• Sonuç bulunamadı

ON HERMITE-HADAMARD TYPE INEQUALITIES FOR F-CONVEX FUNCTION

N/A
N/A
Protected

Academic year: 2021

Share "ON HERMITE-HADAMARD TYPE INEQUALITIES FOR F-CONVEX FUNCTION"

Copied!
23
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 20 (2019), No. 1, pp. 169–191 DOI: 10.18514/MMN.2019.2436

ON HERMITE-HADAMARD TYPE INEQUALITIES FOR F -CONVEX FUNCTION

H. BUDAK, T. TUNC¸ , AND M. Z. SARIKAYA

Received 27 October, 2017

Abstract. In this study, we firstly give some properties the family F and F -convex function which are defined by B. Samet. Then, we obtain some midpoint inequalities for differentiable function. Moreover, we establish some midpoint and trapezoid type inequalities for function whose second derivatives in absolute value are F -convex.

2010 Mathematics Subject Classification: 26D07; 26D10; 26D15; 26A33

Keywords: Hermite-Hadamard inequality, F convex, midpoint inequality, trapezoid inequality

1. INTRODUCTION

Let f W I  R ! R be a convex function on the interval I of real numbers and a; b2 I with a < b. If f is a convex function then the following double inequality, which is well known in the literature as the Hermite–Hadamard inequality, holds [8]

f a C b 2   1 b a Z b a f .x/dx f .a/C f .b/ 2 : (1.1)

Note that some of the classical inequalities for means can be derived from (1.1) for appropriate particular selections of the mapping f . Both inequalities hold in the reversed direction if f is concave (1.1).

It is well known that the Hermite–Hadamard inequality plays an important role in nonlinear analysis. Over the last decade, this classical inequality has been improved and generalized in a number of ways; there have been a large number of research papers written on this subject, (see, [3,4,6,9,12,13]) and the references therein.

Over the years, many type of convexity have been defined, such as quasi-convex [1], pseudo-convex [7], strongly convex [10], " convex [2], s convex [5], h convex [14] and etc. Recently, Samet [11] have defined a new concept of convexity that de-pends on a certain function satisfying some axioms, that generalizes different types of convexity, including " convex functions, ˛ convex functions, h convex functions and many others.

Recall the familyF of mappings F W R  R  R Œ0; 1 ! R satisfying the follow-ing axioms:

c

(2)

(A1) If ui2 L1.0; 1/; iD 1; 2; 3; then for every  2 Œ0; 1 ; we have 1 Z 0 F .u1.t /; u2.t /; u3.t /; /dtD F 0 @ 1 Z 0 u1.t /dt; 1 Z 0 u2.t /dt; 1 Z 0 u3.t /dt;  1 A:

(A2) For every u2 L1.0; 1/ ; w2 L1.0; 1/ and .´1; ´2/2 R2; we have 1 Z 0 F .w.t /u.t /; w.t /´1; w.t /´2; t /dtD TF ;w 0 @ 1 Z 0 w.t /u.t /dt; ´1; ´2/ 1 A; where TF ;w W R  R  R ! R is a function that depends on (F; w), and it is

non-decreasing with respect to the first variable.

(A3) For any .w; u1; u2; u3/2 R4; u42 Œ0; 1 ; we have

wF .u1; u2; u3; u4/D F .wu1; wu2; wu3; u4/C Lw

where Lw2 R is a constant that depends only on w:

Definition 1. Let f W Œa; b ! R; .a; b/ 2 R2; a < b, be a given function. We say that f is a convex function with respect to some F 2 F (or F convex function) iff

F .f .txC .1 t/y/; f .x/; f .y/; t/  0; .x; y; t/ 2 Œa; b  Œa; b  Œ0; 1 : Remark1. 1) Let " 0; and let f W Œa; b ! R, .a; b/ 2 R2; a < b; be an " convex function, that is (see [2])

f .txC .1 t/y/  tf .x/ C .1 t/f .y/ C "; .x; y; t/ 2 Œa; b  Œa; b  Œ0; 1 : Define the functions F W R  R  R Œ0; 1 ! R by

F .u1; u2; u3; u4/D u1 u4u2 .1 u4/u3 " (1.2) and TF ;wW R  R  R ! R by TF ;w.u1; u2; u3/D u1 0 @ 1 Z 0 t w.t /dt 1 Au2 0 @ 1 Z 0 .1 t /w.t /dt 1 Au3 ": (1.3) For LwD .1 w/"; (1.4)

it is clear that F 2 F and

F .f .txC.1 t/y/; f .x/; f .y/; t/ D f .tx C.1 t/y/ tf .x/ .1 t/f .y/ "  0; that is f is an F convex function. Particularly, taking "D 0; we show that if f is a convex function then f is an F convex function with respect to F defined above.

2) Let f W Œa; b ! R, .a; b/ 2 R2; a < b; be an ˛ convex function, ˛2 .0; 1, that is

(3)

Define the functions F W R  R  R Œ0; 1 ! R by F .u1; u2; u3; u4/D u1 u˛4u2 .1 u˛4/u3 (1.5) and TF ;wW R  R  R ! R by TF ;w.u1; u2; u3/D u1 0 @ 1 Z 0 t˛w.t /dt 1 Au2 0 @ 1 Z 0 .1 t˛/w.t /dt 1 Au3: (1.6)

For LwD 0; it is clear that F 2 F and

F .f .txC .1 t/y/; f .x/; f .y/; t/ D f .tx C .1 t/y/ t˛f .x/ .1 t˛/f .y/ 0; that is f is an F convex function.

3) Let hW J ! Œ0; 1/ be a given function which is not identical to 0; where J is an interval in R such that .0; 1/ J: Let f W Œa; b ! Œ0; 1/, .a; b/ 2 R2; a < b; be an h convex function, that is (see [14])

f .txC .1 t/y/  h.t/f .x/ C h.1 t/f .y/; .x; y; t/ 2 Œa; b  Œa; b  Œ0; 1 : Define the functions F W R  R  R Œ0; 1 ! R by

F .u1; u2; u3; u4/D u1 h.u4/u2 h.1 u4/u3 (1.7) and TF ;wW R  R  R ! R by TF ;w.u1; u2; u3/D u1 0 @ 1 Z 0 h.t /w.t /dt 1 Au2 0 @ 1 Z 0 h.1 t /w.t /dt 1 Au3: (1.8)

For LwD 0; it is clear that F 2 F and

F .f .txC.1 t/y/; f .x/; f .y/; t/ D f .tx C.1 t/y/ h.t/f .x/ h.1 t/f .y/  0; that is f is an F convex function.

In [11], author established the following Hermite-Hadamard type inequalities us-ing the new convexity concept:

Theorem 1. Letf W Œa; b ! R, .a; b/ 2 R2,a < b, be an F convex function, for someF 2 F . Suppose that f 2 L1Œa; b. Then

F f  a C b 2  ; 1 b a Z b a f .x/dx; 1 b a Z b a f .x/dx;1 2 !  0; TF ;1 1 b a Z b a f .x/dx; f .a/; f .b/ !  0:

(4)

Theorem 2. Let f W Iı R ! R be a differentiable mapping on Iı; .a; b/2 Iı Iı; a < b: Suppose that

(i)jf0j is F convex on Œa; b ; for some F 2 F

(ii) the functiont 2 .0; 1/ ! Lw.t / belongs to L1.0; 1/ ; where w.t /D j1 2tj.

Then, TF ;w 2 b a ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ ;ˇ ˇf0.a/ˇ ˇ; ˇ ˇf0.b/ˇ ˇ ! C 1 Z 0 Lw.t /dt 0:

Theorem 3. Let f W Iı R ! R be a differentiable mapping on Iı; .a; b/2 Iı; a < b and let p > 1: Suppose thatjf0jp=.p 1/ isF convex on Œa; b ; for someF 2 F and jf0j 2 Lp=.p 1/.a; b/: Then

TF ;1  A.p; f /;ˇˇf0.a/ˇˇ p=.p 1/ ;ˇˇf0.b/ˇˇ p=.p 1/  0 where A.p; f /D  2 b a pp1 .pC 1/p11 ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ p p 1 : The following lemmas will be useful when we give our main result.

Lemma 1 ([6]). Let f W Iı R ! R be a differentiable mapping on Iı,a; b2 Iı witha < b: If f02 L1Œa; b, then we have

1 b a Z b a f .x/dx f a C b 2  D .b a/ Z 1 0 p .t / f0.t aC .1 t/b/dt; where p.t /D 8 < : t; t20;1 2  t 1; t 2 12; 1 :

Lemma 2 ([4]). Let f W Iı R ! R be twice differentiable function on Iı,a; b2 Iıwitha < b: If f002 L1Œa; b, then

f .a/C f .b/ 2 1 b a Z b a f .x/dxD.b a/ 2 2 Z 1 0 t .1 t /f00.t aC .1 t/b/dt: (1.9) Lemma 3 ( [13] ). Let f W Iı R ! R be twice differentiable function on Iı, a; b2 Iıwitha < b: If f002 L1Œa; b, then

1 b a Z b a f .x/dx f  a C b 2  (1.10)

(5)

D.b a/ 2 4 Z 1 0 m .t /f00.t aC .1 t/b/ C f00.t bC .1 t/a/ dt; where m.t /D 8 < : t2; t20;1 2  .1 t /2; t2 12; 1 :

2. MIDPOINT TYPE INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS

In this section, we establish some midpoint type inequalities for functions whose derivatives absolute values are F convex.

Theorem 4. LetI R be an interval, f W Iı R ! R be a differentiable mapping onIı; a; b2 Iı; a < b: Suppose thatjf0j is F convex on Œa; b ; for some F 2 F and the functiont2 Œ0; 1 ! Lw.t /belongs toL1Œ0; 1 ; where w.t /D jp.t/j (p.t/ is

defined as in Lemma1). Then,

TF ;w 1 b a ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ ;ˇˇf0.a/ˇˇ; ˇ ˇf0.b/ˇˇ ! C 1 Z 0 Lw.t /dt 0:

Proof. Sincejf0j is F convex, we have F ˇˇf0.t aC .1 t/b/ˇˇ;

ˇ

ˇf0.a/ˇˇ; ˇ

ˇf0.b/ˇˇ; t  0; t 2 Œ0;1: Multiplying this inequality by w.t / and using axiom (A3), we get

F w.t /ˇˇf0.t aC .1 t/b/ˇˇ; w.t / ˇ

ˇf0.a/ˇˇ; w.t / ˇ

ˇf0.b/ˇˇ; t C Lw.t / 0; t 2 Œ0; 1 : Integrating over Œ0; 1 with respect to the variable t and using axiom (A2), we obtain

TF ;w 0 @ 1 Z 0 w.t /ˇˇf0.t aC .1 t/b/ ˇ ˇdt; ˇ ˇf0.a/ ˇ ˇ; ˇ ˇf0.b/ ˇ ˇ 1 AC 1 Z 0 Lw.t /dt 0; t 2 Œ0; 1 :

On the other hand using Lemma1we have 1 b a ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f a C b 2 ˇˇ ˇ ˇ ˇ  Z 1 0 jp.t/j ˇ ˇf0.t aC .1 t/b/ˇˇdt: Since TF ;w is nondecreasing with respect to the first variable, we get

TF ;w 1 b a ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ ;ˇˇf0.a/ˇˇ; ˇ ˇf0.b/ˇˇ ! C 1 Z 0 Lw.t /dt 0:

(6)

Corollary 1. Ifjf0j is " convex on Œa; b ; "  0; then we have ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ jf 0.a/j C jf0.b/j 8 C " 4  : Proof. It is known that an " convex is an F convex. Using (1.4) with w.t /D jp.t/j ; we obtain 1 Z 0 Lw.t /dtD " 1 Z 0 .1 jp.t/j/dt D3 4": From (1.3) with w.t /D jp.t/j ; we get

TF ;w.u1; u2; u3/Du1 0 @ 1 Z 0 tjp.t/j dt 1 Au2 0 @ 1 Z 0 .1 t /jp.t/j dt 1 Au3 " Du1 u2C u3 8 " for u1; u2; u32 R: Hence, TF ;w 1 b a ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f a C b 2 ˇˇ ˇ ˇ ˇ ;ˇˇf0.a/ˇˇ; ˇ ˇf0.b/ˇˇ ! D 1 b a ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ jf0.a/j C jf0.b/j 8 ":

Thus, by Theorem4, we have 1 b a ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ jf0.a/j C jf0.b/j 8 "C 3 4" 0; that is ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ jf 0.a/j C jf0.b/j 8 C " 4  :

This completes the proof. 

Remark2. If we take "D 0 in Corollary1, thenjf0j is convex and we have the inequality ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ jf 0.a/j C jf0.b/j 8  which is given by [6].

(7)

Corollary 2. Ifjf0j is ˛ convex on Œa; b ; ˛ 2 .0; 1; then we have ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  .b a/  1C 1/.˛ C 2/  1 1 2˛C1  ˇ ˇf0.a/ˇˇ C 1 4 1 .˛C 1/.˛ C 2/  1 1 2˛C1  ˇ ˇf0.b/ˇˇ  : Proof. It is known that an ˛ convex is an F convex. Using (1.6) with w.t /D jp.t/j ; we obtain TF ;w.u1; u2; u3/Du1 0 @ 1 Z 0 t˛jp.t/j dt 1 Au2 0 @ 1 Z 0 .1 t˛/jp.t/j dt 1 Au3 Du1 1 .˛C 1/.˛ C 2/  1 1 2˛C1  u2  1 4 1 .˛C 1/.˛ C 2/  1 1 2˛C1  u3

for u1; u2; u32 R: Hence, by Theorem4, we have

TF ;w 1 b a ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f a C b 2 ˇˇ ˇ ˇ ˇ ;ˇˇf0.a/ˇˇ; ˇ ˇf0.b/ˇˇ ! D 1 b a ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ 1 .˛C 1/.˛ C 2/  1 1 2˛C1  ˇ ˇf0.a/ˇˇ  1 4 1 .˛C 1/.˛ C 2/  1 1 2˛C1  ˇ ˇf0.b/ˇˇ 0; that is ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  .b a/  1 .˛C 1/.˛ C 2/  1 1 2˛C1  ˇ ˇf0.a/ˇˇ C 1 4 1 .˛C 1/.˛ C 2/  1 1 2˛C1  ˇ ˇf0.b/ ˇ ˇ 

which completes the proof. 

Corollary 3. Ifjf0j is h convex on Œa; b ; then we have the inequalty ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ 0 @ 1 Z 0 h.t /jp.t/j dt 1 A ˇ ˇf0.a/ˇˇC ˇ ˇf0.b/ˇˇ :

(8)

Proof. It is known that an h convex is an F convex. From (1.8) with w.t /D jp.t/j, we have TF ;w.u1; u2; u3/D u1 0 @ 1 Z 0 h.t /jp.t/j dt 1 Au2 0 @ 1 Z 0 h.1 t /jp.t/j dt 1 Au3 D u1 0 @ 1 Z 0 h.t /jp.t/j dt 1 Au2 0 @ 1 Z 0 h.1 t /jp.1 t/j dt 1 Au3 D u1 0 @ 1 Z 0 h.t /jp.t/j dt 1 A.u2C u3/ for u1; u2; u32 R: Then, TF ;w 1 b a ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ ;ˇˇf0.a/ˇˇ; ˇ ˇf0.b/ˇˇ ! Db1a ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f a C b 2 ˇˇ ˇ ˇ ˇ 0 @ 1 Z 0 h.t /jp.t/j dt 1 A ˇ ˇf0.a/ˇˇC ˇ ˇf0.b/ˇˇ :

Thus, by Theorem4, we get 1 b a ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f a C b 2 ˇˇ ˇ ˇ ˇ 0 @ 1 Z 0 h.t /jp.t/j dt 1 A ˇ ˇf0.a/ˇ ˇC ˇ ˇf0.b/ˇ ˇ  0

which completes the proof. 

Theorem 5. Letf W Iı R ! R be a differentiable mapping on Iı; a; b2 Iı; a < b and p > 1: Suppose thatjf0jp=.p 1/isF convex on Œa; b ; for some F 2 F andjf0j 2 Lp=.p 1/.a; b/: Then we have

TF ;1  A1.f; p/; ˇ ˇf0.a/ˇˇ p=.p 1/ ;ˇˇf0.b/ˇˇ p=.p 1/  0 where A1.f; p/D  2 b a pp1 .pC 1/p11 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ p p 1 :

(9)

Proof. Asjf0jp=.p 1/is F convex, we have Fˇˇf0.t aC .1 t/b/ˇˇ p=.p 1/ ;ˇˇf0.a/ˇˇ p=.p 1/ ;ˇˇf0.b/ˇˇ p=.p 1/ ; t 0; t 2 Œ0; 1 : Using axiom (A2) with w.t /D 1, we get

TF ;1 0 @ 1 Z 0 ˇ ˇf0.t aC .1 t/b/ˇˇ p=.p 1/ dt;ˇˇf0.a/ˇˇ p=.p 1/ ;ˇˇf0.b/ˇˇ p=.p 1/ 1 A 0:

Using Lemma1and H¨older inequality, we obtain ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f a C b 2 ˇˇ ˇ ˇ ˇ D .b a/ Z 1 0 jp .t/j ˇ ˇf0.t aC .1 t/b/ˇˇdt  .b a/ Z 1 0 jp .t/j pdt 1 pZ 1 0 ˇ ˇf0.t aC .1 t/b/ˇˇ p=.p 1/ dt  p 1 p Db a 2  1 pC 1 1pZ 1 0 ˇ ˇf0.t aC .1 t/b/ˇ ˇ p=.p 1/ dt  p 1 p ; that is A1.f; p/ Z 1 0 ˇ ˇf0.t aC .1 t/b/ˇˇ p=.p 1/ dt:

Since TF ;1is nondecreasing with respect to the first variable, we can obtain the

de-sired result easily. 

Corollary 4. Ifjf0jp=.p 1/ is" convex on Œa; b ; " 0; then we have ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  b a 2.pC 1/p1 " jf0.a/jp=.p 1/C jf0.b/jp=.p 1/ 2 C " #pp1 : Proof. Using (1.3) with w.t /D 1; we have

TF ;1.u1; u2; u3/D u1

u2C u3

2 " (2.1)

for u1; u2; u32 R: Then, by the Theorem5, we have

0TF ;1  A1.f; p/; ˇ ˇf0.a/ˇˇ p=.p 1/ ;ˇˇf0.b/ˇˇ p=.p 1/

(10)

DA1.f; p/ jf 0.a/jp=.p 1/ C jf0.b/jp=.p 1/ 2 " D  2 b a pp1 .pC 1/p11 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ p p 1 jf0.a/jp=.p 1/C jf0.b/jp=.p 1/ 2 "; that is, ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  b a 2.pC 1/p1 " jf0.a/jp=.p 1/C jf0.b/jp=.p 1/ 2 C " #pp1 :  Remark3. If we choose "D 0 in Corollary4, thenjf0jp=.p 1/ is convex and we have the inequality

ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  b a 2.pC 1/p1 " jf0.a/jp=.p 1/C jf0.b/jp=.p 1/ 2 #pp1 :

Corollary 5. If jf0jp=.p 1/ is ˛ convex, ˛2 .0; 1, then we have the following inequality ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  b a 2.pC 1/p1 " jf0.a/jp=.p 1/C ˛ jf0.b/jp=.p 1/ ˛C 1 #pp1 : Proof. From (1.6) with w.t /D 1; we have

TF ;1.u1; u2; u3/D u1 0 @ 1 Z 0 t˛dt 1 Au2 0 @ 1 Z 0 .1 t˛/dt 1 Au3 (2.2) D u1 u2 ˛C 1 ˛ ˛C 1u3

(11)

for u1; u2; u32 R: By the Theorem5, it follows that 0TF ;1  A1.f; p/; ˇ ˇf0.a/ˇˇ p=.p 1/ ;ˇˇf0.b/ˇˇ p=.p 1/ DA1.f; p/ jf 0.a/jp=.p 1/ ˛C 1 ˛ ˛C 1 ˇ ˇf0.b/ ˇ ˇ p=.p 1/ D  2 b a pp1 .pC 1/p11 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ p p 1 jf0.a/jp=.p 1/ ˛C 1 ˛ ˛C 1 ˇ ˇf0.b/ ˇ ˇ p=.p 1/ ;

which achieves the proof. 

Corollary 6. Ifjf0jp=.p 1/ ish convex, then we have the following inequality ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  b a 2.pC 1/p1 0 @ 1 Z 0 h.t /dt 1 A p 1 p hˇ ˇf0.a/ˇˇ p=.p 1/ Cˇˇf0.b/ˇˇ p=.p 1/ipp1 :

Proof. Using (1.8) with w.t /D 1; we have

TF ;1.u1; u2; u3/Du1 0 @ 1 Z 0 h.t /dt 1 Au2 0 @ 1 Z 0 h.1 t /dt 1 Au3 (2.3) Du1 0 @ 1 Z 0 h.t /dt 1 A.u2C u3/

for u1; u2; u32 R: By the Theorem5, we obtain

0TF ;1  A1.f; p/; ˇ ˇf0.a/ˇˇ p=.p 1/ ;ˇˇf0.b/ˇˇ p=.p 1/ DA1.f; p/ 0 @ 1 Z 0 h.t /dt 1 A ˇ ˇf0.a/ ˇ ˇ p=.p 1/ Cˇ ˇf0.b/ ˇ ˇ p=.p 1/ D  2 b a pp1 .pC 1/p11 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ p p 1

(12)

0 @ 1 Z 0 h.t /dt 1 A ˇ ˇf0.a/ˇˇ p=.p 1/ Cˇˇf0.b/ˇˇ p=.p 1/ :

This completes the proof. 

3. TRAPEZOID TYPE INEQUALITIES FOR TWICE DIFFERENTIABLE FUNCTIONS

In this section, we obtain some trapezoid type inequalities for functions whose second derivatives absolute values are F convex.

Theorem 6. LetI  R be an interval, f W Iı R ! R be a twice differentiable mapping onIı; .a; b/2 Iı Iı; a < b: Suppose thatjf00j is F convex on Œa; b ; for someF 2 F and the function t 2 Œ0; 1 ! Lw.t /belongs toL1Œ0; 1 ; where w.t /D

t .1 t /: Then we have the following inequality TF ;w 2 .b a/2 ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ ;ˇˇf00.a/ˇˇ; ˇ ˇf00.b/ˇˇ ! C 1 Z 0 Lw.t /dt 0:

Proof. Sincejf00j is F convex, we have F ˇˇf00.t aC .1 t/b/ˇˇ;

ˇ

ˇf00.a/ˇˇ; ˇ

ˇf00.b/ˇˇ; t  0; t 2 Œ0;1: Multiplying this inequality by w.t / and using axiom (A3), we get F w.t /ˇˇf00.t aC .1 t/b/ˇˇ; w.t /

ˇ

ˇf00.a/ˇˇ; w.t / ˇ

ˇf00.b/ˇˇ; t C Lw.t / 0; t 2 Œ0; 1 : Integrating over .0; 1/ with respect to the variable t and using axiom (A2), we obtain TF ;w 0 @ 1 Z 0 w.t /ˇˇf00.t aC .1 t/b/ˇˇdt; ˇ ˇf00.a/ˇˇ; ˇ ˇf00.b/ˇˇ 1 AC 1 Z 0 Lw.t /dt 0; t 2 Œ0; 1 :

On the other hand using Lemma2, we have 2 .b a/2 ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ  Z 1 0 t .1 t /ˇˇf00.t aC .1 t/b/ˇˇdt: Since TF ;w is nondecreasing with respect to the first variable, we get

TF ;w 2 .b a/2 ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ ;ˇˇf00.a/ˇˇ; ˇ ˇf00.b/ˇˇ ! C 1 Z 0 Lw.t /dt 0:

(13)

This completes the proof.  Corollary 7. Letf W Iı R ! R be twice differentiable function on Iı,a; b2 Iı witha < b: Suppose that the functionjf00j is " convex on Œa; b ; "  0: Then we have

ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ  .b a/ 2 2  jf00.a/j C jf00.b/j 12 C " 6  : Proof. We know that an " convex is an F convex. Using (1.4) with w.t /D t .1 t /; we obtain 1 Z 0 Lw.t /dt D " 1 Z 0 .1 w.t //dt D5" 6 : From (1.3) with w.t /D t.1 t/; we get

TF ;w.u1; u2; u3/Du1 0 @ 1 Z 0 t2.1 t /dt 1 Au2 0 @ 1 Z 0 t .1 t /2dt 1 Au3 " Du1 u2C u3 12 " for u1; u2; u32 R: Hence, TF ;w 2 .b a/2 ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ ;ˇˇf00.a/ˇˇ; ˇ ˇf00.b/ˇˇ ! D 2 .b a/2 ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ jf00.a/j C jf00.b/j 12 ":

Thus, by Theorem6, we have 2 .b a/2 ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ jf00.a/j C jf00.b/j 12 "C 5" 6  0:

This completes the proof. 

Remark4. If we taking "D 0 in Corollary7, thenjf00j is convex and we have the inequality ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ  .b a/ 2 12  jf00.a/j C jf00.b/j 2  : Corollary 8. Letf W Iı R ! R be twice differentiable function on Iı,a; b2 Iı witha < b: Suppose that the functionjf00j is ˛ convex on Œa; b ; ˛ 2 .0; 1: Then we

(14)

have ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ .b a/ 2 2  jf00.a/jC 2/.˛ C 3/  1 6 1 .˛C 2/.˛ C 3/  ˇ ˇf00.b/ˇˇ  :

Proof. We know that an ˛ convex is an F convex. From (1.6) with w.t /D t .1 t /, we have TF ;w.u1; u2; u3/Du1 0 @ 1 Z 0 t˛C1.1 t /dt 1 Au2 0 @ 1 Z 0 .1 t˛/t .1 t /dt 1 Au3 Du1 u2 .˛C 2/.˛ C 3/  1 6 1 .˛C 2/.˛ C 3/  u3

for u1; u2; u32 R: It follows that

TF ;w 2 .b a/2 ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ ;ˇˇf00.a/ˇˇ; ˇ ˇf00.b/ˇˇ ! D 2 .b a/2 ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ jf00.a/j .˛C 2/.˛ C 3/  1 6 1 .˛C 2/.˛ C 3/  ˇ ˇf00.b/ˇˇ: Consequently, by Theorem6, we obtain

2 .b a/2 ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ jf00.a/j .˛C 2/.˛ C 3/  1 6 1 .˛C 2/.˛ C 3/  ˇ ˇf00.b/ˇˇ 0;

which completes the proof. 

Corollary 9. Letf W Iı R ! R be twice differentiable function on Iı,a; b2 Iı witha < b: Suppose that the functionjf00j is h convex on Œa; b : Then we have

ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ  .b a/2 0 @ 1 Z 0 h.t /t .1 t /dt 1 A  jf00.a/j C jf00.b/j 2  :

(15)

Proof. We know that an h convex is an F convex. From (1.8) with w.t /D t .1 t /, we have TF ;w.u1; u2; u3/Du1 0 @ 1 Z 0 h.t /w.t /dt 1 Au2 0 @ 1 Z 0 h.1 t /w.t /dt 1 Au3 Du1 0 @ 1 Z 0 h.t /t .1 t /dt 1 Au2 0 @ 1 Z 0 h.1 t /t .1 t /dt 1 Au3 Du1 0 @ 1 Z 0 h.t /t .1 t /dt 1 A.u2C u3/ for u1; u2; u32 R: Then, TF ;w 2 .b a/2 ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ ;ˇ ˇf00.a/ˇ ˇ; ˇ ˇf00.b/ˇ ˇ ! D 2 .b a/2 ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ 0 @ 1 Z 0 h.t /t .1 t /dt 1 A ˇ ˇf00.a/ˇˇC ˇ ˇf00.b/ˇˇ :

Thus, by Theorem6, we get

D 2 .b a/2 ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ 0 @ 1 Z 0 h.t /t .1 t /dt 1 A ˇ ˇf00.a/ˇˇC ˇ ˇf00.b/ˇˇ  0:

This finishes the proof. 

Theorem 7. Letf W Iı R ! R be a twice differentiable mapping on Iı; a; b2 Iı; a < b and let p > 1: Suppose thatjf00jp=.p 1/ isF convex on Œa; b ; for some F 2 F and jf00j 2 Lp=.p 1/.a; b/: Then we have

TF ;1  A2.f; p/; ˇ ˇf00.a/ˇˇ p=.p 1/ ;ˇˇf00.b/ˇˇ p=.p 1/  0 where A2.f; p/D

(16)

 2 .b a/2 pp1 1 B.pC 1; p C 1/ p11ˇˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ p p 1

andB.x; y/ is Euler beta function defined by B.x; y/D

Z 1

0

tx 1.1 t /y 1dt: Proof. Sincejf00jp=.p 1/is F convex, we have Fˇˇf00.t aC .1 t/b/ˇ ˇ p=.p 1/ ;ˇˇf00.a/ˇˇ p=.p 1/ ;ˇˇf00.b/ˇˇ p=.p 1/ ; t 0; t 2 Œ0; 1 : Using axiom (A2) with w.t /D 1, we get

TF ;1 0 @ 1 Z 0 ˇ ˇf00.t aC .1 t/b/ˇ ˇ p=.p 1/ dt;ˇˇf00.a/ˇˇ p=.p 1/ ;ˇˇf00.b/ˇˇ p=.p 1/ 1 A 0:

Using Lemma2and H¨older inequality, we obtain ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ D.b a/ 2 2 Z 1 0 jt.1 t/j ˇ ˇf00.t aC .1 t/b/ˇ ˇdt .b a/ 2 2 Z 1 0 tp.1 t /pdt  1 pZ 1 0 ˇ ˇf00.t aC .1 t/b/ˇˇ p=.p 1/ dt  p 1 p D.b a/ 2 2 .B.pC 1; p C 1// 1 p Z 1 0 ˇ ˇf00.t aC .1 t/b/ˇˇ p=.p 1/ dt  p 1 p ; that is A2.f; p/ Z 1 0 ˇ ˇf00.t aC .1 t/b/ˇˇ p=.p 1/ dt: Since TF ;1is nondecreasing with respect to the first variable, we have

TF ;1  A2.f; p/; ˇ ˇf00.a/ˇˇ p=.p 1/ ;ˇˇf00.b/ˇˇ p=.p 1/  0:  Corollary 10. Ifjf00jp=.p 1/is" convex, we have the following inequality

ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ

(17)

.b a/ 2 2 .B.pC 1; p C 1// 1 p " jf00.a/jp=.p 1/C jf00.b/jp=.p 1/ 2 C " #pp1 : Proof. Using (2.1) and by Theorem7, it can be proved easily. It is omitted.  Remark5. If we choose "D 0 in Corollary10, then we have

ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ .b a/ 2 2 .B.pC 1; p C 1// 1 p " jf00.a/jp=.p 1/C jf00.b/jp=.p 1/ 2 #pp1 :

Corollary 11. Ifjf00jp=.p 1/is˛ convex, we have the following inequality ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ .b a/ 2 2 .B.pC 1; p C 1// 1 p " jf0.a/jp=.p 1/C ˛ jf0.b/jp=.p 1/ ˛C 1 #pp1 : Proof. Using (2.2) and by Theorem7, it can be proved easily. It is omitted.  Corollary 12. Ifjf00jp=.p 1/ish convex, we have the following inequality

ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ  .b a/ 2 2 .B.pC 1; p C 1// 1 p 0 @ 1 Z 0 h.t /dt 1 A p 1 p hˇ ˇf0.a/ ˇ ˇ p=.p 1/ Cˇ ˇf0.b/ ˇ ˇ p=.p 1/ipp1 :

Proof. Using (2.3) and by Theorem7, it can be proved easily. It is omitted.  4. MIDPOINT TYPE INEQUALITIES FOR TWICE DIFFERENTIABLE FUNCTIONS

In this section, we prove some midpoint type inequalities for functions whose second derivatives absolute values are F convex.

Theorem 8. LetI  R be an interval, f W Iı R ! R be a twice differentiable mapping onIı; .a; b/2 Iı Iı; a < b: Suppose thatjf00j is F convex on Œa; b ;

(18)

for someF 2 F the function t 2 Œ0; 1 ! Lm.t /belongs toL1Œ0; 1 : If F is linear

with respect to the first, second and third variables, then TF ;m  4 .b a/2 ˇ ˇ ˇ ˇ 1 b a Rb af .x/dx f  a C b 2 ˇ ˇ ˇ ˇ ;jf00.a/j C jf00.b/j ; jf00.a/j C jf00.b/j  C 1 R 0 Lm.t /dt 0 where m.t /D 8 < : t2; t20;1 2  .1 t /2; t2 12; 1 : Proof. Sincejf00j is F convex, we have

F ˇˇf00.t aC .1 t/b/ˇ ˇ; ˇ ˇf00.a/ˇˇ; ˇ ˇf00.b/ˇˇ; t  0; t 2 Œ0;1 and F ˇˇf00.t bC .1 t/a/ˇˇ; ˇ ˇf00.b/ˇˇ; ˇ ˇf00.a/ˇˇ; t  0; t 2 Œ0;1: Using the linearity of F , we obtain

F ˇˇf00.t aC .1 t/b/ˇˇC ˇ ˇf00.t bC .1 t/a/ˇˇ; ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ; ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ; t  0;

for t2 Œ0; 1 : Multiplying this inequality by m.t/ and using axiom (A3), we get F m.t /ˇ ˇf00.t aC .1 t/b/ˇˇC ˇ ˇf00.t bC .1 t/a/ˇˇ ; m.t/ ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ ; m.t /ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ ; t C Lm.t / 0;

for t 2 Œ0; 1 : Integrating over Œ0; 1 with respect to the variable t and using axiom (A2), we obtain TF ;m 1 Z 0 m.t /ˇ ˇf00.t aC .1 t/b/ˇˇC ˇ ˇf00.t bC .1 t/a/ˇˇ dt; ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ; ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ ! C 1 Z 0 Lm.t /dt  0;

for t2 Œ0; 1 : On the other hand, using Lemma3, we have 4 .b a/2 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f a C b 2 ˇˇ ˇ ˇ ˇ  Z 1 0 m .t /ˇ ˇf00.t aC .1 t/b/ˇˇC ˇ ˇf00.t bC .1 t/a/ˇˇ dt:

(19)

Since TF ;mis nondecreasing with respect to the first variable, we get TF ;m 4 .b a/2 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ ; ˇ ˇf00.a/ˇˇC ˇ ˇf00.b/ˇˇ; ˇ ˇf00.a/ˇˇC ˇ ˇf00.b/ˇˇ ! C 1 Z 0 Lm.t /dt 0:

This completes the proof. 

Corollary 13. Letf W Iı R ! R be twice differentiable function on Iı,a; b2 Iı witha < b: Suppose that the functionjf00j is " convex on Œa; b ; "  0: Then we have

ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ 2 4  jf00.a/j C jf00.b/j 12 C " 12  : Proof. Using (1.4) with w.t /D m.t/; we obtain

1 Z 0 Lm.t /dtD" 1 Z 0 .1 m.t //dt D" 0 B @ 1=2 Z 0 .1 t2/dtC 1 Z 1=2 .1 .1 t /2/dt 1 C A D11 12": From (1.3) with w.t /D m.t/; we get

TF ;w.u1; u2; u3/Du1 0 @ 1 Z 0 t m.t /dt 1 Au2 0 @ 1 Z 0 .1 t /m.t /dt 1 Au3 " Du1 u2C u3 24 " for u1; u2; u32 R: Hence, TF ;m 4 .b a/2 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ ; ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ; ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ ! D 4 .b a/2 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ jf00.a/j C jf00.b/j 12 ":

(20)

Thus, by Theorem8, we have 4 .b a/2 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ jf00.a/j C jf00.b/j 12 "C 11 12" 0; that is ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ 2 4  jf00.a/j C jf00.b/j 12 C " 12  :

This completes the proof. 

Remark6. If we taking "D 0 in Corollary13, thenjf00j is convex and we have the inequality ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ .b a/ 2 24  jf00.a/j C jf00.b/j 2 

which is given by Sarikaya et al. in [13].

Corollary 14. Letf W Iı R ! R be twice differentiable function on Iı,a; b2 Iı witha < b: Suppose that the functionjf00j is ˛ convex on Œa; b ; ˛ 2 .0; 1: Then we have ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  .b a/ 2 24  jf00.a/j C jf00.b/j 2  : Proof. From (1.6) with w.t /D m.t/, we have

TF ;w.u1; u2; u3/D u1 0 @ 1 Z 0 t˛m.t /dt 1 Au2 0 @ 1 Z 0 .1 t˛/m.t /dt 1 Au3 D u1 1 .˛C 1/ .˛ C 2/  2 ˛C 3 1 2˛C1  u2  1 12 1 .˛C 1/ .˛ C 2/  2 ˛C 3 1 2˛C1  u3

for u1; u2; u32 R: It follows that

TF ;w 4 .b a/2 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ ; ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ; ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ ! D 4 .b a/2 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ

(21)

1 .˛C 1/ .˛ C 2/  2 ˛C 3 1 2˛C1  ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ   1 12 1 .˛C 1/ .˛ C 2/  2 ˛C 3 1 2˛C1  ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ  D 4 .b a/2 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ jf00.b/j C jf00.a/j 12 :

which completes the proof. 

Corollary 15. Letf W Iı R ! R be twice differentiable function on Iı,a; b2 Iı witha < b: Suppose that the functionjf00j is h convex on Œa; b : Then we have

ˇ ˇ ˇ ˇ ˇ f .a/C f .b/ 2 1 b a Z b a f .x/dx ˇ ˇ ˇ ˇ ˇ  .b a/2 0 @ 1 Z 0 h.t /t .1 t /dt 1 A  jf00.a/j C jf00.b/j 2  :

Proof. From (1.8) with w.t /D m.t/, we have

TF ;w.u1; u2; u3/D u1 0 @ 1 Z 0 h.t /m.t /dt 1 Au2 0 @ 1 Z 0 h.1 t /m.t /dt 1 Au3 D u1 0 @ 1 Z 0 h.t /m.t /dt 1 Au2 0 @ 1 Z 0 h.t /m.1 t /dt 1 Au3 D u1 0 @ 1 Z 0 h.t /m.t /dt 1 A.u2C u3/

for u1; u2; u32 R: Then, by Theorem8,

TF ;w 4 .b a/2 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ ; ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ; ˇ ˇf00.b/ˇˇC ˇ ˇf00.a/ˇˇ ! D 4 .b a/2 ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ

(22)

2 0 @ 1 Z 0 h.t /m.t /dt 1 A ˇ ˇf00.a/ˇˇC ˇ ˇf00.b/ˇˇ  0 that is, ˇ ˇ ˇ ˇ ˇ 1 b a Z b a f .x/dx f  a C b 2 ˇˇ ˇ ˇ ˇ  .b a/2 0 @ 1 Z 0 h.t /m.t /dt 1 A  jf00.a/j C jf00.b/j 2 

which completes the proof. 

REFERENCES

[1] B. Defnetti, “Sulla strati cazioni convesse.” Ann. Math. Pura. Appl., vol. 30, pp. 173–183, 1949. [2] H. D.H. and S. Ulam, “Approximately convex functions,” Proc. Amer. Math. Soc., vol. 3, pp.

821–828, 1952.

[3] S. S. Dragomir and R. P. Agarwal, “Two inequalities for differentiable mappings and applica-tions to special means of real numbers and to trapezoidal formula,” Applied Mathematics Letters, vol. 11, no. 5, pp. 91–95, 1998, doi:10.1016/S0893-9659(98)00086-X.

[4] S. S. Dragomir and C. Pearce, “Selected topics on hermite-hadamard inequalities and applica-tions,” 2003.

[5] H. Hudzik and L. Maligranda, “Some remarks ons-convex functions,” Aequationes Mathematicae, vol. 48, no. 1, pp. 100–111, 1994, doi:10.1007/BF01837981.

[6] U. S. Kirmaci, “Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula,” Applied Mathematics and Computation, vol. 147, no. 1, pp. 137–146, 2004, doi:10.1016/S0096-3003(02)00657-4.

[7] O. L. Mangasarian, “Pseudo-convex functions,” in Stochastic Optimization Models in Finance. Elsevier, 1975, pp. 23–32, doi:10.1016/B978-0-12-780850-5.50009-5.

[8] J. E. Peajcariaac and Y. L. Tong, Convex functions, partial orderings, and statistical applications. Academic Press, 1992.

[9] C. E. Pearce and J. Peˇcari´c, “Inequalities for differentiable mappings with application to special means and quadrature formulae,” Applied Mathematics Letters, vol. 13, no. 2, pp. 51–55, 2000, doi:10.1016/S0893-9659(99)00164-0.

[10] B. T. Polyak, “Existence theorems and convergence of minimizing sequences in extremum prob-lems with restrictions,” Soviet Math. Dokl., vol. 7, pp. 72–75, 1966.

[11] B. Samet, “On an implicit convexity concept and some integral inequalities,” Journal of Inequal-ities and Applications, vol. 2016, no. 1, p. 308, 2016, doi:10.1186/s13660-016-1253-3.

[12] M. Z. Sarikaya, A. Saglam, and H. Yildirim, “On some hadamard-type inequalities for h-convex functions,” J. Math. Inequal, vol. 2, no. 3, pp. 335–341, 2008, doi:10.7153/jmi-02-30.

[13] M. Z. Sarikaya, A. Saglam, and H. Yildirim, “New inequalities of hermite-hadamard type for functions whose second derivatives absolute values are convex and quasi-convex,” International Journal of Open Problems in Computer Science and Mathematics, vol. 238, no. 1390, pp. 1–14, 2012, doi:10.12816/0006114.

[14] S. Varoˇsanec, “On h-convexity,” Journal of Mathematical Analysis and Applications, vol. 326, no. 1, pp. 303–311, 2007, doi:10.1016/j.jmaa.2006.02.086.

(23)

Authors’ addresses

H. Budak

D¨uzce University, Faculty of Science and Arts, Department of Mathematics D¨uzce, Turkey E-mail address: hsyn.budak@gmail.com

T. Tunc¸

D¨uzce University, Faculty of Science and Arts, Department of Mathematics D¨uzce, Turkey E-mail address: tubatunc03@gmail.com

M. Z. Sarikaya

D¨uzce University, Faculty of Science and Arts, Department of Mathematics D¨uzce, Turkey E-mail address: sarikayamz@gmail.com

Referanslar

Benzer Belgeler

türlerinin bulunduğu su örneklerindeki klor miktarlarına bakıldığında sadece iki örneğin klor miktarı 0.3ppm’den yüksek (0.4 ppm) çıkmıştır. Klor miktarı

ECoG recordings from the experiments were analyzed using the PowerLab Chart v.7.2.1 software package (ADInstruments Pty Ltd, Castle Hill, NSW, Australia).

The comparison results of the Duncan test on the factor levels of moisture content, type of varnish, thermal processing temperature, and thermal processing time,

The aim of this study was to investigate the effect of the Tinuvin derivatives widely used as UV stabilizers in the plastics industry on EPDM rubber.. The EPDM rubber plates

RBSÖ açısından benlik saygısı, anne-baba ilgisi ve babayla ilişki hasta grubunda kontrol grubuna göre daha düşük iken, eleştiriye duyarlılık, depresif

Bu romanda önermek istediğim, sizin okur katında çok güzel algıladığınız, tıpkı bu roman yazarının bunu oluştururken bir şeyle­ re şöyle bakması gibi sen bu

Betonun mekaniksel özelliklerinin çarpma dayanımına etkisinin incelenmesi konusundaki çalıĢmada; 30x15 cm ve 20x10 cm boyutlarında standart silindir ile 10x10x50 cm´

Bu oluşturulan serilerden her birinden 9 adet (150x150x150 mm) küp numuneler hazırlanmıştır. İkinci aşamada ise maksimum agrega çapı 4, 8, 16 mm olan beton karışımlarla