:dE0(z0;z)0

is called tangent cone to E in z . 0

The set NE(z0)

zZ:z,z0at zTE(z0)

is called normal cone to E in z . 0

Let D . The set of all hypertangents to D at the point Z z denote by D ID(z). By the definition (see (Clarke, 1988: 279) )

  

zvZ:0,thatytE atally

zB

E, vB,t

 

0,

IE .

We note if gi

 

,t ,i0,...,n, satisfy the Lipschitz condition in the neighbourhood of x where t, t1,...,k and fi

 

,t,i0,...,n, satisfy the Lipschitz condition in the

neighbourhood of yt, where tk1,...,m, then Fi

 

x,y,i0,...,n satisfy the Lipschitz condition in the neighbourhood of

 

x,y . Denoted by  the set of solutions of problem (2.1), satisfying condition (2.3). The pairs

 

x,y  are called optimal , if F0

 

x,yF0

 

x,y at

 

x,y .

(5)

We use Lagrange’s generalized function for the nonsmooth problem of mathematical programming. Let

 

 

 

   n i M i iF x y r d x y r y x L 0 , , , , ,    , where

  n

 0, 1,, , i,rR ,i0,...,n. The following corollary follows from Theorem 6.1.1 ( Clarke, 1988: 279).

Corollary 1. Let

 

x,y  minimize the functional F0 on the set , the functions

n

F F

F0, 1, satisfy the Lipschitz condition in the neighbourhood of

 

x,y, M be a closed set. Then for sufficiently large r the numbers 0 0,10,,j 0 and

n

j

1,, may be found, not all equal to zero simultaneously, such that

 

  j i i iF x y 1 0 ,  and 0L

 

x,y,,r

.

In the paper, the necessary extremum conditions are obtained, considering the additional conditions A, B of R.T. Rockafellar (Rockafellar, 1998: 733), the conditions C, D (Sadygov, 2007: 59). Similarly to subdifferential calculation the certain additional conditions are required for calculating normal cones. Such problems (the problems of calculation of normal cones) were studied by some authors as F.H. Clarke, R.T.Rockafellar, Dubovitsky-Milutin and others. These conditions are not equivalent, though they are considered for the same purpose.

Condition A. m i IM z z M T i 1 ( )) . ( ) ( 0   Condition B.

X

R

n1

,

Y

R

n2, from *

N

(

z

)

i M i

and

0

* * 1 * 0

m

it follows that

i*

0

at i0,...,m. Condition C. XRn1,YRn2, ( ) ( ) 1 2 , 1 0 s n k n l i M M z T z R R T l   i   

l1,...,m,

and Mi are closed sets at i0,...,m.

Condition D. XRn1,YRn2, ( ) ( ) 1 2 , 1 s n k n m l i M M z T z R R T li    

l0,...,m1, and Mi are closed sets at i0,...,m.

Proposition 1. If one of the conditions A, B, C or D holds, then .) ( ) ( 0

  m i M M z N z N i

Further we suppose that bt:Y2 C

 

Y , where C(Y) denote the families of all

nonempty closed subsets of .Y We denote

 

 

  n i i iF x y y x F 0 . , ,  

Theorem 1. Let z

  

x,yx1,,xk,yk1,ym

 minimize the functional

0

F on the set , grat at t0,...,k1, grbt at tk,...,m1 and C be closed sets, G:XY continuous operator, the functions gi

 

,t :XR, i0,...,n

(6)

satisfy the Lipschitz condition in the neighbourhood of xt at t1,...,k, the functions fi

 

,t , i0,...,n satisfy the Lipschitz condition in the neighbourhood of

t

y at tk1,...,m. If in addition one of the conditions A, B, C or D holds, then there exist vectors tNMt

 

z,t0,1,,m and the numbers

0 , , 0 , 0 1 0    j

и j1,,n may be found, not all equal to zero simultaneously, where

 

  j i i iF x y 1 0 ,

 and F

 

x,y such that

   m i i 0   .

Proof. Using Theorem 1.3.12 (Borisovich, Gelman, Mishkins, Obukhovskiy, 1986: 103) we have that M is closed at s s ,...,k kh. So the intersection of finitely many closed sets is a closed set, therefore according to this condition we obtain that

M is closed. It is straightforward to check that the conditions of corollary 1 are satisfied. Then for enough large r the numbers 0 0,1 0,,j 0 and

n

j

 1,, may be found, not all equal to zero simultaneously such that

 

  j i i iF x y 1 0 ,  and

 

 

 

               n i M i i n i M i iF r d x y F x y r d x y 0 0 , , , 0    

 

 

    n i M i iF x y N x y 0 , ,  . Since

 

 

  m t M M x y N x y N t 0 , ,

, then we have that 0

 

,

 

, .

0

    m t M x y N y x Ft

Therefore there exist tNMt

 

z,t 0,1,,m, and F

 

x,y such that

   m t t 0 

 . The theorem is proved.

Theorem 2. If z(x,y)

x1,,xk,yk1,,ym

 minimizes functional F on 0 the set  , gra at t t0,...,k1, grb at t tk,...,m1 and C are closed sets,

Y X

G:  is continuous operator, the functions gi

 

,t :XR,i0,...,n, satisfy the Lipschitz condition in the neighbourhood of x at t t1,...,k, the functions

 

t i n

fi , , 0,..., , satisfy the Lipschitz condition in the neighbourhood of y at t m

k

t 1,..., and in addition one of the conditions A, B, C or D holds, then the numbers 00 0,1 0,,j  and j1,,n may be found, not all equal to zero simultaneously, where

 

  j i i iF x y 1 0 ,

(7)

k t t x g x i t n i i t ( , ) at 1,..., 0 * 0

   , ( , )at 0 * 0 f y t x i t n i i t

    tk1,...,m,

 

    , 0

 

1 1 0 N 0 x x  a c c ,

(), * ()

( ( ),)( , 1), 1,..., , 1 *       t N x x t x t xt t grat c t t t

xt t,xt t,xt1 t

Ngrat

xt ,xt,xt1

att1,...,k1, , ) , , ( )) ( ), ( ), ( ( ( (), ()) 1 * 1 * *      h k kgrb G G k h k k k k x k y k N x x y x k

xk t h(k t),yk t(k t),yk* t (k t) Ngrbk t(G(),)(xk t h,yk t,yk t 1),t 1,...,h 1 * *              ), , , ( )) ( ), ( ), ( ( * * * 1 1          k h t k h t grb k t k h t k h t t k k h t y k h t y k h t N y y y y t h k , 1 , 1m k h t    *( ) ( ) m C m m N y y

such that in the case h the relations are fulfilled:

0 ) ( ) ( ) 1 ( * * * * 0 , x t x tx txt t t t at t1,...,k; 0 ) ( ) ( ) 1 ( * * * * 0 , y t y ty t  xt t t t at tk1,...,mh1; (3.1)

 

0 ) 1 ( * * 0 , y t ytxt t t at tmh,...,m;

in the case h the relations are fulfilled:

0 ) ( ) ( ) 1 ( * * * * 0 , x t x tx txt t t t at t1,...,k1; 0 ) ( ) 1 ( * * * 0 , x t x txt t t at tk,...,kh1; 0 ) ( ) ( ) 1 ( * * * * 0 , x t x tx thxt t t t attkh;...,k; (3.2)

 

0 ) 1 ( * * 0 , y t ytythxt t t t at tk1,...,mh1; 0 ) ( ) 1 ( * * * 0 , y t y txt t t at tmh,..., m;

in the case h the relations are fulfilled:

; 1 ,..., 1 at 0 ) ( ) ( ) 1 ( * * * * 0 , x t x tx ttkhxt t t t ; 1 ..., , at 0 ) ( ) ( ) ( ) 1 ( * * * * * 0 , x t x tx t x thtkh k  xt t t t t (3.3) ; ,..., at 0 ) ( ) ( ) 1 ( * * * * 0 , x t x t x t h t k k xtt   tt     ; 1 ,..., 1 at 0 ) ( ) ( ) 1 ( * * * * 0 , y t y ty thtkmhxt t t t 0 ) ( ) 1 ( * * * 0 , y t y txt t t at tmh,..., m;

Proof. Using the corollary of Theorem 2.4.5. (Clarke, 1988: 279), from the definition of

M

0

,

M

1

,

,

M

m we obtain that

( ,..., , ,..., ) : ( )

, ) ( 1 1 1 0( ( ),(0)) 1 0 z x x y y X Y x T x Т k s a c c m k k М      

( ,..., , ,..., ) :( , ) ( , )

) (  1 k k1 mks t t1gra (c(t),) t t1 М z x x y y X Y x x T x x Т t t

(8)

  ,...,1 t

,

 

( 1,..., , 1,..., ) ks:( t, t, t1) gra ( t, t, t1)

m k k M z x x y y X Y x x x T x x x T t t at t 1,...,k1,

    ( ,..., , ,..., ) :( , , ) ) ( 1 k k 1 m k s k h k k 1 М z x x y y X Y x x y Т k      , 

 , , 1

 

TgrbkG G xk h xk yk

( ,..., , ,..., ) :( , , ) ( , , )

) (  1 1ks th t t1grb(G(),) th t t1 m k k М z x x y y X Y x y y T x y y Т t t h k k t 1,...,  ,

( ,..., , ,..., ) :( , , ) ( , , )

) (  1 k k1 mks th t t1  grb th t t1 М z x x y y X Y y y y T y y y Т t t 1 ,..., 1    k h m t ,

 

( 1,..., k, k 1,..., m) k s: m C ( m)

. М z x x y y X Y y T y Т m    Therefore we have

( ,0,...,0) : ( )

, ) ( 1 1 0(( ),(0)) 1 0 z x X Y x N x N a c c k М s      

( , , , ,0,...,0) :( , ) ( , ) ) ( ( ( ),) 1 * 1 * 2 1             k k t t gra ct t t М z x x x X Y x x N x x N ts t ,

1 , at 0     i t t xi at t ,...,1 ,

1 1 * 1,..., ,0, ,0) : , , , , ( ) (       t t t  gra t t tk k М z x x X Y x x x N x x x N ts t ,

1 , , at 0      i t t t xi at t1,...,k1,

            1 * 1 * 1,..., , ,0,...,0) : , , ( ) ( k k k k h k k М z x x y X Y x x y N s kNgrbkG   ,G

xk h,xk,yk 1

, xi 0at ikh,k

     (3.4)

, ,..., 1 at 1 , at 0 , at 0 ), , , ( ) , , (: ) ,..., , ,..., ( ) ( 1 ) ), ( ( * 1 * 1 1 h k k t t t i y h t i x y y x N y y x Y X y y x x z N i i t t h t G b gr t t h t k m k k М t s t                              

1 , , at 0 ), , , ( ) , , (: ) ,..., , ,..., ( ) ( 1 * 1 * 1 1                       t t h t i y y y y N y y y Y X y y x x z N i t t h t b gr t t h t k m k k М t s t , 1 ,..., 1 attkhm     (0,...,0,0,...,0, )   :( ) ) ( *m k m C m М z y X Y y N y N s m .

According to Theorem 1 the numbers 0 0,10,,j 0andj1,,n may be found, not all equal to zero simultaneously, where 

 

j

(9)

 

 

 

 

 

                   m t k t m k t k t t t t M n i i iF x y N t x y g x t f y t g x t 0 1 1 1 1 1 0 0 0 0 0 , , , , , 0    

 

 

 

 

 

            m t n i i i M m k t k t m k t t n n t n n t t g x t f y t N x y g x y f t 0 0 1 1 1 1 1 1 ,  ,  , ,  ,1  

 

                m t M n i n i n i m i i k i i k i ig x k f y k f y m N t x y 0 0 0 0 1, 1 , , ,      (3.5)

 

 

 

                      k t m k t m t M n i t i i n i t i ig x t f y t N t x y 1 0 1 0 0 . , , ,  

Using the relations (3.4) and (3.5) it is straightforward to check the correctness of Theorem 2.

Theorem 3. Let z

 

x,y  minimize the functional F on the set 0 ,grat at

, 1 ,..., 0

t kgrbtat tk,...,m1and С be closed sets, G:XY be continuous operator, the functions gi

 

,t :XR,i0,...,n satisfy the Lipschitz condition in the neighbourhood of xt att1,...,k, the functions fi

 

,t ,i0,...n, satisfy the Lipschitz condition in the neighbourhood of yt attk1,...,m,

    ,

x,x1

att1,...,, Igratc t t t Igrat

xt,xt,xt1

at t1,...,k1, G(),G()( kh, k, k1) grb x x y I k , Igrbi(G(),)(xth,yt,yt1) at tk1,...,kh, ) , , ( th t t1 grb y y y

I t at tkh1,...,m1 and IC

 

ym be nonempty sets. Then the numbers 00 0,1 0,,j  and j1,,n may be found, not all equal to

zero simultaneously, where 

 

j

i 1 iFi x,y 0,

 and there vectors exist , 0 0   t t z x  where 0,1, ( , )at 1,... , 0 * 0 g x t t k z i t n i i t 

   ( , ) 0 * 0 f y t z i t n i i t

    attk1,...,m, x1

 

0 Na0c   ,c0

 

x1  ,

 () ), ( *1 * t x t xt t ) , ( 1 ) ), ( (    Ngrat c t xt xt at t1,...,,

xt

t

,xt

t

,xt1

t

 Ngrat(xt,xt,xt1)att1,...,h1,

( ), ( ), * ( ) ( (),)( , , 1), 1 * *            t hk tk t   grb G k t h k t k t k k t y k t y k t N x y y x t k        1,...,h,(y* (k h t),y* (k h t),y* 1(k h t)) t k t k h t k h t ) ( ) ( , 1 , 1 ), , , ( k t k h t k ht 1 m* C m grb y y y t m k h y m N y N t h k        

such that in the case h the relations (3.1) are fulfilled, in the case h the relations (3.2) are fulfilled, in the case h the relations (3.3) are fulfilled.

Proof. It is straightforward to check that

( 1,..., , 1,..., ) :( , 1) ( ( ),)( , 1

) ( 1     t t  gra ctt ts k m k k M z x x y y X Y x x I x x I t   ,...,1 at t ;

(10)

    ( ,..., , ,..., ) :( , , ) ) ( 1 1 k s t t t 1 m k k M z x x y y X Y x x x I t

, , 1

Igrat xt xt xt att1,...,k1

;

    ( ,..., , ,..., ) :( , , ) ) ( 1 k k 1 m k s k h k k 1 M z x x y y X Y x x y I k

1

)) ( ), ( (    , ,  Igrbk G G xk h xk yk ;

( 1,..., , 1,..., ) :( , , 1) ( (),)

, , 1

) (  ks th t tgrb G th t t m k k M z x x y y X Y x y y I x y y I t t ; ,..., 1 attkkh

( 1,..., , 1,..., ) :( , , 1)

, , 1

) (  ks th t tgrb1 th t t m k k M z x x y y X Y y y y I y y y I t k h ; 1 ,..., 1 attkhm

( ,..., , ,..., ) : ( )

. ) ( 1 k k 1 m k s m C m M z x x y y X Y y I y I m    If m t M M z I z T t 1 ( )) , ( ) ( 0  

 then according to lemma 5.11 ( Girsanov, 1970: 118) we can find the linear functionals * N (z),t 0,1,...,m,

t

M

t  

 not all equal to zero,

such that *01*...m* 0. Then we obtain that at 0 the statement of Theorem 3 is satisfied.

According to Theorem 3 we have that IMt

 

z intTMt

 

z att1,...,m. Therefore, if

m

t Mt

M

z

I

z

T

1

0

(

)

(

(

))

, then the conditions of Theorem 2 with

the condition A are satisfied. Then it follows from Theorem 2, that at

1

the statement of Theorem 3 is satisfied. The theorem is proved.

Theorem 4. If z(x,y)

x1,,xk,yk1,,ym

, gra at t t0,...,k1, t

grb at tk,...,m1 and C are convex sets, G:XY is a linear operator, the functions gi

 

,t :XR,i0,...,n are convex at t1,...,k, the functions

 

t Y R i n

fi , :  , 0,..., are convex at tk1,...,m, besides j and n 0 , , 0 , 1 1 0    j

may be found, where 

 

j i 1iFi x,y 0 , , ,... 1 at ) , ( 0 * 0 g x t t k x n i t i i t     0 ( , )at * 0 f y t x n i t i i t   tk1,...,m,

and there the vectors exist

 

    , 0

 

1 1 0 N 0 x x  a c c ,

xt*(t),x*t1(t)

Ngrat(c(t),)(xt ,xt1), t1,...,,

xt t,xt t,xt1 t

Ngrat

xt ,xt,xt1

att1,...,k1, , ) , , ( )) ( ), ( ), ( (xk*h k xk* k y*k1 kNgrbk(G(),G()) xkh xk yk1

xk*th(kt),yk*t(kt),yk*t1(kt)Ngrbkt(G(),)(xkth,ykt,ykt1),

(11)

, ... 1 h t ( (   ), (   ), * (   )) 1 * * k h t y k h t y k h t yk t k h t k h t h k m t y y y Ngrb k t k h t k h t t h k        ( , , 1), 1,..., 1 ,

(

)

(

)

* m C m

m

N

y

y

such that in the case h the relations are fulfilled:

0 ) ( ) ( ) 1 ( * * * * 0 , x t x tx txt t t t at t1,...,k; 0 ) ( ) ( ) 1 ( * * * * 0 , y t y ty t  xt t t t at tk1,...,mh1; (3.6)

 

0 ) 1 ( * * 0 , y t ytxt t t at tmh,..., m;

in the case h the relations are fulfilled:

0 ) ( ) ( ) 1 ( * * * * 0 , x t x tx txt t t t at t1,...,k1; 0 ) ( ) 1 ( * * * 0 , x t x txt t t at tk,...,kh1; 0 ) ( ) ( ) 1 ( * * * * 0 , x t x tx thxt t t t at tkh,...,k; (3.7)

 

0 ) 1 ( * * 0 , y t ytythxt t t t at tk1,...,mh1; 0 ) ( ) 1 ( * * * 0 , y t y txt t t at tmh, m... ;

in the case h the relations are fulfilled:

; 1 ,..., 1 at 0 ) ( ) ( ) 1 ( * * * * 0 , x t x tx ttkhxt t t t ; 1 ,..., at 0 ) ( ) ( ) ( ) 1 ( * * * * * 0 , x t x tx t x thtkh k  xt t t t t k k t h t x t x t x xt*,0 t*( 1) t*() t*(  )0at  ,..., ; ; 1 ,..., 1 at 0 ) ( ) ( ) 1 ( * * * * 0 , y t y ty thtkmhxt t t t (3.8) 0 ) ( ) 1 ( * * * 0 , y t y txt t t at tmh,...,m

Then z

  

x,yx1,,xk,yk1,ym

 minimizes the functional F on the 0 set  .

Proof. Consider the case h. Since ( , )

0 * 0 g x t x n i t i i t    at t1,...,k and ) , ( 0 * 0 f y t x n i t i i t 

  at tk1,...,m, then from the relation (3.6) we have

) , ( ) ( ) ( ) 1 ( 0 * * * t x t x h t g x t x n i t i i t t t        at t1,...,k; ) , ( ) ( ) ( ) 1 ( 0 * * * t y t y t h f y t y n i t i i t t t         at tk1,...,mh1;

 

( , ) ) 1 ( 0 * t y t f y t y n i t i i t t       at tmh,..., m; where

(12)

), ( ) 0 ( ( ( ), (0)) 1 * 1 N 0 x xa c c

xt*(t),x*t1(t)

Ngrat(c(t),)(xt ,xt1), t1,...,h,

xtht,x*t(ht),xt1

ht

Ngrat (xt,xt,xt1), ,t1,...k1h , ) , , ( )) ( ), ( ), ( (xk*h k x*k k yk*1 kNgrbk(G(),G()) xkh xk yk1

( ), ( ), * ( )

( (),)( , , 1), 1 * *            t hk tk t   grbG k t h k t k t k k t y k t y k t N x y y x k t h t1,..., ,(yk*t(kht),yk*ht(kht),yk*ht1(kht)) , 1 ,..., 1 ), , , (y y y 1 t m k h Ngrb k t k h t k h t t h k        ( ) ( ) * m C m m N y y  . Therefore t t t t t t i n i i t i n i i x x t h x t x t x t x g t x g             ( , ) ( , ) ( 1) () ( ), * * * 0 0   at t 1,...,k; t t t t t t i n i i t i n i if y t f y t y t y t y t h y y             ( , ) ( , ) ( 1) () ( ), * * * 0 0   at ;tk1,...,mh1 t t t t t i n i i t i n i if y t f y t y t y t y y           ( , ) ( , )) ( 1) (), * * 0 0   at tmh,..., m. Hence follows

( 1) () ( ),

( 1) (), . ), ( ) ( ) 1 ( ) , ( ) , ( ) ) , ( ) , ( ( )) , ( ) , ( ( * * * 1 1 * * 1 * * * 0 0 1 1 0 0 1 0 0

                                                   m h m t t t t t t t t h m k t t t k t t t t t t m h m t t i n i i t i n i i h m k t t i n i i t i n i i k t t i n i i t i n i i y y t y t y y y h t y t y t y x x t h x t x t x t y f t y f t y f t y f t x g t x g      

Since according to the condition that grat,grbt,C are convex sets and G:XY is a linear operator, then we have

0 ), 0 ( 1 1 * 1 x  xx at x1a0(c(h),c(0)), 0 ) , ( ) , ( )), ( ), ( (xt* t xt*1 t xt xt1xt xt1  at (xt,xt1)grat(c(ht),) and ,t1,...,h

 

       , ( ), ,( , , ) 1 1 * t t t t t t h t x h t x h t x x x x 0 ) , , ( 1   xt xt xt at (xt,xt,xt1)grat and t1,...,k1h, 0 ) , , ( ) , , ( )), ( ), ( ), ( (xk*h k x*k k y*k1 k xkh xk yk1xkh xk yk1  at , (.)) (.), ( ) , , (xkh xk yk1grbk G G

xk*th(kt),y*kt(kt),yk*t1(kt)

, 0 ) , , ( ) , , (xkth ykt ykt1xkth ykt ykt1  at t1,...,h,

        ( ), ( ), ( ),( , , ) (yk* t k h t yk* h t k h t y*k h t 1 k h t yk t yk h t yk h t 1

(13)

0 ) , , ( 1   ykt ykht ykht at (ykt,ykht,ykht1)grbkht and , 1 ,..., 1 m k h t    *( ),( ) 0 m m m m y y y at ym . C If ({xt},{yv})M , then hence we have

          h t xt t xt t xt xt xt xt x x x 1 1 1 * 1 * 1 1 * 1(0), ( (), ()),( , ) ( , )

x h t x

h t

xh t

h t

h k t t h t               1 1 1 , ,

,

(xt,xht,xht1)(xt,xht,xht1)     (x*kh(k),xk*(k),yk*1(k)),(xkh,xk,yk1) (xkh,xk,yk1)

             h t 1 xk t h k t yk t k t yk t k t xk t h yk t yk t 1 * 1 * * ( ), ( ), ( ),( , , )

                  h k m t k t k h t t k t k h t k y y y k h t y k h t x 1 1 * * 1) ( ), , , , (

       ( ),( , , 1) ( , , 1) * 1 k t k h t k h t k t k h t k h t t h k k h t y y y y y y y . 0 ) ( ), ( *   ym m ym ym Hence it follows . 0 ), ( ) 1 ( ), ( ) ( ) 1 ( ), ( ) ( ) 1 ( * * 1 1 * * * 1 * * *                   

       m h m t t t t t t t h m k t t t t k t t t t t t y y t y t y y y h t y t y t y x x t h x t x t x Then we obtain 0 ), ( ) 1 ( ), ( ) ( ) 1 ( ), ( ) ( ) 1 ( ) , ( ) , ( ( ) ) , ( ) , ( ( )) , ( ) , ( ( * * * * 1 1 * 1 * * * 0 0 1 1 0 0 1 0 0                               

 

                    m h m t t t t t t t t t h m k t t k t t t t t t t i n i i m h m t t i n i i h m k t t i n i i t i n i i k t t i n i i t i n i i y y t y t y y y h t y t y t y x x t h x t x t x t y f t y f t y f t y f t x g t x g       i.e. 0 ) ) , ( ) , ( ( ) ) , ( ) , ( ( )) , ( ) , ( ( 0 0 1 1 0 0 1 0 0       

             m h m t t i n i i t i n i i h m k t t i n i i t i n i i k t t i n i i t i n i i t y f t y f t y f t y f t x g t x g       at ({xt}, {yv})M. It is clear that

Referanslar

Benzer Belgeler

The framework provides tools for defining the process model, defining guidance related to process steps, and modularizing and weaving help concerns in the target application for

Euben was also the author of two short Latin verses in honour of a fellow cleric Samuel, described therein as the infans of BeulanT. It is not certain, however, that Samuel was

2] as an extension of the LT to compare the average SERs of arbitrary higher dimensional constellations over different fading channels, it actually predicts that the average

“Bir Özne Tasarlamak” başlığını taşıyan birinci bölümün temel iddiası, Oğuz Atay’ın, kendisinden önceki roman geleneğinden farklı olarak, roman

We initially designed an experiment (Figure 33), which included three steps: 1) After transferring PAA gel on Ecoflex substrate, without applying any mechanical deformation,

hydroxybenzoic acid are studied and they do not photodegrade PVC at 312 nm UV irradiation.. trihydroxybenzoic acid do not have absorbance at 312 nm and because of this they

“Ülkücü” kadın imgesi Türk romanında “cinsiyetsizleştirilmiş” ve “idealist” bir kadın olarak karşımıza çıkarken, “medeni” kadın tezde ele

The columnists in the Greek newspapers Akropolis and Eleftheros Kosmos and the Turkish newspapers Cumhuriyet, Hürriyet, and Milliyet all framed the military